Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Research (Wash D C) ; 7: 0344, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109246

RESUMEN

Hyperproliferative keratinocytes and subcutaneous inflammation contribute to the characteristic symptoms of psoriasis, including erythema, scales, or scaly plaques on the skin. These symptoms significantly affect patients' quality of life and cause severe physical and psychological distress. However, current treatment strategies have limited therapeutic effect and may lead to adverse side effects. In this study, we present the novel organic photosensitizer TBTDC [5-(((5-(7-(4-(diphenylamino)phenyl)benzo[c][1,2,5]thiadiazol-4-yl)thiophen-2-yl)methylene)amino)-3-methylthiophene-2,4-dicarbonitrile] nanoparticles (NPs) with aggregation-induced emission (AIE) characteristics to mediate photodynamic therapy (TBTDC NP-PDT) for psoriasis treatment. We demonstrate that TBTDC NPs effectively generate reactive oxygen species upon light irradiation and lead to significant apoptosis of psoriatic keratinocytes. Furthermore, TBTDC NPs exhibit high cellular uptake in diseased keratinocytes and induce endoplasmic reticulum stress (ERS)-mediated autophagy, which can also enhance apoptosis. Importantly, TBTDC NPs show no cytotoxicity toward keratinocytes. These unique properties of TBTDC NPs enable remarkable therapeutic effects against psoriasis-like skin lesions and related inflammation in vivo. Overall, our AIE-active TBTDC NP-PDT represents a promising strategy for treating psoriasis in clinical settings.

2.
J Hazard Mater ; 477: 135423, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39106721

RESUMEN

Infection with smut fungus like Ustilago maydis decreases crop yield via inducing gall formation. However, the in vitro impact of Ustilago spp. on plant growth and stress tolerance remains elusive. This study investigated the plant growth promotion and cadmium stress mitigation mechanisms of a filamentous fungus discovered on a cultural medium containing 25 µM CdCl2. ITS sequence alignment revealed 98.7 % similarity with Ustilago bromivora, naming the strain Ustilago sp. HFJ311 (HFJ311). Co-cultivation with HFJ311 significantly enhanced the growth of various plants, including Arabidopsis, tobacco, cabbage, carrot, rice, and maize, and improved Arabidopsis tolerance to abiotic stresses like salt and metal ions. HFJ311 increased chlorophyll and Fe contents in Arabidopsis shoots and enhanced root-to-shoot Fe translocation while decreasing root Fe concentration by approximately 70 %. Concurrently, HFJ311 reduced Cd accumulation in Arabidopsis by about 60 %, indicating its potential for bioremediation in Cd-contaminated soils. Additionally, HFJ311 stimulated IAA concentration by upregulating auxin biosynthesis genes. Overexpression of the Fe transporter IRT1 negated HFJ311's growth-promotion effects under Cd stress. These results suggest that HFJ311 stimulates plant growth and inhibits Cd uptake by enhancing Fe translocation and auxin biosynthesis while disrupting Fe absorption. Our findings offer a promising bioremediation strategy for sustainable agriculture and food security.

3.
Int J Hyperthermia ; 41(1): 2378867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39117343

RESUMEN

BACKGROUND AND OBJECTIVE: Exertional heatstroke (EHS) mainly occurs in healthy young people with rapid onset and high mortality. EHS immune disorders can cause systemic inflammatory responses and multiple organ failure; however, the underlying mechanisms remain unclear. As high mobility group box 1 (HMGB1) is a prototypical alarmin that activates inflammatory and immune responses, this study aimed to investigate the effect and mechanism of HMGB1 in the pathogenesis of EHS. METHODS: Peripheral blood mononuclear cell (PBMC) transcriptome sequencing of healthy volunteers, classical heatstroke patients, and EHS patients was performed. A mouse model of EHS was established and murine tissue damage was evaluated by H&E staining. HMGB1 localization and release were visualized using immunofluorescence staining. Human umbilical vein endothelial cells (HUVECs) and THP-1 cells were co-cultured to study the effects of HMGB1 on macrophages. A neutralizing anti-HMGB1 antibody was used to evaluate the efficacy of EHS treatment in mice. RESULTS: Plasma and serum HMGB1 levels were significantly increased in EHS patients or mice. EHS-induced endothelial cell pyroptosis promoted HMGB1 release in mice. HMGB1 derived from endothelial cell pyroptosis enhanced macrophage pyroptosis, resulting in immune disorders under EHS conditions. Administration of anti-HMGB1 markedly alleviated tissue injury and systemic inflammatory responses after EHS. CONCLUSIONS: The release of HMGB1 from pyroptotic endothelial cells after EHS promotes pyroptosis of macrophages and systemic inflammatory response, and HMGB1-neutralizing antibody therapy has good application prospects for EHS.


Asunto(s)
Proteína HMGB1 , Golpe de Calor , Golpe de Calor/inmunología , Golpe de Calor/complicaciones , Golpe de Calor/metabolismo , Proteína HMGB1/metabolismo , Animales , Humanos , Ratones , Masculino , Células Endoteliales/metabolismo , Enfermedades del Sistema Inmune , Femenino
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 762-768, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948302

RESUMEN

Objective: Ultrasound diagnosis and treatment is easy to perform and takes little time. It is widely used in clinical practice thanks to its non-invasive, real-time, and dynamic characteristics. In the process of ultrasound diagnosis and treatment, the probe may come into contact with the skin, the mucous membranes, and even the sterile parts of the body. However, it is difficult to achieve effective real-time disinfection of the probes after use and the probes are often reused, leading to the possibility of the probes carrying multiple pathogenic bacteria. At present, the processing methods for probes at home and abroad mainly include probe cleaning, probe disinfection, and physical isolation (using probe covers or sheaths). Yet, each approach has its limitations and cannot completely prevent probe contamination and infections caused by ultrasound diagnosis and treatment. For example, when condoms are used as the probe sheath, the rate of condom breakage is relatively high. The cutting and fixing of cling film or freezer bags involves complicated procedures and is difficult to perform. Disposable plastic gloves are prone to falling off and causing contamination and are hence not in compliance with the principles of sterility. Furthermore, the imaging effect of disposable plastic gloves is poor. Therefore, there is an urgent need to explore new materials to make probe covers that can not only wrap tightly around the ultrasound probe, but also help achieve effective protection and rapid reuse. Based on the concept of physical barriers, we developed in this study a heat sealing system for the rapid reuse of ultrasound probes. The system uses a heat sealing device to shrink the protective film so that it wraps tightly against the surface of the ultrasound probe, allowing for the rapid reuse of the probe while reducing the risk of nosocomial infections. The purpose of this study is to design a heat sealing system for the rapid reuse of ultrasound probes and to verify its application effect on the rapid reuse of ultrasound probes. Methods: 1) The heat sealing system for the rapid reuse of ultrasound probes was designed and tested by integrating medical and engineering methods. The system included a protective film (a multilayer co-extruded polyolefin thermal shrinkable film) and a heat sealing device, which included heating wire components, a blower, a photoelectric switch, temperature sensors, a control and drive circuit board, etc. According to the principle of thermal shrinkage, the ultrasound probe equipped with thermal shrinkable film was rapidly heated and the film would wrap closely around the ultrasound probe placed on the top of the heat sealing machine. The ultrasound probe was ready for use after the thermal shrinkage process finished. Temperature sensors were installed on the surface of the probe to test the thermal insulation performance of the system. The operation procedures of the system are as follows: placing the ultrasound probe covered with the protective film in a certain space above the protective air vent, which is detected by the photoelectric switch; the heating device heats the thermal shrinkable film with a constant flow of hot air at a set temperature value. Then, the probe is rotated so that the thermal shrinkable film will quickly wrap around the ultrasound probe. After the heat shrinking is completed, the probe can be used directly. 2) Using the convenience sampling method, 90 patients from the Department of Anesthesiology and Perioperative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University were included as the research subjects. All patients were going to undergo arterial puncture under ultrasound guidance. The subjects were divided into 3 groups, with 30 patients in each group. Three measures commonly applied in clinical practice were used to process the probes in the three groups and water-soluble fluorescent labeling was applied around the puncture site before use. In the experimental group, the probes were processed with the heat sealing system. The standard operating procedures of the heat sealing system for rapid reuse of ultrasonic probes were performed to cover the ultrasonic probe and form a physical barrier to prevent probe contamination. There were two control groups. In control group 1, disinfection wipes containing double-chain quaternary ammonium salt were used to repeatedly wipe the surface of the probe for 10-15 times, and then the probe was ready for use once it dried up. In the control group 2, a disposable protective sheath was used to cover the front end of the probe and the handle end of the sheath was tied up with threads. Comparison of the water-soluble fluorescent labeling on the surface of the probe (which reflected the colony residues on the surface of the probe) before and after use and the reuse time (i.e., the lapse of time from the end of the first use to the beginning of the second use) were made between the experimental group and the two control groups. Results: 1) The temperature inside the ultrasound probe was below 40 ℃ and the heat sealing system for rapid reuse did not affect the performance of the ultrasound probe. 2) The reuse time in the heat sealing system group, as represented by (median [P25, P75]), was (8.00 [7.00, 10.00]) s, which was significantly lower than those of the disinfection wipe group at (95.50 [8.00, 214.00]) s and the protective sleeve group at (25.00 [8.00, 51.00]) s, with the differences being statistically significant (P<0.05). No fluorescence residue was found on the probe in either the heat sealing system group or the protective sheath group after use. The fluorescence residue in the heat sealing system group was significantly lower than that in the disinfection wipes group, showing statistically significant differences (χ 2=45.882, P<0.05). Conclusion: The thermal shrinkable film designed and developed in this study can be cut and trimmed according to the size of the equipment. When the film is heated, it shrinks and wraps tightly around the equipment, forming a sturdy protective layer. With the heat sealing system for rapid reuse of ultrasonic probes, we have realized the semi-automatic connection between the thermal shrinkable film and the heating device, reducing the amount of time-consuming and complicated manual operation. Furthermore, the average reuse time is shortened and the system is easy to use, which contributes to improvements in the reuse and operation efficiency of ultrasound probes. The heat sealing system reduces colony residues on the surface of the probe and forms an effective physical barrier on the probe. No probes were damaged in the study. The heat sealing system for rapid reuse of ultrasonic probes can be used as a new method to process the ultrasonic probes.


Asunto(s)
Ultrasonografía , Ultrasonografía/instrumentación , Ultrasonografía/métodos , Calor , Equipo Reutilizado , Humanos , Desinfección/métodos , Desinfección/instrumentación , Diseño de Equipo , Contaminación de Equipos/prevención & control
5.
Front Pharmacol ; 15: 1387756, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948468

RESUMEN

Introduction: Tetrandrine (Tet) is the main pharmacological component of Stephania tetrandra S. Moore, which is a well-documented traditional Chinese medicine known for its diuretic and antihypertensive properties. Unraveling the specific targets and mechanisms of Tet involved in inducing diuresis and mitigating hypertension can provide valuable insights into its therapeutic effects. This study aimed to explore the diuretic and antihypertensive targets and mechanisms of Tet using chemical biology coupled with activity analyses in vivo and in vitro. Methods: The diuretic effects of Tet were evaluated using a water-loaded mouse model. The direct target proteins for the diuretic and antihypertensive effects of Tet were determined using chemical biology. Furthermore, the molecular mechanism of Tet binding to target proteins was analyzed using a multidisciplinary approach based on the structure and function of the proteins. Finally, the effects of the Tet-targeted protein on downstream signaling pathways and blood pressure were evaluated in hypertensive model rats. Results: Tet exhibited significant antihypertensive and potassium-preserving diuretic effects. The mechanism underlying these effects involves the modulation of the enzyme activity by covalent binding of Tet to Cys423 of CYP11A1. This interaction alters the stability of heme within CYP11A1, subsequently impeding electron transfer and inhibiting aldosterone biosynthesis. Discussion: This study not only revealed the mechanism of the diuretic and antihypertensive effects of Tet but also discovered a novel covalent inhibitor of CYP11A1. These findings contribute significantly to our understanding of the therapeutic potential of Tet and provide a foundation for future research in the development of targeted treatments for hypertension.

6.
mBio ; 15(6): e0033924, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38988221

RESUMEN

The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) has imposed further challenges to the clinical management of MRSA infections. When exposed to ß-lactam antibiotics, these strains can easily acquire reduced ß-lactam susceptibility through chromosomal mutations, including those in RNA polymerase (RNAP) genes such as rpoBC, which may then lead to treatment failure. Despite the increasing prevalence of such strains and the apparent challenges they pose for diagnosis and treatment, there is limited information available on the actual mechanisms underlying such chromosomal mutation-related transitions to reduced ß-lactam susceptibility, as it does not directly associate with the expression of mecA. This study investigated the cellular physiology and metabolism of six missense mutants with reduced oxacillin susceptibility, each carrying respective mutations on RpoBH929P, RpoBQ645H, RpoCG950R, RpoCG498D, RpiAA64E, and FruBA211E, using capillary electrophoresis-mass spectrometry-based metabolomics analysis. Our results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides. These mutations also led to the accumulation of UDP-Glc/Gal and UDP-GlcNAc, which are precursors of UTP-associated peptidoglycan and wall teichoic acid. Excessive amounts of building blocks then contributed to the cell wall thickening of mutant strains, as observed in transmission electron microscopy, and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. IMPORTANCE: The emergence of oxacillin-susceptible methicillin-resistant Staphylococcus aureus (OS-MRSA) strains has created new challenges for treating MRSA infections. These strains can become resistant to ß-lactam antibiotics through chromosomal mutations, including those in the RNA polymerase (RNAP) genes such as rpoBC, leading to treatment failure. This study investigated the mechanisms underlying reduced ß-lactam susceptibility in four rpoBC mutants of OS-MRSA. The results showed that rpoBC mutations caused RNAP transcription dysfunction, leading to an intracellular accumulation of ribonucleotides and precursors of peptidoglycan as well as wall teichoic acid. This, in turn, caused thickening of the cell wall and ultimately resulted in decreased susceptibility to ß-lactam in OS-MRSA. These findings provide insights into the mechanisms of antibiotic resistance in OS-MRSA and highlight the importance of continued research in developing effective treatments to combat antibiotic resistance.


Asunto(s)
Antibacterianos , ARN Polimerasas Dirigidas por ADN , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Oxacilina , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/enzimología , Oxacilina/farmacología , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Antibacterianos/farmacología , beta-Lactamas/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación Missense , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Pared Celular/genética , Humanos , Mutación , Metabolómica
7.
J Phys Chem A ; 128(27): 5386-5397, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38951489

RESUMEN

We provide an approach to sample rare events during classical ab initio molecular dynamics and quantum wavepacket dynamics. For classical AIMD, a set of fictitious degrees of freedom are introduced that may harmonically interact with the electronic and nuclear degrees of freedom to steer the dynamics in a conservative fashion toward energetically forbidden regions. A similar approach when introduced for quantum wavepacket dynamics has the effect of biasing the trajectory of the wavepacket centroid toward the regions of the potential surface that are difficult to sample. The approach is demonstrated for a phenol-amine system, which is a prototypical problem for condensed phase-proton transfer, and for model potentials undergoing wavepacket dynamics. In all cases, the approach yields trajectories that conserve energy while sampling rare events.

8.
Chem Sci ; 15(28): 10838-10850, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39027281

RESUMEN

Macrophages are plastic and play a key role in the maintenance of tissue homeostasis. In cancer progression, macrophages also take part in all processes, from initiation to progression, to final tumor metastasis. Although energy deprivation and autophagy are widely used for cancer therapy, most of these strategies do not target macrophages, resulting in undesired effects and unsatisfactory outcomes for cancer immunotherapy. Herein, we developed a lanthanum nickel oxide (LNO) nanozyme with phosphatase-like activity for ATP hydrolysis. Meanwhile, the autophagy of macrophages induced by LNO promotes the polarization of macrophages from M2-like macrophages (M2) to M1-like macrophages (M1) and reduces tumor-associated macrophages in tumor-bearing mice, exhibiting the capability of killing tumor-associated macrophages and antitumor effects in vivo. Furthermore, pre-coating the surface of LNO with a myeloid cell membrane significantly enhanced antitumor immunity. Our findings demonstrate that phosphatase-like nanozyme LNO can specifically induce macrophage autophagy, which improves therapeutic efficacy and offers valuable strategies for cancer immunotherapy.

9.
Talanta ; 279: 126603, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39053355

RESUMEN

Enzyme catalytic cascade reactions based on peroxidase nanozymes and natural enzymes have aroused extensive attention in analytical fields. However, a majority of peroxidase nanozymes perform well only in acidic environments, resulting in their optimal pH mismatch with a neutral pH of natural enzymes, further restricting their application in biochemical sensing. Herein, Mn-doped CeO2 (Mn/CeO2) performing enhanced peroxidase-like activity at neutral conditions was prepared via a facile and feasible strategy. An effective enzyme cascade catalysis system via integrating glucose oxidase (GOx) with Mn/CeO2 was developed for one-pot detection of glucose in serum at neutral conditions. Using one-pot multistep catalytic reactions, this work provided a detection platform that allows for faster detection and easier operations than traditional methods. Under optimized conditions, our assay performed a sensitive detection of glucose ranging from 2.0 µΜ to 300 µΜ and a low detection limit of 0.279 µΜ. Notably, favorable analytical outcomes for glucose detection in serum samples were obtained, exhibiting potential applications in clinical diagnosis.

10.
Biotechnol Lett ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066960

RESUMEN

PURPOSE: Perfusion cultures have been extensively used in the biotechnology industry to achieve high yields of recombinant products, especially those with stability issue. The WuXiUP™ platform represents a novel intensified perfusion that can achieve ultra-high productivity. This study describes a representative scale-down 24-deep well plate (24-DWP) cell culture model for intensified perfusion clone screening. METHODS: Clonal cell lines were expanded and evaluated in 24-DWP semi-continuous culture. Cell were sampled and counted daily with the aid of an automated liquid handler and high-throughput cell counter. To mimic perfusion culture, 24-DWP plates were spun down and resuspended with fresh medium daily. Top clones were ranked based on growth profiles and productivities. The best performing clones were evaluated on bioreactors. RESULTS: The selected clones achieved volumetric productivity (Pv) up to 5 g/L/day when expressing a monoclonal antibody, with the accumulative harvest Pv exceeding 60 g/L in a 21-day cell culture. Product quality attributes of clones cultured in 24-DWP were comparable with those from bioreactors. A high seeding strategy further shortened the clone screening timeline. CONCLUSION: In this study, a 24-DWP semi-continuous scale-down model was successfully developed to screen for cell lines suitable for intensified perfusion culture.

11.
Neuroscience ; 552: 142-151, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38960088

RESUMEN

Hippocampus is a critical component of the central nervous system. SRSF10 is expressed in central nervous system and plays important roles in maintaining normal brain functions. However, its role in hippocampus development is unknown. In this study, using SRSF10 conditional knock-out mice in neural progenitor cells (NPCs), we found that dysfunction of SRSF10 leads to developmental defects in the dentate gyrus of hippocampus, which manifests as the reduced length and wider suprapyramidal blade and infrapyramidal blade.Furthermore, we proved that loss of SRSF10 in NPCs caused inhibition of the differentiation activity and the abnormal migration of NPCs and granule cells, resulting in reduced granule cells and more ectopic granule cells dispersed in the molecular layer and hilus. Finally, we found that the abnormal migration may be caused by the radial glia scaffold and the reduced DISC1 expression in NPCs. Together, our results indicate that SRSF10 is required for the cell migration and formation of dentate gyrus during the development of hippocampus.


Asunto(s)
Movimiento Celular , Giro Dentado , Ratones Noqueados , Células-Madre Neurales , Factores de Empalme Serina-Arginina , Animales , Células-Madre Neurales/metabolismo , Giro Dentado/metabolismo , Movimiento Celular/fisiología , Factores de Empalme Serina-Arginina/metabolismo , Factores de Empalme Serina-Arginina/genética , Neuronas/metabolismo , Hipocampo/metabolismo , Ratones , Neurogénesis/fisiología , Diferenciación Celular/fisiología , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones Endogámicos C57BL
12.
Artículo en Inglés | MEDLINE | ID: mdl-39053763

RESUMEN

Tauopathy is a collective term for several neurodegenerative diseases characterized by the intracellular accumulation of hyperphosphorylated microtubule-associated protein Tau (P-tau). Our recent report has revealed the neuroprotective effect of dihydroartemisinin (DHA) on mice overexpressing human Tau (hTau) in the hippocampus by enhancing O-linked-N-Acetylglucosaminylation (O-GlcNAcylation) modification. However, whether DHA can improve synaptic and cognitive function in hTau transgenic mice by specifically promoting Tau O-GlcNAcylation is still unclear. Here, we introduced hTau transgenic mice, a more optimal tauopathy model, to study the effect of DHA on Tau O-GlcNAcylation. We reported that DHA treatment alleviated the deficits of hippocampal CA1 LTP and spatial learning and memory in the Barnes maze and context fear conditioning tests in hTau transgenic mice. Mechanically, we revealed that DHA exerted a significant protective effect by upregulating Tau O-GlcNAcylation and attenuating Tau hyperphosphorylation. Through molecular docking, we found a stable binding between DHA and O-GlcNAc transferase (OGT). We further reported that DHA treatment had no effect on the expression of OGT, but it promoted OGT nuclear export, thereby enhancing OGT-mediated Tau O-GlcNAcylation. Taken together, these results indicate that DHA exerts neuroprotective effect by promoting cytoplasmic translocation of OGT and rebuilding the balance of Tau O-GlcNAcylation/phosphorylation, enhancing O-GlcNAcylation of Tau, suggesting that DHA may be a potential therapeutic agent against tauopathy.

13.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999103

RESUMEN

Carbon dioxide (CO2) is a non-toxic, abundant and recoverable source of carbon monoxide. Despite its thermodynamically stable and kinetically inert nature, research on CO2 utilisation is ongoing. CO2-based aryne reactions, crucial for synthesising ortho-substituted benzoic acids and their cyclisation products, have garnered significant attention, and multi-component reactions (MCRs) involving CO2, aryne and nucleophilic reagents have been extensively studied. This review highlights recent advancements in CO2 capture reactions utilising phenylalkyne reactive intermediates. Mechanistic insights into these reactions are provided together with prospects for further development in this field.

14.
J Asthma Allergy ; 17: 633-651, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006241

RESUMEN

Allergic rhinitis is a chronic non-infectious inflammation of the nasal mucosa mediated by specific IgE. Recently, the human microbiome has drawn broad interest as a potential new target for treating this condition. This paper succinctly summarizes the main findings of 17 eligible studies published by February 2024, involving 1044 allergic rhinitis patients and 954 healthy controls from 5 countries. These studies examine differences in the human microbiome across important mucosal interfaces, including the nasal and intestinal areas, between patients and controls. Overall, findings suggest variations in the gut microbiota between allergic rhinitis patients and healthy individuals, although the specific bacterial taxa that significantly changed were not always consistent across studies. Due to the limited scope of existing research and patient coverage, the relationship between the nasal microbiome and allergic rhinitis remains inconclusive. The article discusses the potential immune-regulating role of the gut microbiome in allergic rhinitis. Further well-designed clinical trials with large-scale recruitment of allergic rhinitis patients are encouraged.

15.
Sci Rep ; 14(1): 17719, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085430

RESUMEN

Swin Transformer is an important work among all the attempts to reduce the computational complexity of Transformers while maintaining its excellent performance in computer vision. Window-based patch self-attention can use the local connectivity of the image features, and the shifted window-based patch self-attention enables the communication of information between different patches in the entire image scope. Through in-depth research on the effects of different sizes of shifted windows on the patch information communication efficiency, this article proposes a Dual-Scale Transformer with double-sized shifted window attention method. The proposed method surpasses CNN-based methods such as U-Net, AttenU-Net, ResU-Net, CE-Net by a considerable margin (Approximately 3% ∼ 6% increase), and outperforms the Transformer based models single-scale Swin Transformer(SwinT)(Approximately 1% increase), on the datasets of the Kvasir-SEG, ISIC2017, MICCAI EndoVisSub-Instrument and CadVesSet. The experimental results verify that the proposed dual scale shifted window attention benefits the communication of patch information and can enhance the segmentation results to state of the art. We also implement an ablation study on the effect of the shifted window size on the information flow efficiency and verify that the dual-scale shifted window attention is the optimized network design. Our study highlights the significant impact of network structure design on visual performance, providing valuable insights for the design of networks based on Transformer architectures.

16.
Sci Total Environ ; 947: 174637, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986692

RESUMEN

Microplastics are widespread in freshwaters, yet their interaction with navigational structures remains unclear. This study compared the distribution and characteristics of microplastics before and after navigation in Wabu Lake. Microplastic concentrations decreased significantly in both surface water and sediment due to navigation opened, from 13.7 ± 6.56 to 3.12 ± 1.8 p L-1 (p < 0.001) and from 568 ± 286 to 174 ± 60.2 p kg-1 (p < 0.001), respectively. Acrylates copolymer was frequently detected in surface water and sediment before navigation, whereas the dominant polymer after navigation was chlorinated polyisoprene in surface water and chlorinated polyethylene in sediment. The results showed that three-years dredging induced relatively severe microplastic pollution before navigation, however, these microplastics were apparently eliminated after navigation, as the distribution and characteristics of microplastics thoroughly varied. This study provides a valuable finding that microplastic transport process can be facilitated by water transfer project, which should be considered for preventing microplastic pollution.

17.
Dalton Trans ; 53(29): 12090-12097, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38967448

RESUMEN

Hg-based compounds show abundant structural diversity and distinguished properties. Herein, a new phase transition compound CsHg2I5 was reported. The high-temperature phase ß-CsHg2I5 with rare [Hg2I5] dimers was synthesized by the flux method at 573 K, and it shows a reversible phase transition at a low temperature of ∼100 K to form the low-temperature phase α-CsHg2I5. The two phases crystallize in the same P21/c space group, with different crystal structures. ß-CsHg2I5 is composed of rare [Hg2I5] dimers and [CsI11] polyhedral units, while α-CsHg2I5 is composed of [Hg4I11] and [CsI10] units. The experimental band gap of ß-CsHg2I5 was found to be 2.58 eV. Owing to the presence of [Hg2I5]∞ pseudo-layers, ß-CsHg2I5 exhibits large optical anisotropy with a calculated birefringence of 0.132@1064 nm. Meanwhile, ß-CsHg2I5 is a congruent compound and the congruent point is ∼481 K. Theoretical calculations indicate that the rare [Hg2I5] dimer is a nonlinear active unit, which can be used as a new fundamental building block for the design of advanced nonlinear optical materials. Moreover, a CsI-HgI2 pseudo-binary diagram was drawn. The results enrich the structural diversity of Hg-based halides and give some insights into the development of new functional materials based on rare [Hg2I5] dimers.

18.
EClinicalMedicine ; 74: 102700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39045544

RESUMEN

Background: Toripalimab, a novel PD-1 antibody, is approved for treatment of multiple solid tumors; however, its neoadjuvant use with chemotherapy for triple-negative breast cancer (TNBC) remains unevaluated. Additionally, induction chemotherapy followed by de-escalation of neoadjuvant immunotherapy remains underexplored. Therefore, we conducted a phase II trial investigating a novel neoadjuvant chemoimmunotherapy regimen including de-escalation of immunotherapy for early-stage TNBC. Methods: Chemotherapy and anti-PD-1 therapy were sequentially administered in a neoadjuvant setting to female patients with histologically confirmed stage II-III TNBC between June 9, 2020, and March 24, 2022. Patients received neoadjuvant therapy with four cycles of epirubicin-cyclophosphamide every 2 weeks, followed by toripalimab (240 mg) every 3 weeks plus nab-paclitaxel weekly for 12 weeks. The primary endpoint was total pathological complete response (tpCR; ypT0/is ypN0). Key secondary endpoints included breast pCR (bpCR; ypT0/is), event-free survival and biomarker analysis. Safety was also assessed. This study was registered with ClinicalTrials.gov (NCT04418154). Findings: Among 70 enrolled patients (median age, 51 years; 62.9% stage III), 66 completed treatment without progression and subsequently underwent surgery. The percentages of patients with a tpCR and bpCR were 39 of 70 (55.7%, 95% confidence interval [CI]: 43.3-67.6) and 41 of 70 (58.6%, 95% CI 46.2-70.2), respectively. Sixteen (22.9%) patients experienced grade ≥3 adverse events (AEs), frequently neutropenia (12, 17.1%) and leukopenia (11, 15.7%). The most common immune-related AE was hypothyroidism (5, 7.1%, all grade 1-2). Interpretation: Including 12 weeks of toripalimab in neoadjuvant chemotherapy conferred encouraging activity and manageable toxicity in patients with early TNBC, and this regimen warrants further investigation. Funding: National Natural Science Foundation of China, Junshi Biosciences, and Jiangsu Hengrui Pharmaceuticals.

19.
Int J Biol Macromol ; 275(Pt 2): 133622, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38969034

RESUMEN

Myocardial infarction (MI) is a serious cardiovascular disease with complex complications and high lethality. Currently, exosome (Exo) therapy has emerged as a promising treatment of ischemic MI due to its antioxidant, anti-inflammatory, and vascular abilities. However, traditional Exo delivery lacks spatiotemporal precision and targeting of microenvironment modulation, making it difficult to localize the lesion site for sustained effects. In this study, an injectable oxidized hyaluronic acid-polylysine (OHA-PL) hydrogel was developed to conveniently load adipose-derived mesenchymal stem cell exosomes (ADSC-Exos) and improve their retention under physiological conditions. The OHA-PL@Exo hydrogel with high spatiotemporal precision is transplanted minimally invasively into the ischemic myocardium to scavenge intracellular and extracellular reactive oxygen species, regulate macrophage polarization, and attenuate inflammation in the early phase of MI. In addition, this synergistic microenvironment modulation can effectively reduce myocardial fibrosis and ventricular remodeling, promote angiogenesis, and restore electrophysiological function in the late stage of MI. Therefore, this hyaluronic acid-polylysine to deliver exosomes has become a promising therapeutic strategy for myocardial repair.


Asunto(s)
Exosomas , Ácido Hialurónico , Hidrogeles , Inflamación , Estrés Oxidativo , Polilisina , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Exosomas/metabolismo , Polilisina/química , Polilisina/farmacología , Polilisina/análogos & derivados , Hidrogeles/química , Animales , Estrés Oxidativo/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/metabolismo , Infarto del Miocardio/terapia , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Ratones , Microambiente Celular/efectos de los fármacos , Masculino , Miocardio/metabolismo , Miocardio/patología , Inyecciones , Especies Reactivas de Oxígeno/metabolismo
20.
Sci Rep ; 14(1): 16031, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992201

RESUMEN

O6-methylguanine-DNA methyltransferase (MGMT) has been demonstrated to be an important prognostic and predictive marker in glioblastoma (GBM). To establish a reliable radiomics model based on MRI data to predict the MGMT promoter methylation status of GBM. A total of 183 patients with glioblastoma were included in this retrospective study. The visually accessible Rembrandt images (VASARI) features were extracted for each patient, and a total of 14676 multi-region features were extracted from enhanced, necrotic, "non-enhanced, and edematous" areas on their multiparametric MRI. Twelve individual radiomics models were constructed based on the radiomics features from different subregions and different sequences. Four single-sequence models, three single-region models and the combined radiomics model combining all individual models were constructed. Finally, the predictive performance of adding clinical factors and VASARI characteristics was evaluated. The ComRad model combining all individual radiomics models exhibited the best performance in test set 1 and test set 2, with the area under the receiver operating characteristic curve (AUC) of 0.839 (0.709-0.963) and 0.739 (0.581-0.897), respectively. The results indicated that the radiomics model combining multi-region and multi-parametric MRI features has exhibited promising performance in predicting MGMT methylation status in GBM. The Modeling scheme that combining all individual radiomics models showed best performance among all constructed moels.


Asunto(s)
Neoplasias Encefálicas , Metilación de ADN , Metilasas de Modificación del ADN , Enzimas Reparadoras del ADN , Glioblastoma , Proteínas Supresoras de Tumor , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/genética , Glioblastoma/diagnóstico por imagen , Glioblastoma/patología , Imagen por Resonancia Magnética/métodos , Pronóstico , Regiones Promotoras Genéticas , Radiómica , Estudios Retrospectivos , Curva ROC , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA