Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 589
Filtrar
1.
Biochem Genet ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954214

RESUMEN

Mitochondrial genome is an important molecular marker for exploring the phylogenetic relationships of species and revealing molecular evolution. In the present study, 5 mitogenomes of Chromodorididae (Chromodoris lochi, Chromodoris colemani, Chromodoris elisabethina, Chromodoris annae and Hypselodoris whitei) were systemically investigated. The lengths of the mitogenomes sequences were 14248 bp, 14257 bp, 14252 bp, 14254 bp and 14856 bp, respectively. Most protein-coding genes (PCGs) were initiated with the common ATG codon and terminated with the TAA and TAG. We calculated Ka/Ks values for all 13 PCGs of Chromodorididae species, all ratios were less than 1, indicating selection by purification. Phylogenetic relationships were constructed by Bayesian inference (BI) and maximum likelihood (ML) methods based on all complete genomes of 50 species, primarily from the family Chromodorididae (Doridina) and 2 outgroups. This phylogenetic tree provided further additional references for the classification of the suborder Doridina. Gene rearrangement suggested a more conserved pattern of gene sequences in the superfamily Chromodoridoidea. These results and newly sequenced will contribute to a better understanding of Chromodorididae and provide reference for further phylogenetic studies.

2.
EMBO J ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009676

RESUMEN

Anthelmintics are drugs used for controlling pathogenic helminths in animals and plants. The natural compound betaine and the recently developed synthetic compound monepantel are both anthelmintics that target the acetylcholine receptor ACR-23 and its homologs in nematodes. Here, we present cryo-electron microscopy structures of ACR-23 in apo, betaine-bound, and betaine- and monepantel-bound states. We show that ACR-23 forms a homo-pentameric channel, similar to some other pentameric ligand-gated ion channels (pLGICs). While betaine molecules are bound to the classical neurotransmitter sites in the inter-subunit interfaces in the extracellular domain, monepantel molecules are bound to allosteric sites formed in the inter-subunit interfaces in the transmembrane domain of the receptor. Although the pore remains closed in betaine-bound state, monepantel binding results in an open channel by wedging into the cleft between the transmembrane domains of two neighboring subunits, which causes dilation of the ion conduction pore. By combining structural analyses with site-directed mutagenesis, electrophysiology and in vivo locomotion assays, we provide insights into the mechanism of action of the anthelmintics monepantel and betaine.

3.
J Am Chem Soc ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007348

RESUMEN

Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy. By applying this approach to representative incipient ferroelectric of SrTiO3-based films, we achieve unprecedentedly strong ferroelectricity, not only surpassing previous records for incipient ferroelectrics but also being comparable to classic ferroelectrics. The remanent polarization of the thin film reaches up to 17.0 µC cm-2 with an ultrahigh Curie temperature of 973 K. Atomic-scale investigations elucidate the origin of this robust ferroelectricity in the emergent high-density superfine nanodomains spanning merely 3-10 unit cells. Combining experimental results with theoretical assessments, we unveil the underlying mechanism, where the intentionally introduced diluted foreign Fe element creates a deeper Landau energy well and promotes a short-range ordering of polarization. Our developed strategy significantly streamlines the design of unconventional ferroelectrics, providing a versatile pathway for exploring new and superior ferroelectric materials.

4.
Biomater Res ; 28: 0045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011521

RESUMEN

Cellular immunotherapy is an innovative cancer treatment method that utilizes the patient's own immune system to combat tumor cells effectively. Currently, the mainstream therapeutic approaches include chimeric antigen receptor T cell (CAR-T) therapy, T cell receptor gene-modified T cell therapy and chimeric antigen receptor natural killer-cell therapy with CAR-T therapy mostly advanced. Nonetheless, the conventional manufacturing process of this therapy has shortcomings in each step that call for improvement. Marked efforts have been invested for its enhancement while notable progresses achieved in the realm of biomaterials application. With CAR-T therapy as a prime example, the aim of this review is to comprehensively discuss the various biomaterials used in cell immunotherapy, their roles in regulating immune cells, and their potential for breakthroughs in cancer treatment from gene transduction to efficacy enhancement. This article additionally addressed widely adopted animal models for efficacy evaluating.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38988229

RESUMEN

In an effort to develop the next frontier filtration material for chemical warfare agent (CWA) decomposition, we synthesized mesoporous NiO and CuxNi1-xO (x = 0.10 and 0.20) and studied the decomposition of CWA simulant diisopropyl fluorophosphate (DIFP) on their surfaces. Mesoporous NiO and CuxNi1-xO were fully characterized and found to be a solid solution with no phase separation up to 20% copper dopant. The synthesized materials were successfully templated producing ordered mesoporous metal oxides with high surface areas (67.89- 94.38 m2/g). Through Raman spectroscopy, we showed that pure NiO contained a high concentration of Ni2+ vacancies, while Cu2+ reduced these defects. Through in situ infrared spectroscopy, we determined the surface species formed, potential pathways, and driving factors for decomposition. Upon exposure of DIFP, all materials produced similar decomposition products CO, CO2, carbonyls, and carbonates. However, decomposition reactions were sustained longer on mesoporous NiO, facilitated by the higher Ni2+ vacancy concentration. NiO was further studied with DIFP, first at low dosing temperatures (-50 °C), which still resulted in the production of CO and carbonates, and then, second, with a higher pretreatment temperature, which showed the importance of terminal hydroxyls/water to fully oxidize decomposition products to CO2. Mesoporous NiO demonstrated high decomposition and oxidation capabilities at temperatures below room temperature, all without any external excitation or noble metals, making it a promising frontier filtration material for CWA decomposition.

6.
Mol Cell ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38936361

RESUMEN

The bacterial world offers diverse strains for understanding medical and environmental processes and for engineering synthetic biological chassis. However, genetically manipulating these strains has faced a long-standing bottleneck: how to efficiently transform DNA. Here, we report imitating methylation patterns rapidly in TXTL (IMPRINT), a generalized, rapid, and scalable approach based on cell-free transcription-translation (TXTL) to overcome DNA restriction, a prominent barrier to transformation. IMPRINT utilizes TXTL to express DNA methyltransferases from a bacterium's restriction-modification systems. The expressed methyltransferases then methylate DNA in vitro to match the bacterium's DNA methylation pattern, circumventing restriction and enhancing transformation. With IMPRINT, we efficiently multiplex methylation by diverse DNA methyltransferases and enhance plasmid transformation in gram-negative and gram-positive bacteria. We also develop a high-throughput pipeline that identifies the most consequential methyltransferases, and we apply IMPRINT to screen a ribosome-binding site library in a hard-to-transform Bifidobacterium. Overall, IMPRINT can enhance DNA transformation, enabling the use of sophisticated genetic manipulation tools across the bacterial world.

7.
J Cosmet Dermatol ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923263

RESUMEN

BACKGROUND: Aesthetics medicine, a controversial branch of clinical medicine known for its high degree of commercialization, faces numerous conflicts, particularly in some developing countries. The global aesthetics medicine industry requires enhancements of its legal and supervision framework and risk management systems. AIMS: This paper aimed to provide a comprehensive visual analysis of academic achievements related to regulatory and legal issues in the field of aesthetic medicine and to identify its development trends and research hotspots. METHODS: The Web of Science Core Collection was employed to retrieve relevant studies, resulting in a total of 602 research articles after selection. Utilizing bibliometric methods and CiteSpace, this study analyzed the primary countries, institutions, authors, journals, hotspots, frontiers, and trends in this domain. RESULTS: The findings indicated rapid increases in the number of published papers. The United States emerged as the leading contributor with 131 research papers and the highest intermediate centrality. Eleven keyword clusters were identified, with "adolescence" and "office-based surgery" being the most recent topics. We also analyzed the trends and frontiers of legal research in medical aesthetics. CONCLUSION: The importance of informed consent has been increasingly emphasized, and research in the field of medical aesthetics has been gradually expanding beyond individual cosmetic procedures. The management system has become more comprehensive, moreover, guidelines and medical laws have been continually published, with research shifting toward a holistic perspective that encompasses patients, medical aesthetic providers, and regulatory authorities in the study of medical aesthetics regulation and legislation. This paper also proposes some innovative directions for future research and applications.

8.
Front Med ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926249

RESUMEN

Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II-induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α-mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.

9.
Biochem Pharmacol ; 226: 116338, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848780

RESUMEN

ITFG2, as an immune-modulatory intracellular protein that modulate the fate of B cells and negatively regulates mTORC1 signaling. ITFG2 is highly expressed in the heart, but its pathophysiological function in heart disease is unclear. In this study, we found that in MI mice, overexpression of ITFG2 via an AAV9 vector significantly reduced the infarct size and ameliorated cardiac function. Knockdown of endogenous ITFG2 by shRNA partially aggravated ischemia-induced cardiac dysfunction. In cardiac-specific ITFG2 transgenic (TG) mice, myocardial infarction size was smaller, eject fraction (EF) and fractional shortening (FS) was higher compared to those in wild-type (WT) mice, suggesting ITFG2 reversed cardiac dysfunction induced by MI. In hypoxic neonatal cardiomyocytes (NMCMs), overexpression of ITFG2 maintained mitochondrial function by increasing intracellular ATP production, reducing ROS levels, and preserving the mitochondrial membrane potential (MMP). Overexpression of ITFG2 reversed the mitochondrial respiratory dysfunction in NMCMs induced by hypoxia. Knockdown of endogenous ITFG2 by siRNA did the opposite. Mechanism, ITFG2 formed a complex with NEDD4-2 and ATP 5b and inhibited the binding of NEDD4-2 with ATP 5b leading to the reduction ubiquitination of ATP 5b. Our findings reveal a previously unknown ability of ITFG2 to protect the heart against ischemic injury by interacting with ATP 5b and thereby regulating mitochondrial function. ITFG2 has promise as a novel strategy for the clinical management of MI.

10.
Chem Commun (Camb) ; 60(57): 7366-7369, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38919147

RESUMEN

In situ ultra-small-angle and wide-angle X-ray scattering enables simultaneous tracking of the structural parameters of mesoporous CeO2 from the atomic scale to the micron-size scale. This multiscale approach provides a path to better understand structure-property relationships in mesoporous polycrystalline materials under dynamic conditions such as high temperature cycling.

11.
World J Surg Oncol ; 22(1): 174, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943154

RESUMEN

BACKGROUND: Existing research on chyle leak (CL) after pancreatic surgery is mostly focused on pancreaticoduodenectomy and lacks investigation on total pancreatectomy (TP). This study aimed to explore potential risk factors of CL and develop a predictive model for patients with pancreatic tumor undergoing TP. METHODS: This retrospective study enrolled 90 consecutive patients undergoing TP from January 2015 to December 2023 at Peking Union Medical College Hospital. According to the inclusion criteria, 79 patients were finally included in the following analysis. The LASSO regression and multivariate logistic regression analysis were performed to identify risk factors associated with CL and construct a predictive nomogram. Then, the ROC analysis, calibration curve, decision curve analysis (DCA), and clinical impact curve (CIC) were performed to assess its discrimination, accuracy, and efficacy. Due to the small sample size, we adopted the bootstrap resampling method with 500 repetitions for validation. Lastly, we plotted and analyzed the trend of postoperative drainage volume in CL patients. RESULTS: We revealed that venous resection (OR = 4.352, 95%CI 1.404-14.04, P = 0.011) was an independent risk factor for CL after TP. Prolonged operation time (OR = 1.473, 95%CI 1.015-2.237, P = 0.052) was also associated with an increased incidence of CL. We included these two factors in our prediction model. The area under the curve (AUC) was 0.752 (95%CI 0.622-0.874) after bootstrap. The calibration curve, DCA and CIC showed great accuracy and clinical benefit of our nomogram. In patients with CL, the mean drainage volume was significantly higher in venous resection group and grade B CL group. CONCLUSION: Venous resection was an independent risk factor for chyle leak after TP. Patients undergoing vascular resection during TP should be alert for the occurrence of CL after surgery. We then constructed a nomogram consisted of venous resection and operation time to predict the odds of CL in patients undergoing TP.


Asunto(s)
Nomogramas , Pancreatectomía , Neoplasias Pancreáticas , Complicaciones Posoperatorias , Humanos , Masculino , Femenino , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/patología , Estudios Retrospectivos , Persona de Mediana Edad , Pancreatectomía/efectos adversos , Pancreatectomía/métodos , Factores de Riesgo , Complicaciones Posoperatorias/etiología , Quilo , Pronóstico , Estudios de Seguimiento , Anciano , Curva ROC , Adulto
12.
Exp Mol Med ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38945958

RESUMEN

The senescence of alveolar type II (AT2) cells impedes self-repair of the lung epithelium and contributes to lung injury in the setting of idiopathic pulmonary fibrosis (IPF). Yes-associated protein 1 (YAP1) is essential for cell growth and organ development; however, the role of YAP1 in AT2 cells during pulmonary fibrosis is still unclear. YAP1 expression was found to be downregulated in the AT2 cells of PF patients. Deletion of YAP1 in AT2 cells resulted in lung injury, exacerbated extracellular matrix (ECM) deposition, and worsened lung function. In contrast, overexpression of YAP1 in AT2 cells promoted alveolar regeneration, mitigated pulmonary fibrosis, and improved lung function. In addition, overexpression of YAP1 alleviated bleomycin (BLM) -induced senescence of alveolar epithelial cells both in vivo and in vitro. Moreover, YAP1 promoted the expression of peroxiredoxin 3 (Prdx3) by directly interacting with TEAD1. Forced expression of Prdx3 inhibited senescence and improved mitochondrial dysfunction in BLM-treated MLE-12 cells, whereas depletion of Prdx3 partially abrogated the protective effect of YAP1. Furthermore, overexpression of Prdx3 facilitated self-repair of the injured lung and reduced ECM deposition, while silencing Prdx3 attenuated the antifibrotic effect of YAP1. In conclusion, this study demonstrated that YAP1 alleviates lung injury and pulmonary fibrosis by regulating Prdx3 expression to improve mitochondrial dysfunction and block senescence in AT2 cells, revealing a potential novel therapeutic strategy for pulmonary fibrosis.

13.
ACS Appl Mater Interfaces ; 16(26): 33347-33359, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38913840

RESUMEN

Currently, monitoring the ecological conditions of watercourses is overly unitary and inefficient and is burdened by high costs. A cost-effective, efficient, self-powered sensor for incorporating the Internet of Things (IoT) into the surveillance of riverine ecosystems is lacking. This manuscript introduces a device designed for energy harvesting and sensing through a triboelectric-electromagnetic generator (CX-TEHG). The CX-TEHG is composed of a wind-driven electromagnetic generator (F-EMG), a river-driven electromagnetic generator (W-EMG), a triboelectric nanogenerator for measuring flow velocity (W-TENG), and another triboelectric nanogenerator for gauging the speed of floodwater level rise (F-TENG). It employs planetary gears to achieve a 6-fold increase in speed, facilitating efficient multienergy collection from wind and river currents. CX-TEHG achieves a peak power output of 183 mW and a power density of 373.5 W/m3 under environmental conditions featuring a wind speed of 4 m/s and a flow velocity of 0.5 m/s. This study developed a cost-efficient signal acquisition system and a mechanism for information transmission via a 5G module. Alerts are issued on both upper-level computers and mobile devices for river flow velocities exceeding 2.8 m/s and water levels reaching specified locations; thus, an innovative solution for applying the Internet of Things in riverine ecological monitoring is presented.

14.
ACS Appl Mater Interfaces ; 16(25): 32367-32374, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861392

RESUMEN

Dielectric ceramic capacitors are prospective energy-storage devices for pulsed-power systems owing to their ultrafast charge-discharge speed. However, low energy-storage density makes them difficult to commercialize for high-pulse-power technology applications. Herein, we presented a structurally regulated design strategy to disrupt a long-range ferroelectric order, refined grains, and eventually achieve excellent comprehensive energy-storage performance in (1 - x) (0.7Bi0.5Na0.5TiO3-0.3SrTiO3)-x Sm(Zn2/3Nb1/3)O3 eco-friendly ceramics. A large Wrec of ∼7.43 ± 0.05 J/cm3 and a high η of ∼85 ± 0.5% of 0.96 (0.7Bi0.5Na0.5TiO3-0.3SrTiO3)-0.04 Sm(Zn2/3Nb1/3)O3 were obtained at a low electric field of 290 kV cm-1 with good energy-storage temperature (25-120 °C), frequency (1-100 Hz) stability, and charge-discharge properties (PD ∼ 74 ± 1 MW/cm3 and τ0.9 ∼ 159 ± 2 ns). This strategy inspires rational structurally regulated designs and aims to promote the development of eco-friendly 0.7Bi0.5Na0.5TiO3-based ceramics with excellent energy-storage characteristics.

15.
JAMA Netw Open ; 7(6): e2415310, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38861260

RESUMEN

Importance: Peceleganan spray is a novel topical antimicrobial agent targeted for the treatment of skin wound infections. However, its efficacy and safety remain unclear. Objective: To assess the safety and efficacy of peceleganan spray for the treatment of wound infections. Design, Setting, and Participants: This multicenter, open-label, phase 3 randomized clinical trial recruited and followed up 570 adult patients diagnosed with secondary open wound infections from 37 hospitals in China from August 23, 2021, to July 16, 2022. Interventions: Patients were randomized to 2 groups with a 2:1 allocation. One group received treatment with 2% peceleganan spray (n = 381) and the other with 1% silver sulfadiazine (SSD) cream (n = 189). Main Outcomes and Measures: The primary efficacy outcome was the clinical efficacy rate (the number of patients fulfilling the criteria for efficacy of the number of patients receiving the treatment) on the first day following the end of treatment (day 8). The secondary outcomes included the clinical efficacy rate on day 5 and the bacterial clearance rate (cases achieving negative bacteria cultures after treatment of all cases with positive bacteria cultures before treatment) on days 5 and 8. The safety outcomes included patients' vital signs, physical examination results, electrocardiographic findings, blood test results, and adverse reactions. Results: Among the 570 patients randomized to 1 of the 2 groups, 375 (98.4%) in the 2% peceleganan treatment group and 183 (96.8%) in the 1% SSD control group completed the trial (n = 558). Of these, 361 (64.7%) were men, and the mean (SD) age was 48.6 (15.3) years. The demographic characteristics were similar between groups. On day 8, clinical efficacy was achieved by 339 patients (90.4%) in the treatment group and 144 (78.7%) in the control group (P < .001). On day 5, clinical efficacy was achieved by 222 patients (59.2%) in the treatment group and 90 (49.2%) in the control group (P = .03). On day 8, bacterial clearance was achieved by 80 of 334 patients (24.0%) in the treatment group and in 75 of 163 (46.0%) in the control group (P < .001). On day 5, bacterial clearance was achieved by 55 of 334 patients (16.5%) in the treatment group and 50 of 163 (30.7%) in the control group (P < .001). The adverse events related to the application of peceleganan spray and SSD cream were similar. Conclusions and Relevance: This randomized clinical trial found that peceleganan spray is a safe topical antimicrobial agent with a satisfactory clinical efficacy rate for the treatment of skin wound infections, while the effectiveness of bacterial clearance remains uncertain. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR2100047202.


Asunto(s)
Infección de Heridas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Infección de Heridas/tratamiento farmacológico , Antiinfecciosos Locales/uso terapéutico , Antiinfecciosos Locales/administración & dosificación , China , Sulfadiazina de Plata/uso terapéutico , Sulfadiazina de Plata/administración & dosificación , Resultado del Tratamiento , Anciano , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación
16.
RSC Adv ; 14(27): 19301-19311, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38887639

RESUMEN

To reveal the mechanism of CO gas generation and adsorption in coal gangue slits at the microscopic level, a new composite kaolinite-coal-kaolinite (KCK) slit model was constructed by combining the Hongqingliang (HQL) coal molecular model and the Bish kaolinite model to characterize the crack structure of the gangue. It is compared with the kaolinite model (TriK) commonly used in gangue research. Molecular dynamics was used to study the production of CO in different oxygen environments and variation in the adsorption amount, adsorption sites and diffusion coefficient in the temperature range from 293.15 K to 333.15 K. The results indicate that CO mainly comes from the decomposition of ether and phenol in organic structures, and the lower the oxygen concentration, the lesser the CO production time. The KCK model has a higher average adsorption capacity and weaker diffusion capacity mainly due to the additional adsorption sites provided by the carbon-containing structural layer, and CO is mainly adsorbed near the oxygen-containing functional groups. Although kaolinite exhibits bonding adsorption on the Al-O plane, its adsorption site is limited to the surface. The slit model with the carbon structure can better reflect the complex conditions of gas motion in the gangue, thus providing a reference to determine the spontaneous combustion conditions of the gangue hill via the index gas.

17.
Phys Rev E ; 109(5-1): 054312, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38907474

RESUMEN

The Brain Connectome Project has made significant strides in uncovering the structural connections within the brain on various levels. This has led to the question of how brain structure and function are related. Our research explores this relationship in an adaptive neural network in which synaptic conductance between neurons follows spike-time synaptic plasticity rules. By adjusting the plasticity boundary, the network exhibits diverse collective behaviors, including phase synchronization, phase locking, hierarchical synchronization (phase clusters), and coexisting states. Using graph theory, we found that hierarchical synchronization is related to the community structure, while coexisting states are related to the hierarchical self-organizing and core-periphery structure. The network evolves into several tightly connected modules, with sparsely intermodule connections resulting in the formation of phase clusters. In addition, the hierarchical self-organizing structure facilitates the emergence of coexisting states. The coexistence state promotes the evolution of the core-periphery structure. Our results point towards the equivalence between function and structure, with function emerging from structure, and structure being influenced by function in a complex dynamic process.

18.
J Colloid Interface Sci ; 669: 552-560, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729003

RESUMEN

HYPOTHESIS: Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS: Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS: Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.

19.
J Infect Dev Ctries ; 18(4): 645-650, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38728637

RESUMEN

INTRODUCTION: Streptococcus suis (S. suis) disease is a zoonotic infection caused by invasive S. suis and can lead to meningitis, septic shock, arthritis, and endocarditis. Early treatment is the key to reducing mortality. However, clinical manifestations of most cases are atypical, severely limiting rapid diagnosis and treatment. CASE REPORT: Here, we report a 74-year-old female patient diagnosed with S. suis infection. The main symptoms were hearing loss, lumbago, and scattered ecchymosis of the lower extremities and trunk. Blood non-specific infection indexes were significantly increased and platelets were significantly decreased; however, no pathogens were obtained from routine blood culture. Finally, the S. suis infection was confirmed by metagenomic next-generation sequencing (mNGS) of blood and cerebrospinal fluid. After antibiotic treatment, the limb and trunk scattered ecchymosis and lumbago symptoms were significantly relieved, but the hearing did not recover. CONCLUSIONS: Human infection with S. suis is rare in central cities, and it is easy to misdiagnose, especially in cases with atypical early symptoms. mNGS technology, combined with clinical observation, is helpful to clarify the direction of diagnosis and treatment, which is conducive to patient recovery.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Metagenómica , Infecciones Estreptocócicas , Streptococcus suis , Humanos , Streptococcus suis/genética , Streptococcus suis/aislamiento & purificación , Femenino , Anciano , Infecciones Estreptocócicas/diagnóstico , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/tratamiento farmacológico , Metagenómica/métodos , Antibacterianos/uso terapéutico
20.
Front Oncol ; 14: 1345737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706597

RESUMEN

Introduction: Cancer represents a significant global public health concern. In recent years, the incidence of cancer has been on the rise worldwide due to various factors, including diet, environment, and an aging population. Simultaneously, advancements in tumor molecular biology and genomics have led to a shift from systemic chemotherapy focused on disease sites and morphopathology towards precise targeted therapy for driver gene mutations. Therefore, we propose a comprehensive review aimed at exploring the research hotspots and directions in the field of Kirsten rat sarcoma viral oncogene homolog (KRAS)-mutant cancers over the past decade, providing valuable insights for cancer treatment strategies. Specifically, we aim to present an intellectual landscape using data obtained from the Web of Science (WoS) regarding KRAS mutation. Methods: Bibliometrix, VOSviewer, CiteSpace, and HistCite were employed to conduct scientometric analyses on national publications, influential authors, highly cited articles, frequent keywords, etc. Results: A total of 16,609 publications met the screening criteria and exhibited a consistent annual growth trend overall. Among 102 countries/regions, the United States occupied the vast majority share of the published volume. The journal Oncotarget had the highest circulation among all scientific publications. Moreover, the most seminal articles in this field primarily focus on biology and targeted therapies, with overcoming drug resistance being identified as a future research direction. Conclusion: The findings of the thematic analysis indicate that KRAS mutation in lung cancer, the prognosis following B-Raf proto-oncogene, serine/threonine kinase (BRAF) or rat sarcoma (RAS) mutations, and anti-epidermal growth factor receptor (EGFR)-related lung cancer are the significant hotspots in the given field. Considering the significant advancements made in direct targeting drugs like sotorasib, it is anticipated that interest in cancers associated with KRAS mutations will remain steadfast.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...