Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.344
Filtrar
1.
J Environ Sci (China) ; 150: 556-570, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306429

RESUMEN

Elucidating the mutual effects between the different volatile organic compounds (VOCs) is crucial for comprehending the formation mechanism of atmospheric secondary organic aerosols (SOA). Here, the mixed VOCs experiments of isoprene and Δ3-carene/ß-caryophyllene were carried out in the presence of O3 using an indoor smog chamber. The suppression effect of isoprene was recognized by the scanning mobility particle sizer spectrometer, online vacuum ultraviolet free electron laser (VUV-FEL) photoionization aerosol mass spectrometry, and quantum chemical calculations. The results indicate that the suppression effect of isoprene on the ozonolysis of Δ3-carene and ß-caryophyllene shows fluctuating and monotonous trends, respectively. The carbon content of the precursor could be the main factor for regulating the strength of the suppression effect. Plausible structures and formation mechanisms of several new products generated from the single VOC precursor and VOC-cross-reaction are proposed, which enrich the category of VOC oxidation products. Meanwhile, a new dimerization mechanism of the RO2 + R'O2 reaction is suggested, which offers an intriguing perspective on the gas phase formation process of particle phase accretion products. The present findings provide valuable insights into clarifying the pivotal roles played by isoprene in the interplay between different VOCs and understanding of SOA formation mechanisms of VOC mixtures, especially nearby the emission origins.


Asunto(s)
Aerosoles , Contaminantes Atmosféricos , Butadienos , Hemiterpenos , Ozono , Sesquiterpenos Policíclicos , Compuestos Orgánicos Volátiles , Butadienos/química , Hemiterpenos/química , Ozono/química , Sesquiterpenos Policíclicos/química , Contaminantes Atmosféricos/química , Compuestos Orgánicos Volátiles/química , Modelos Químicos , Dimerización
2.
Neural Regen Res ; 20(2): 557-573, 2025 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38819067

RESUMEN

JOURNAL/nrgr/04.03/01300535-202502000-00032/figure1/v/2024-05-28T214302Z/r/image-tiff Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.

3.
Cell Biol Toxicol ; 40(1): 78, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39289194

RESUMEN

The N7-methylguanosine (m7G) modification and circular RNAs (circRNAs) have been shown to play important roles in the development of lung cancer. However, the m7G modification of circRNAs has not been fully elucidated. This study revealed the presence of the m7G modification in circFAM126A. We propose the novel hypothesis that the methyltransferase TRMT10C mediates the m7G modification of circFAM126A and that the stability of m7G-modified circFAM126A is reduced. circFAM126A is downregulated in lung cancer and significantly inhibits lung cancer growth both in vitro and in vivo. The expression of circFAM126A correlates with the stage of lung cancer and with the tumour diameter, and circFAM126A can be used as a potential molecular target for lung cancer. The molecular mechanism by which circFAM126A increases HSP90 ubiquitination and suppresses AKT1 expression to regulate cellular glycolysis, ultimately inhibiting the progression of lung cancer, is elucidated. This study not only broadens the knowledge regarding the expression and regulatory mode of circRNAs but also provides new insights into the molecular mechanisms that regulate tumour cell metabolism and affect tumour cell fate from an epigenetic perspective. These findings will facilitate the development of new strategies for lung cancer prevention and treatment.


Asunto(s)
Proliferación Celular , Glucólisis , Neoplasias Pulmonares , Metiltransferasas , ARN Circular , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Glucólisis/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Animales , Proliferación Celular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Células A549 , Guanosina/análogos & derivados , Guanosina/metabolismo , Masculino , Femenino , Ratones Endogámicos BALB C , Ubiquitinación
4.
Free Radic Biol Med ; 224: 554-563, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293609

RESUMEN

OBJECTIVE: To investigate the protective effect of lanthanum chloride on kidney injury in chronic kidney disease and its mechanism. METHODS: 1. Patients with CKD stage 2-5 were selected to analyze the effect of lanthanum-containing preparations on CKD. 2. Sixty healthy male Wistar rats were randomly divided into control group, model group, lanthanum chloride groups (0.03 ng/kg, 0.1 ng/kg, 0.3 ng/kg, q.3d., i.v.), and lanthanum carbonate group (0.3 g/kg, q.d., p.o.). The model group was given 2 % adenine suspension (200 mg/kg, q.d., p.o.) for the first two weeks, followed by adenine (200 mg/kg, b.i.d., p.o.) for 2 weeks, and all animals were sacrificed after eight weeks of administration. 3. The serum and kidneys of rats in each group were collected to detect the oxidative stress indicators and the expressions of LC3B-Ⅱ/Ⅰ, p62, Bcl-2, Bax, Caspase-3 and Cleaved Caspase-3. 4. Human renal tubular epithelial cells (HK-2 cells) were divided into control group, model group, lanthanum chloride group, pyrophosphate (PPI) group, chloroquine (CQ) group, rapamycin group, doxorubicin (DOX) group and N-acetyl-L-cysteine (NAC) group. The mitochondrial status, mitophagy and apoptosis levels were detected. RESULTS: 1.Lanthanum-containing preparations can significantly reduce the biochemical indexes of kidney injury in patients with CKD. 2. In the model group, the glomerular and renal tubular edema, the mitochondria were short and round, and the expression of LC3B-Ⅱ/Ⅰ and Bax increased, while the expression of P62, Bcl-2 and Caspase-3 decreased, and there was a significant improvement in the administration group, especially the 0.1 ng/kg group and lanthanum carbonate group. 3. In the HK-2 cell model group, mitochondrial membrane potential decreased, morphology changed and the results were reversed by lanthanum chloride. CONCLUSION: Lanthanum chloride may alter the morphology of nano-hydroxyapatite, thereby inhibiting its induced mitophagy and mitochondria-mediated apoptosis, and ultimately improve CKD renal injury effectively.

5.
Heliyon ; 10(17): e37580, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39296003

RESUMEN

Objective: This study aimed to verify whether pancreatic steatosis (PS) is an independent risk factor for type 2 diabetes mellitus (T2DM). We also developed and validated a deep learning model for the diagnosis of PS using ultrasonography (US) images based on histological classifications. Methods: In this retrospective study, we analysed data from 139 patients who underwent US imaging of the pancreas followed by pancreatic resection at our medical institution. Logistic regression analysis was employed to ascertain the independent predictors of T2DM. The diagnostic efficacy of the deep learning model for PS was assessed using receiver operating characteristic curve analysis and compared with traditional visual assessment methodology in US imaging. Results: The incidence rate of PS in the study cohort was 64.7 %. Logistic regression analysis revealed that age (P = 0.003) and the presence of PS (P = 0.048) were independent factors associated with T2DM. The deep learning model demonstrated robust diagnostic capabilities for PS, with areas under the curve of 0.901 and 0.837, sensitivities of 0.895 and 0.920, specificities of 0.700 and 0.765, accuracies of 0.814 and 0.857, and F1-scores of 0.850 and 0.885 for the training and validation cohorts, respectively. These metrics significantly outperformed those of conventional US imaging (P < 0.001 and P = 0.045, respectively). Conclusion: The deep learning model significantly enhanced the diagnostic accuracy of conventional ultrasound for PS detection. Its high sensitivity could facilitate widespread screening for PS in large populations, aiding in the early identification of individuals at an elevated risk for T2DM in routine clinical practice.

6.
Ecotoxicol Environ Saf ; 285: 117008, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299206

RESUMEN

Metamifop (MET) is a widely used pesticides in paddy field and it has good weed control effect. As a chiral pesticide that may be hazardous to human health through food chain transmission, there could be selective differences in the metabolism and toxicity of its enantiomers, so the study of chiral MET may offer an assessment of MET toxicity and stereoselectivity at the enantiomeric level. A total of 39, 43 and 31 differential metabolites were screened from the data sets of Rac-, R-(-)- and S-(+)-MET, respectively. Metabolic pathway analysis revealed that MET and its enantiomers primarily affected sphingolipid metabolism, glycerophospholipid metabolism, linoleic acid metabolism, α-linolenic acid metabolism and arachidonic acid metabolism. Rac- and S-(+)-MET affected the synthesis of glycosylphosphatidylinositol (GPI)-anchored biomolecules. R-(-)- and S-(+)-MET affected glutathione metabolism. R-(-)-MET affected vitamin B6 metabolism, selenium compound metabolism, and steroid biosynthesis. Pyrimidine metabolism was only affected by Rac-MET. The experimental results indicated that MET and its enantiomers may affect the nervous and immune systems in rats. Further inter-group difference analysis also demonstrated stereoselectivity of MET and its enantiomers on rat serum metabolism. These findings may provide more detailed information on the toxicity of Rac-, S-(+)- and R-(-)-MET in rat, as well as some context for assessing the environmental risk of the three agents to organisms.

7.
Burns ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39317551

RESUMEN

BACKGROUND: Diabetic wounds are a common complication of diabetes, with alarming disability and mortality rates. Ferroptosis plays an essential role in the occurrence and development of diabetes mellitus and its complications, suggesting that mitigating ferroptosis can be used as a potential therapeutic strategy. Resveratrol (RSV) can promote the angiogenesis of diabetic wounds, but its molecular mechanism is unclear, and RSV has a role in regulating ferroptosis. Therefore, we speculated that RSV could promote the angiogenesis of diabetic wounds and accelerate wound healing by regulating ferroptosis. METHODS: In this study, we investigated the effects of RSV on human umbilical vein endothelial cells (HUVECs) treated with advanced glycation end-products (AGEs), focusing primarily on cell proliferation and markers associated with ferroptosis. The methods employed included the CCK-8 assay for cell proliferation, ROS determination, Fe²âº measurement, scratch and tube formation assays, and transcriptome analysis. To evaluate the effectiveness of RSV in promoting wound healing, we established a type 2 diabetes rat model and created a skin injury model. Wound healing rates were assessed, and tissue samples were analyzed using hematoxylin and eosin (H&E) staining, immunohistochemistry, immunofluorescence, and Western blotting. Additionally, levels of glutathione (GSH) and malondialdehyde (MDA) were measured to evaluate oxidative stress and lipid peroxidation. RESULT: Upon treatment of HUVECs with AGEs, we observed a decrease in cell viability and induction of ferroptosis. RSV can alleviate ferroptosis in AGEs-treated HUVECs. Further investigation through transcriptome analysis and Western blotting revealed that RSV alleviates ferroptosis in AGE-treated HUVECs by modulating the activity of nuclear factor erythroid 2-related factor 2 (Nrf2). In vivo experiments using a diabetic rat skin injury model confirmed that both RSV and Ferrostatin-1 (Fer-1) enhance wound healing and angiogenesis. This effect was associated with the regulation of ferroptosis marker proteins including GPX4, SLC7A11, and ACSL4. Additionally, in the diabetic rat groups treated with RSV and Fer-1, we noted increased expression of Nrf2, vascular endothelial growth factor (VEGF), and CD31 proteins compared to the diabetic rat control group. CONCLUSION: In diabetic wounds, AGEs can lead to ferroptosis in HUVECs. RSV can inhibit AGE-induced ferroptosis in HUVECs, further promoting angiogenesis in diabetic wounds, and ultimately accelerating wound healing.

8.
Chemosphere ; 365: 143358, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39299463

RESUMEN

Biochar modification is an effective approach to enhance its ability to promote anaerobic digestion (AD). Focusing on the physical properties of biochar, the impact of different particle sizes of biochar on AD of food waste (FW) at high organic loading rate (OLR) was investigated. Four biochar with different sizes (40-200 mesh) were prepared and used in AD systems at OLR 30 g VS/L. The research results found that biochar with a volume particle size of 102 µm (RBC-P140) had top-performance in promoting cumulative methane production, increasing by 13.20% compared to the control group. The analysis results of the variety in volatile acids and alkalinity in the system did not show a correlation with the size of biochar, but small size has the potential to improve the environmental tolerance of the system to high acidity. Microbial community analysis showed that the abundance of aceticlastic methanogen and the composition of zoogloea were optimized through relatively small-sized biochar. Through revealing the effect of biochar particle size on AD system at high OLR, this work provided theoretical guidance for regulating fermentation systems using biochar.

9.
Front Plant Sci ; 15: 1447263, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301165

RESUMEN

Introduction: In the field of facility agriculture, the accurate identification of tomatoes at multiple stages has become a significant area of research. However, accurately identifying and localizing tomatoes in complex environments is a formidable challenge. Complex working conditions can impair the performance of conventional detection techniques, underscoring the necessity for more robust methods. Methods: To address this issue, we propose a novel model of YOLOv8-EA for the localization and identification of tomato fruit. The model incorporates a number of significant enhancements. Firstly, the EfficientViT network replaces the original YOLOv8 backbone network, which has the effect of reducing the number of model parameters and improving the capability of the network to extract features. Secondly, some of the convolutions were integrated into the C2f module to create the C2f-Faster module, which facilitates the inference process of the model. Third, the bounding box loss function was modified to SIoU, thereby accelerating model convergence and enhancing detection accuracy. Lastly, the Auxiliary Detection Head (Aux-Head) module was incorporated to augment the network's learning capacity. Result: The accuracy, recall, and average precision of the YOLOv8-EA model on the self-constructed dataset were 91.4%, 88.7%, and 93.9%, respectively, with a detection speed of 163.33 frames/s. In comparison to the baseline YOLOv8n network, the model weight was increased by 2.07 MB, and the accuracy, recall, and average precision were enhanced by 10.9, 11.7, and 7.2 percentage points, respectively. The accuracy, recall, and average precision increased by 10.9, 11.7, and 7.2 percentage points, respectively, while the detection speed increased by 42.1%. The detection precision for unripe, semi-ripe, and ripe tomatoes was 97.1%, 91%, and 93.7%, respectively. On the public dataset, the accuracy, recall, and average precision of YOLOv8-EA are 91%, 89.2%, and 95.1%, respectively, and the detection speed is 1.8 ms, which is 4, 4.21, and 3.9 percentage points higher than the baseline YOLOv8n network. This represents an 18.2% improvement in detection speed, which demonstrates good generalization ability. Discussion: The reliability of YOLOv8-EA in identifying and locating multi-stage tomato fruits in complex environments demonstrates its efficacy in this regard and provides a technical foundation for the development of intelligent tomato picking devices.

10.
J Hazard Mater ; 480: 135892, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303613

RESUMEN

There is widespread concern about the risk of nano/microplastics (N/MPs) entering the food chain through higher plants. However, the primary factors that influence the absorption of N/MPs by higher plants remain largely unclear. This study examined the impact of Europium-doped N/MPs with different particle sizes and surface charges by water spinach (Ipomoea aquatica F.) to address this knowledge gap. N/MPs were visualized and quantitatively analyzed using laser confocal microscopy, scanning electron microscopy, and inductively coupled plasma-mass spectrometry. N/MPs with different surface charges were absorbed by the roots, with the apoplastic pathway as the major route of transport. After 28 days of exposure to 50 mg L-1 N/MPs, N/MPs-COOH caused the highest levels of oxidative stress and damage to the roots. The plants accumulated NPs-COOH the most (average 1640.16 mg L-1), while they accumulated NPs-NH2 the least (average 253.70 mg L-1). Particle size was the main factor influencing the translocation of N/MPs from the root to the stem, while the Zeta potential mainly influenced particle entry into the roots from the hydroponic solution as well as stem-to-leaf translocation. Different charged N/MPs induced osmotic stress in the roots. A small amount of N/MPs in the leaves significantly stimulated the production of chlorophyll, while excessive N/MPs significantly reduced its content. These results provide new insights into the mechanism of interaction between N/MPs and plants.

11.
Plant J ; 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39306860

RESUMEN

Wheat (Triticum aestivum L.) is a globally staple crop vulnerable to various fungal diseases, significantly impacting its yield. Plant cell surface receptors play a crucial role in recognizing pathogen-associated molecular patterns (PAMPs) and activating PAMP-triggered immunity, boosting resistance against a wide range of plant diseases. Although the role of plant chitin receptor CERK1 in immune recognition and defense has been established in Arabidopsis and rice, its function and potential agricultural applications in enhancing resistance to crop diseases remain largely unexplored. Here, we identify and characterize TaCERK1 in Triticeae crop wheat, uncovering its involvement in chitin recognition, immune regulation, and resistance to fungal diseases. By a comparative analysis of CERK1 homologs in Arabidopsis and monocot crops, we demonstrate that AtCERK1 in Arabidopsis elicits the most robust immune response. Moreover, we show that overexpressing TaCERK1 and AtCERK1 in wheat confers resistance to multiple fungal diseases, including Fusarium head blight, stripe rust, and powdery mildew. Notably, transgenic wheat lines with moderately expressed AtCERK1 display superior disease resistance and heightened immune responses without adversely affecting growth and yield, compared to TaCERK1 overexpression transgenics. Our findings highlight the significance of plant chitin receptors across diverse plant species and suggest potential strategies for bolstering crop resistance against broad-spectrum diseases in agricultural production through the utilization of plant immune receptors.

12.
Heliyon ; 10(18): e37652, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39309954

RESUMEN

This study aimed to investigate Solanum lyratum Thunb. with respect to the potential ingredients with anti-inflammatory activity from its essential oil by silico study. To this regard, the essential oil of Solanum lyratum Thunb. was extracted by hydrodistillation. 25 compounds were identified by GC-MS. Using virtual screening, molecular docking and molecular dynamics simulation of the 25 identified compounds, the ones showing anti-inflammatory activity on COX-2 were identified. According to the drug-like principle and the prediction of ADEMT properties, the six compounds of Spathulenol, Cedrol, Juniper camphor, Santalol, Nootkatone and 7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione were identified and then studied for molecular docking, and based on which the top two compounds of binding free energy were studied by the molecular dynamics simulation. The molecular docking data indicated that the binding free energies of Spathulenol, Cedrol, Juniper camphor, Santalol, Nootkatone and 7,9-Di-tert-butyl-1-oxaspiro[4.5]deca-6,9-diene-2,8-dione to COX-2 protein were -5.65, -7.19, -6.35, -4.94, -5.82 and -5.14 kcal/mol, respectively. The findings showed the steady interactions of hydrogen bonds and hydrophobic bonds between both the top two compounds of binding free energy and the active site residues of COX-2 (4M11) throughout the simulation via hydrogen bonds and hydrophobic bonds. The very study shall be supportive for in vitro and in vivo studies in developing drug products using the lead bioactive ingredients for anti-inflammatory in the future.

13.
Sci Total Environ ; 954: 176303, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299339

RESUMEN

The use of bio-based composites to enhance the methane production in anaerobic digestion has attracted considerable attention. Nevertheless, the study of electron transfer mechanisms and the applications of biochar/MnO2 (MBC) in complex systems remains largely unexplored. Biochar composited with MnO2 at 10:1 mass ratio (MBC10) increased the content of volatile fatty acids by 9.09 % during acidogenic phase. During the methanogenic experiments using acetate, cumulative methane production (CMP) rose by 5.83 %, and in the methanogenic experiments using food waste, CMP increased by 24.32 %. Microbial community analysis indicated an enrichment of Syntrophomonas, Bacilli, and Methanosaetaceae in the MBC10 group. This enrichment occurred mainly due to the redox capability of MnO2 enhancing MBC capacitance, thereby facilitating microbial electron transfer processes. Additionally, under 2 g/L ammonia nitrogen concentration and 30 g/L organic load, the CMP of MBC10 increased by 12.74 % and 9.44 %, respectively, compared to the BC600 group. This study illuminates MBC's electron transfer mechanisms and applications, facilitating its wider practical adoption and fostering future innovations.

14.
Gene ; 933: 148942, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278376

RESUMEN

The aim of this study was to analyze the resistance genes and molecular mechanisms involved in rice blast infection. The contents of seven hormones and eight biochemical indicators in the leaves and spikes were at dynamic levels after inoculation with rice blast strains over time. The mRNA and protein expression of the six genes were consistent with the transcriptome analysis results. In addition, KEGG enrichment analysis showed that Os03g0132000, Os06g0215600, and Os06g0215500 were significantly enriched in the alpha-linolenic acid metabolism KEGG pathway, whereas Os05g0311801 was significantly enriched in the zeatin biosynthesis KEGG pathway. Furthermore, Os03g0180900 and Os09g0439200 were significantly enriched in the plant hormone signal transduction KEGG pathways. Therefore, blast infection could alter the hormones, biochemical indicators, and traits of rice. Moreover, genes including Os03g0132000, Os03g0180900, and Os05g0311801 were identified as rice blast resistance genes, and the mechanism might involve alpha-linolenic acid metabolism, zeatin biosynthesis, and plant hormone signal transduction KEGG pathways.

15.
Heliyon ; 10(16): e36060, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39247260

RESUMEN

Neural tube defects (NTDs) are severe congenital anomalies that result from the failure of early neural tube closure during fetal neurogenesis. They are the most common and severe congenital malformations of the central nervous system. Identifying reliable prenatal diagnostic ultrasound and molecular markers that can predict NTDs is of paramount importance. Early diagnosis of NTDs allows embryonic treatment and prevention strategies, which are crucial for reducing the disability rate associated with these malformations, reducing the burden on individuals and on society. The purpose of this comprehensive review was to summarize the ultrasound biomarkers between 11 and 13 weeks of gestation and the molecular biomarkers used in the diagnosis of NTDs, providing additional insights into early screening for NTDs.

16.
J Neuroendocrinol ; : e13442, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255974

RESUMEN

Adjuvant therapy for pancreatic neuroendocrine tumors (PanNETs) after radical resection lacks evidence-based data and remains controversial. This study aimed to validate whether long-acting octreotide is a potential candidate for adjuvant therapy in patients with G2 PanNETs at high recurrence risk by clustering real-world data. A retrospective review of patients with nonmetastatic grade 2 PanNETs who underwent radical resection at six research centers between 2008 and 2020 was conducted. Propensity score matching and inverse probability of treatment weight analysis were used to control confounding factors. Overall, 357 patients (octreotide group, n = 82; control group, n = 275) were analyzed. Kaplan-Meier survival analyses showed that the octreotide group had longer disease-free survival (DFS) compared with the control group (36 months: 93.3% vs. 79.0%, p = .0124; 60 months: 71% vs. 67.6%, p = .0596, respectively), as well as overall survival (OS) (60 months: 98% vs. 83.8%, p = .0117, respectively). Multivariate analyses indicated that octreotide long-acting repeatable (LAR) adjuvant therapy was associated with higher OS (p = .0270) at 60 months. Propensity score matching analysis showed that octreotide adjuvant therapy was associated with higher DFS (p = .0455) and OS (p = .0190) at 60 months. Similar results were obtained via inverse probability of treatment weight analysis. Subgroup analysis indicated that octreotide LAR was associated with a high DFS in patients with lymph node metastasis or Ki-67 <10% PanNETs. Adjuvant therapy with long-acting octreotide following radical resection of nonmetastatic G2 PanNETs may be associated with improved DFS and OS in a real-world setting.

17.
Zool Res ; 45(5): 1147-1160, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39257377

RESUMEN

Horseshoe bats (genus Rhinolophus, family Rhinolophidae) represent an important group within chiropteran phylogeny due to their distinctive traits, including constant high-frequency echolocation, rapid karyotype evolution, and unique immune system. Advances in evolutionary biology, supported by high-quality reference genomes and comprehensive whole-genome data, have significantly enhanced our understanding of species origins, speciation mechanisms, adaptive evolutionary processes, and phenotypic diversity. However, genomic research and understanding of the evolutionary patterns of Rhinolophus are severely constrained by limited data, with only a single published genome of R. ferrumequinum currently available. In this study, we constructed a high-quality chromosome-level reference genome for the intermediate horseshoe bat ( R. affinis). Comparative genomic analyses revealed potential genetic characteristics associated with virus tolerance in Rhinolophidae. Notably, we observed expansions in several immune-related gene families and identified various genes functionally associated with the SARS-CoV-2 signaling pathway, DNA repair, and apoptosis, which displayed signs of rapid evolution. In addition, we observed an expansion of the major histocompatibility complex class II (MHC-II) region and a higher copy number of the HLA- DQB2 gene in horseshoe bats compared to other chiropteran species. Based on whole-genome resequencing and population genomic analyses, we identified multiple candidate loci (e.g., GLI3) associated with variations in echolocation call frequency across R. affinis subspecies. This research not only expands our understanding of the genetic characteristics of the Rhinolophus genus but also establishes a valuable foundation for future research.


Asunto(s)
Quirópteros , Ecolocación , Genoma , Animales , Quirópteros/genética , Quirópteros/virología , Quirópteros/fisiología , SARS-CoV-2/fisiología , SARS-CoV-2/genética , Cromosomas/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-39258359

RESUMEN

Controlling gas admission by regulating pore accessibility in porous materials has been a topic of extensive research. Recently, the electric field (E-field) has emerged as an external stimulus to alter the adsorption behavior of some microporous adsorbents. However, the mechanism behind this phenomenon is not yet fully understood. Here, we demonstrate the crucial role of the trapdoor cations of zeolite molecular sieves in E-field-regulated gas adsorption. The E-field activation caused framework expansion and cation deviation, significantly reducing the energy barrier for gas molecules passing through the pore aperture gated by the trapdoor cation. This led to an increase in the N2 adsorption capacity of ZSM-25 and a 60% improvement in N2/CH4 selectivity in the quest for nitrogen rejection for natural gas processing. By combining experimental and computational approaches, we elucidated the influence of E-field activation as a concurrent effect of the reduced heat of adsorption caused by framework expansion and the decrease in the energy barrier resulting from promoted cation oscillation. These findings pave the way for the material design of E-field-regulated adsorption and its application in molecular separation.

19.
ArXiv ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39253642

RESUMEN

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear. In this study, we unprecedently explored how regional cortical growth affects brain folding patterns using computational simulation. We first developed growth models for typical cortical regions using machine learning (ML)-assisted symbolic regression, based on longitudinal real surface expansion and cortical thickness data from prenatal and infant brains derived from over 1,000 MRI scans of 735 pediatric subjects with ages ranging from 29 post-menstrual weeks to 24 months. These models were subsequently integrated into computational software to simulate cortical development with anatomically realistic geometric models. We comprehensively quantified the resulting folding patterns using multiple metrics such as mean curvature, sulcal depth, and gyrification index. Our results demonstrate that regional growth models generate complex brain folding patterns that more closely match actual brains structures, both quantitatively and qualitatively, compared to conventional uniform growth models. Growth magnitude plays a dominant role in shaping folding patterns, while growth trajectory has a minor influence. Moreover, multi-region models better capture the intricacies of brain folding than single-region models. Our results underscore the necessity and importance of incorporating regional growth heterogeneity into brain folding simulations, which could enhance early diagnosis and treatment of cortical malformations and neurodevelopmental disorders such as cerebral palsy and autism.

20.
Medicine (Baltimore) ; 103(36): e39506, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252221

RESUMEN

RATIONALE: Extracorporeal membrane oxygenation (ECMO) is a critical care intervention that acts as a temporary substitute for the heart and lungs, facilitating adequate tissue perfusion and gas exchange. The 2 primary configurations, veno-arterial and veno-venous ECMO, are tailored to support either the heart and lungs or the lungs alone, respectively. PATIENT CONCERNS: The case report details patients with tumor-induced airway stenosis who encountered limitations with standard treatments, which were either insufficient or carried the risk of severe complications such as hypoxia and asphyxia. DIAGNOSES: Patients were diagnosed with severe airway stenosis caused by goiter, a condition that required innovative treatment approaches to prevent complications during the management process. INTERVENTIONS: Veno-venous ECMO was implemented as a bridging therapy to provide vital respiratory support during the tumor resection procedure. This intervention was crucial in reducing the risks associated with airway edema or tumor rupture. OUTCOMES: With the use of veno-venous ECMO, the patients successfully underwent tumor resection. They were subsequently weaned off the ECMO support, and after a course of treatment, they were discharged in good condition. LESSONS: The case demonstrates the efficacy of veno-venous ECMO as a bridging therapy for managing severe airway stenosis caused by goiter. Its use facilitated the successful resection of tumors and led to positive patient outcomes, highlighting its potential as a valuable treatment option in similar scenarios.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Bocio , Humanos , Oxigenación por Membrana Extracorpórea/métodos , Femenino , Bocio/complicaciones , Bocio/terapia , Bocio/cirugía , Persona de Mediana Edad , Masculino , Constricción Patológica/terapia , Constricción Patológica/etiología , Obstrucción de las Vías Aéreas/etiología , Obstrucción de las Vías Aéreas/terapia , Obstrucción de las Vías Aéreas/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA