Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
1.
Curr Biol ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39094572

RESUMEN

Reproductive behaviors differ across species, but the mechanisms that control variation in mating and parental care systems remain unclear. In many animal species, pheromones guide mating and parental care. However, it is not well understood how vertebrate pheromone signaling evolution can lead to new reproductive behavior strategies. In fishes, prostaglandin F2α (PGF2α) drives mating and reproductive pheromone signaling in fertile females, but this pheromonal activity appears restricted to specific lineages, and it remains unknown how a female fertility pheromone is sensed for most fish species. Here, we utilize single-cell transcriptomics and CRISPR gene editing in a cichlid fish model to identify and test the roles of key genes involved in olfactory sensing of reproductive cues. We find that a pheromone receptor, Or113a, detects fertile cichlid females and thereby promotes male attraction and mating behavior, sensing a ligand other than PGF2α. Furthermore, while cichlid fishes exhibit extensive parental care, for most species, care is provided solely by females. We find that males initiate mouthbrooding parental care if they have disrupted signaling in ciliated sensory neurons due to cnga2b mutation or if or113a is inactivated. Together, these results show that distinct mechanisms of pheromonal signaling drive reproductive behaviors across taxa. Additionally, these findings indicate that a single pheromone receptor has gained a novel role in behavior regulation, driving avoidance of paternal care among haplochromine cichlid fishes. Lastly, a sexually dimorphic, evolutionarily derived parental behavior is controlled by central circuits present in both sexes, while olfactory signals gate this behavior in a sex-specific manner.

2.
Nanoscale ; 16(32): 15396-15404, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39093055

RESUMEN

Modulating the A-site deficiency is a useful method to achieve the exsolution of nanoparticles on the surface of perovskite, improving the catalytic activity. However, rules for designing the deficiency value and its roles on the structure and performance remain unclear. In this study, a wide range of A-site deficiencies of (La0.4Sr0.6)1-αTi0.95Ni0.05O3±Î´ (LSTN, α = 0.00, 0.13, 0.15, and 0.18) titanate perovskite materials was designed to systematically investigate their crystal structure, binding energy, oxygen vacancy concentration, exsolution process, and electrochemical performance. An extremely high conductivity (e.g., 331.75 S cm-1@800 °C, 5% H2/Ar) was obtained in parallel with enhanced catalytical activity in SOFC and SOEC modes. The A-site-deficient samples displayed a higher conductivity, oxygen vacancy concentration, and power output than the stoichiometric samples (α = 0.00). The best maximum power density of 78.74 mW cm-2 and the highest population density of 25 particles per µm2 were obtained on the deficient LSTN with α = 0.13. These findings suggest that LSTN is an exceptionally promising material for solid oxide cell (SOC) electrodes.

3.
Cell Genom ; : 100605, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38981476

RESUMEN

Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.

4.
J Clin Anesth ; 97: 111543, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954872

RESUMEN

STUDY OBJECTIVE: We conducted this double-blinded randomized controlled trial to examine whether the combination of dexamethasone and dexmedetomidine as adjuvants of transversus abdominis plane (TAP) block could improve analgesia efficacy and duration for gastric cancer patients. DESIGN: Randomized controlled trial. SETTING: The preoperative area, operating room, postanesthesia recovery room and bed ward. PATIENTS: A total of 312 adult patients (104 per group) with gastric cancer were included. INTERVENTIONS: Patients received bilateral subcostal TAP block with three different anesthetics (60 ml 0.25% ropivacaine added with 10 mg dexamethasone and 1 µg·kg-1 dexmedetomidine [A] or 10 mg dexamethasone [B] or 1 µg·kg-1 dexmedetomidine [C]). MEASUREMENTS: The primary outcome was the incidence of moderate-to-severe pain 24 h on movement. Secondary outcomes included incidence of moderate-to-severe pain, pain score, opioids use, recovery quality and adverse events. MAIN RESULTS: The incidence of moderate-to-severe pain on movement 24 h postoperatively of group A was significantly lower than group B (45.19% vs 63.46%; RR 0.71; 95% CI, 0.55 to 0.92) and group C (45.19% vs 73.08%, RR 0.62; 95% CI, 0.49 to 0.79). The median moving pain scores decreased significantly at 24 h (3.00 [3.00,5.00] vs 4.00 [3.00,6.00] vs 4.00 [3.00,5.00]; P < 0.001). There were significant differences in the opioids consumption within the first 24 h (27.5 [17.0,37.2] vs 30.0 [20.0,42.0] vs 32.0 [25.0,44.0] mg; P = 0.01) and the duration to first rescue analgesia (65.5 ± 26.7 vs 45.9 ± 34.5 vs 49.2 ± 27.2 h; P = 0.04). CONCLUSIONS: The combination with dexamethasone and dexmedetomidine as adjuvants for TAP block reduced the incidence of moderate-to-severe pain and pain score both on movement and at rest at 24 h with prolonged duration to first rescue analgesia after gastric cancer surgery. TRIAL REGISTRATION NUMBER: ChiCTR2000037981.

5.
Am J Cancer Res ; 14(6): 2805-2822, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005660

RESUMEN

Dysregulation of polyamine metabolism has been associated with the development of many cancers. However, little information has been reported about the associations between elevated extracellular putrescine and epithelial-mesenchymal transition (EMT) of gastric cancer (GC) cells. In this study, the influence of extracellular putrescine on the malignant behavior and EMT of the AGS and MKN-28 cells was investigated, followed by RNA sequencing profiling of transcriptomic alterations and CUT&Tag sequencing capturing H3K27ac variations across the global genome using extracellular putrescine. Our results demonstrated that the administration of extracellular putrescine significantly promoted the proliferation, migration, invasion, and expression of N-cadherin in GC cells. We also observed elevated H3K27ac in MKN-28 cells but not in AGS cells when extracellular putrescine was used. A combination of transcriptomic alterations and genome-wide variations of H3K27ac highlighted the upregulated MAL2 and H3K27ac in its promoter region. Knockdown and overexpression of MAL2 were found to inhibit and promote EMT, respectively, in AGS and MKN-28 cells. We demonstrated that extracellular putrescine could upregulate MAL2 expression by elevating H3K27ac in its promoter region, thus triggering augmented EMT in GC cells.

6.
Nat Commun ; 15(1): 5021, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866768

RESUMEN

A pressing challenge in spatially resolved transcriptomics (SRT) is to benchmark the computational methods. A widely-used approach involves utilizing simulated data. However, biases exist in terms of the currently available simulated SRT data, which seriously affects the accuracy of method evaluation and validation. Herein, we present scCube ( https://github.com/ZJUFanLab/scCube ), a Python package for independent, reproducible, and technology-diverse simulation of SRT data. scCube not only enables the preservation of spatial expression patterns of genes in reference-based simulations, but also generates simulated data with different spatial variability (covering the spatial pattern type, the resolution, the spot arrangement, the targeted gene type, and the tissue slice dimension, etc.) in reference-free simulations. We comprehensively benchmark scCube with existing single-cell or SRT simulators, and demonstrate the utility of scCube in benchmarking spot deconvolution, gene imputation, and resolution enhancement methods in detail through three applications.


Asunto(s)
Simulación por Computador , Perfilación de la Expresión Génica , Programas Informáticos , Transcriptoma , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Humanos , Análisis de la Célula Individual/métodos , Animales , Algoritmos
7.
Fundam Res ; 4(3): 589-602, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933191

RESUMEN

Hybridization and polyploidization have made great contributions to speciation, heterosis, and agricultural production within plants, but there is still limited understanding and utilization in animals. Subgenome structure and expression reorganization and cooperation post hybridization and polyploidization are essential for speciation and allopolyploid success. However, the mechanisms have not yet been comprehensively assessed in animals. Here, we produced a high-fidelity reference genome sequence for common carp, a typical allotetraploid fish species cultured worldwide. This genome enabled in-depth analysis of the evolution of subgenome architecture and expression responses. Most genes were expressed with subgenome biases, with a trend of transition from the expression of subgenome A during the early stages to that of subgenome B during the late stages of embryonic development. While subgenome A evolved more rapidly, subgenome B contributed to a greater level of expression during development and under stressful conditions. Stable dominant patterns for homoeologous gene pairs both during development and under thermal stress suggest a potential fixed heterosis in the allotetraploid genome. Preferentially expressing either copy of a homoeologous gene at higher levels to confer development and response to stress indicates the dominant effect of heterosis. The plasticity of subgenomes and their shifting of dominant expression during early development, and in response to stressful conditions, provide novel insights into the molecular basis of the successful speciation, evolution, and heterosis of the allotetraploid common carp.

8.
Small ; : e2402765, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940416

RESUMEN

Droplet-based electricity generators (DEGs) are increasingly recognized for their potential in converting renewable energy sources. This study explores the interplay of surface hydrophobicity and stickiness in improving DEG efficiency. It find that the high-performance C-WaxDEGs leverage both these properties. Specifically, DEGs incorporating polydimethylsiloxane (PDMS) with carnauba wax (C-wax) exhibit increased output as surface stickiness decreases. Through experimental comparisons, PDMS with 1wt.% C-wax demonstrated a significant power output increase from 0.07 to 1.2 W m- 2, which attribute to the minimized adhesion between water molecules and the polymer surface, achieved by embedding C-wax into PDMS surface to form microstructures. This improvement in DEG performance is notable even among samples with similar surface potentials and contact angles, suggesting that C-wax's primary contribution is in reducing surface stickiness rather than altering other surface properties. The further investigations into the C-WaxDEG variant with 1wt.% C-wax PDMS uncover its potential as a sensor for water quality parameters such as temperature, pH, and heavy metal ion concentration. These findings open avenues for the integration of C-WaxDEGs into flexible electronic devices aimed at environmental monitoring.

9.
J Colloid Interface Sci ; 672: 776-786, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870768

RESUMEN

Coating and single crystal are two common strategies for cobalt-free nickel-rich layered oxides to solve its poor rate performance and cycle stability. However, the action mechanism of different modification protocols to suppress the attenuation are unclear yet. Herein, the Li2MoO4 layer-coated polycrystalline LiNi0.9Mn0.1O2 (1.0 %-Mo + NM91) and single crystal LiNi0.9Mn0.1O2 (SC-NM91) are prepared to investigate this difference, respectively. By focusing on the interior of particles, the relationship between structure evolution and electrochemical behavior is systematically studied, and the intrinsic mechanism of coating/single-crystallization modifications on suppressing the attenuation is clarified. The results show that microcracks in LiNi0.9Mn0.1O2 (NM91) are the main culprit leading to the rate capability decay, and the coating can effectively prevent the radial diffusion of microcracks from the center to surface, inhibiting the generation of surface side reactions. Therefore, the coating has a more advantage in improving the rate performance at 5.0C, the discharge capacity of 1.0 %-Mo + NM91 (130.6 mAh/g) is 7.9 % higher than that of SC-NM91 (121.0 mAh/g). In contrast, the single-crystallization can effectively prevent the formation of intergranular cracks arising from the anisotropic stress in NM91, which causes the severe cycle degradation. Correspondingly, the grain boundary-free SC-NM91 shows superior cyclability. The capacity retention rate of SC-NM91 (80.8 %) at 0.2C after 100cycles is 6.3 % higher than that of 1.0 %-Mo + NM91 (74.5 %). This work concludes the effect difference of different modification methods on enhancing the electrochemical performance, which provides theoretical and technical guidance for the optimized and targeted modification design in the cobalt-free high nickel cathode materials.

10.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38713167

RESUMEN

Follicular fluid meiosis-activating sterol (FF-MAS) is a small molecule compound found in FF, named for its ability to induce oocyte resumption of meiosis. Granulosa cells (GCs) within the follicle are typically located in a hypoxic environment under physiologic conditions due to limited vascular distribution. Previous research suggests that hypoxia-induced cell cycle arrest and apoptosis in GCs may be crucial triggering factors in porcine follicular atresia. However, the impact of FF-MAS on GCs within follicles has not been explored so far. In this study, we uncovered a novel role of FF-MAS in facilitating GC survival under hypoxic conditions by inhibiting STAT4 expression. We found that STAT4 expression was upregulated in porcine GCs exposed to 1% O2. Both gain and loss of function assays confirmed that STAT4 was required for cell apoptosis under hypoxia conditions, and that the GC apoptosis caused by hypoxia was markedly attenuated following FF-MAS treatment through inhibition of STAT4 expression. Correlation analysis in vivo revealed that GC apoptosis was associated with increased STAT4 expression, while the FF-MAS content in follicular fluid was negatively correlated with STAT4 mRNA levels and cell apoptosis. These findings elucidate a novel role of FF-MAS-mediated protection of GCs by inhibiting STAT4 expression under hypoxia, which might contribute to the mechanistic understanding of follicular development.


Granulosa cells (GCs) influence follicle growth and development, with their proliferation and differentiation promoting follicle development and ovulation, while their programmed cell death and degeneration trigger follicular atresia. In this study, to investigate the effect of FF-MAS on GCs of follicles, we performed gene expression profiling in the domestic pig (Sus scrofa). We discovered STAT4 is required for GC apoptosis under hypoxia conditions both in vitro and in vivo and FF-MAS prevents porcine ovarian granulosa cells from hypoxia-induced apoptosis via inhibiting STAT4 expression.


Asunto(s)
Apoptosis , Líquido Folicular , Células de la Granulosa , Meiosis , Factor de Transcripción STAT4 , Animales , Células de la Granulosa/efectos de los fármacos , Femenino , Apoptosis/efectos de los fármacos , Porcinos , Líquido Folicular/química , Meiosis/efectos de los fármacos , Factor de Transcripción STAT4/metabolismo , Factor de Transcripción STAT4/genética , Esteroles , Hipoxia/veterinaria
11.
J Biol Chem ; 300(7): 107414, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810697

RESUMEN

Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase family and has the ability to catalyze the cross-linking of extracellular matrix collagen and elastin. High expression of LOXL2 is related to tumor cell proliferation, invasion, and metastasis. LOXL2 contains 14 exons. Previous studies have found that LOXL2 has abnormal alternative splicing and exon skipping in a variety of tissues and cells, resulting in a new alternatively spliced isoform denoted LOXL2Δ13. LOXL2Δ13 lacks LOXL2WT exon 13, but its encoded protein has greater ability to induce tumor cell proliferation, invasion, and metastasis. However, the molecular events that produce LOXL2Δ13 are still unclear. In this study, we found that overexpression of the splicing factor hnRNPA1 in cells can regulate the alternative splicing of LOXL2 and increase the expression of LOXL2Δ13. The exonic splicing silencer exists at the 3' splice site and 5' splice site of LOXL2 exon 13. HnRNPA1 can bind to the exonic splicing silencer and inhibit the inclusion of exon 13. The RRM domain of hnRNPA1 and phosphorylation of hnRNPA1 at S91 and S95 are important for the regulation of LOXL2 alternative splicing. These results show that hnRNPA1 is a splicing factor that enhances the production of LOXL2Δ13.


Asunto(s)
Empalme Alternativo , Aminoácido Oxidorreductasas , Exones , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Humanos , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Anal Methods ; 16(19): 3099-3108, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38695127

RESUMEN

The CRISPR-Cas system has been found to be extremely sensitive and there is an urgent demand to extend its potential in bioassays. Herein, we developed a novel nanobiosensor to detect the human papillomavirus 16 genes (HPV-16 DNA), which is triggered by CRISPR-Cas12a to amplify the fluorescence signal by metal-enhanced fluorescence (CAMEF). Along with the changing of the fluorescence signal, the aggregation of the substrate of MEF also leads to a change in the color of the mixture solution, enabling dual signal detection with the fluorescence and the naked eye. Furthermore, the designed CAMEF probe was verified to detect the HPV-16 DNA accurately and reliably in biological samples. Triggered by the CRISPR system, the designed CAMEF probe allows quantitative detection of the HPV-16 DNA in the wide range of 10-500 pM. Owing to the MEF, the fluorescence signal of the CAMEF probe was significantly amplified with the detection limit as low as 1 pM. Besides, we can determine the concentration of HPV-16 DNA simply by the naked eye, which also drastically reduces the possibility of false-positive signals. Theoretically, the target ssDNA could be any strand of DNA obtained by designing the crRNA sequence in the CRISPR-Cas system. We believe that the designed CAMEF sensor can present a reliable approach for the accurate detection of low amounts of target ssDNA in complex biological samples.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Colorimetría , ADN Viral , Papillomavirus Humano 16 , Sistemas CRISPR-Cas/genética , Papillomavirus Humano 16/genética , Colorimetría/métodos , Humanos , ADN Viral/análisis , ADN Viral/genética , Técnicas Biosensibles/métodos , Límite de Detección , Fluorescencia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos
13.
Cell Rep Med ; 5(6): 101568, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38754419

RESUMEN

Cells respond divergently to drugs due to the heterogeneity among cell populations. Thus, it is crucial to identify drug-responsive cell populations in order to accurately elucidate the mechanism of drug action, which is still a great challenge. Here, we address this problem with scRank, which employs a target-perturbed gene regulatory network to rank drug-responsive cell populations via in silico drug perturbations using untreated single-cell transcriptomic data. We benchmark scRank on simulated and real datasets, which shows the superior performance of scRank over existing methods. When applied to medulloblastoma and major depressive disorder datasets, scRank identifies drug-responsive cell types that are consistent with the literature. Moreover, scRank accurately uncovers the macrophage subpopulation responsive to tanshinone IIA and its potential targets in myocardial infarction, with experimental validation. In conclusion, scRank enables the inference of drug-responsive cell types using untreated single-cell data, thus providing insights into the cellular-level impacts of therapeutic interventions.


Asunto(s)
Redes Reguladoras de Genes , Análisis de la Célula Individual , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Análisis de la Célula Individual/métodos , Meduloblastoma/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/patología , RNA-Seq/métodos , Animales , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/tratamiento farmacológico , Transcriptoma/genética , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Infarto del Miocardio/genética , Infarto del Miocardio/tratamiento farmacológico , Análisis de Expresión Génica de una Sola Célula
14.
Heliyon ; 10(9): e29895, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38694126

RESUMEN

While immersive shopping has injected new vitality into China's e-commerce, it has also resulted in consumers' over-reliance on online shopping. Psychological studies have linked online shopping addiction with depression, but business practices challenge this conclusion. This study, grounded in addiction theory, developed a theoretical model, and conducted an online survey with 214 live-streaming shoppers using structural equation modeling for validation. The primary focus was on determining whether consumers truly become addicted to online shopping in the four stages of the addiction model. The study unveils the process of consumers becoming addicted to online shopping. It explores the moderating role of perceived risk in the relationship between utilitarian and hedonic purchases and online shopping addiction. The findings suggest that through tactics such as traffic promotion, traffic trapping, anchor feature utilization, and incorporation of consumer aesthetics, merchants may induce utilitarian and hedonic purchases, leading to addiction to live-streaming shopping among consumers. Furthermore, perceived risk significantly and negatively moderates the relationship between utilitarian purchases and online shopping addiction. Our research indicates that merchants intentionally create external stimuli, enticing consumers to indulge in online shopping, suggesting that online shopping addiction is not merely a simple psychological state but may be influenced by external factors. This study provides novel insights into the phenomenon of online shopping addiction while offering valuable recommendations for consumers seeking to avoid succumbing to its allure.

15.
Biosens Bioelectron ; 259: 116412, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795498

RESUMEN

While there is significant potential for DNA machine-built enzyme-free fluorescence biosensors in the imaging analysis of live biological samples, they persist certain shortcomings. These encompass a deficiency of signal enrichment within a singular interface, uncontrolled premature activation during bio-delivery, and a slow reaction rate due to free nucleic acid collisions. In this contribution, we are committed to resolving the above challenges. Firstly, a single-interface-integrated domino-like driving amplification is constructed. In this conception, a specific target acts as the domino promotor (namely the energy source), initiating a cascading chain reaction that grafts onto a singular interface. Next, an 808 nm near-infrared (NIR) light-excited up-converting luminescence-induced light-activatable biosensing technique is introduced. By locking the target-specific identification segment with a photo-cleavage connector, the up-converted ultraviolet emission can activate target binding in a completely controlled manner. Moreover, a fast reaction rate is achieved by confining nucleic acid collisions within the surface of a DNA wire nano-scaffold, leading to a substantial enhancement in local contact concentration (30.8-fold increase, alongside a 15 times elevation in rate). When a non-coding microRNA (miRNA-221) is positioned as the model low-abundance target for proof-of-concept validation, our intelligent DNA machine demonstrates ultra-high sensitivity (with a limit of detection down to 62.65 fM) and good specificity for this hepatic malignant tumor-associated biomarker in solution detection. Going further, it is worth highlighting that the biosensing system can be employed to carry out high-performance imaging analysis in live bio-samples (ranging from the cellular level to the nude mouse body), thereby propelling the field of DNA machines in disease diagnosis.


Asunto(s)
Técnicas Biosensibles , ADN , Rayos Infrarrojos , MicroARNs , Técnicas Biosensibles/métodos , Humanos , ADN/química , ADN/genética , MicroARNs/análisis , MicroARNs/genética , Animales , Ratones , Técnicas de Amplificación de Ácido Nucleico/métodos , Imagen Óptica/métodos , Nanoestructuras/química
16.
Research (Wash D C) ; 7: 0366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38783913

RESUMEN

Muscle strength (MS) is related to our neural and muscle systems, essential for clinical diagnosis and rehabilitation evaluation. Although emerging wearable technology seems promising for MS assessment, problems still exist, including inaccuracy, spatiotemporal differences, and analyzing methods. In this study, we propose a wearable device consisting of myoelectric and strain sensors, synchronously acquiring surface electromyography and mechanical signals at the same spot during muscle activities, and then employ a deep learning model based on temporal convolutional network (TCN) + Transformer (Tcnformer), achieving accurate grading and prediction of MS. Moreover, by combining with deep clustering, named Tcnformer deep cluster (TDC), we further obtain a 25-level classification for MS assessment, refining the conventional 5 levels. Quantification and validation showcase a patient's postoperative recovery from level 3.2 to level 3.6 in the first few days after surgery. We anticipate that this system will importantly advance precise MS assessment, potentially improving relevant clinical diagnosis and rehabilitation outcomes.

17.
Anal Chem ; 96(18): 7101-7110, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663376

RESUMEN

While DNA amplifier-built nanobiosensors featuring a DNA polymerase-free catalytic hairpin assembly (CHA) reaction have shown promise in fluorescence imaging assays within live biosystems, challenges persist due to unsatisfactory precision stemming from premature activation, insufficient sensitivity arising from low reaction kinetics, and poor biostability caused by endonuclease degradation. In this research, we aim to tackle these issues. One aspect involves inserting an analyte-binding unit with a photoinduced cleavage bond to enable a light-powered notion. By utilizing 808 nm near-infrared (NIR) light-excited upconversion luminescence as the ultraviolet source, we achieve entirely a controllable sensing event during the biodelivery phase. Another aspect refers to confining the CHA reaction within the finite space of a DNA self-assembled nanocage. Besides the accelerated kinetics (up to 10-fold enhancement) resulting from the nucleic acid restriction behavior, the DNA nanocage further provides a 3D rigid skeleton to reinforce enzymatic resistance. After selecting a short noncoding microRNA (miRNA-21) as the modeled low-abundance sensing analyte, we have verified that the innovative NIR light-powered and DNA nanocage-confined CHA nanobiosensor possesses remarkably high sensitivity and specificity. More importantly, our sensing system demonstrates a robust imaging capability for this cancer-related universal biomarker in live cells and tumor-bearing mouse bodies, showcasing its potential applications in disease analysis.


Asunto(s)
Técnicas Biosensibles , ADN , Rayos Infrarrojos , MicroARNs , MicroARNs/análisis , Humanos , Técnicas Biosensibles/métodos , Animales , ADN/química , Ratones , Imagen Óptica , Nanoestructuras/química
18.
Sci Adv ; 10(17): eadn0947, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669338

RESUMEN

Organic electrosynthesis in aqueous media is presently hampered by the poor solubility of many organic reactants and thus low purity of liquid products in electrolytes. Using the electrooxidation of benzyl alcohol (BA) as a model reaction, we present a "sandwich-type" organic-solid-water (OSW) system, consisting of BA organic phase, KOH aqueous electrolyte, and porous anodes with Janus-like superwettability. The system allows independent diffusion of BA molecules from the organic phase to electrocatalytic active sites, enabling efficient electrooxidation of high-concentration BA to benzaldehyde (97% Faradaic efficiency at ~180 mA cm-2) with substantially reduced ohmic loss compared to conventional solid-liquid systems. The confined organic-water boundary within the electrode channels suppresses the interdiffusion of molecules and ions into the counterphase, thus preventing the hydration and overoxidation of benzaldehyde during long-term electrocatalysis. As a result, the direct production of high-purity benzaldehyde (91.7%) is achieved in a flow cell, showcasing the effectiveness of electrocatalysis over OSW interfaces for the one-step synthesis of high-purity organic compounds.

19.
Anal Methods ; 16(19): 3067-3073, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38683672

RESUMEN

Cortisol is a vital glucocorticoid hormone reflecting stress levels and related disease processes. In this study, we report an aptamer-functionalized plasmonic nano-urchin (α-FeOOH@Au-aptamer)-aided cortisol-capturing and surface-enhanced Raman spectroscopy (SERS) analysis approach. The designed α-FeOOH@Au-aptamer exhibits a well-patterned plasma structure, which combines the good SERS enhancement ability of reduced nanogaps between the Au plasma and the hot spot-favored structure of anisotropic tips from α-FeOOH urchins, with the high affinity of the aptamer towards cortisol molecules. The α-FeOOH@Au-aptamer achieved reporter-free SERS quantification for cortisol with good sensitivity (limit of detection <0.28 µmol L-1), robust salt (1.0 mol per L NaCl) and protein (5.0 mg per mL bovine serum protein) tolerance, favorable reproducibility, as well as good reusability. We further demonstrated the good cortisol-capturing ability and SERS efficacy of the α-FeOOH@Au-aptamer profiling in the serum and urine samples. Our approach provides an alternative tool for cortisol analysis and a reference strategy for report-free SERS detection of small molecules.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Hidrocortisona , Espectrometría Raman , Espectrometría Raman/métodos , Hidrocortisona/sangre , Hidrocortisona/análisis , Hidrocortisona/orina , Hidrocortisona/química , Aptámeros de Nucleótidos/química , Oro/química , Humanos , Nanopartículas del Metal/química , Límite de Detección , Animales , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos
20.
Nano Lett ; 24(17): 5277-5283, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38624178

RESUMEN

As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°. The experimental results show that a resolution of 15° can be achieved in the range 0-90°. Additionally, we installed the sensor on a robotic hand, enabling it to perceive the magnitude and direction of touch and grasp actions. Based on this, the designed 3D flexible tactile force sensor provides valuable insights for multidimensional force detection and applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA