Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.830
Filtrar
1.
J Physiol Biochem ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008241

RESUMEN

Isoleucine-proline-proline (Ile-Pro-Pro, IPP) is a natural food source tripeptide that inhibits angiotensin-converting enzyme (ACE) activity. The aim of this study was to determine the central and peripheral roles of IPP in attenuating sympathetic activity, oxidative stress and hypertension. Male Sprague-Dawley rats were subjected to sham-operated surgery (Sham) or two-kidney one-clip (2K1C) surgery to induce renovascular hypertension. Renal sympathetic nerve activity and blood pressure were recorded. Bilateral microinjections of IPP to hypothalamic paraventricular nucleus (PVN) attenuated sympathetic activity (-16.1 ± 2.5%, P < 0.001) and hypertension (-8.7 ± 1.5 mmHg, P < 0.01) in 2K1C rats by inhibiting ACE activity and subsequent angiotensin II and superoxide production in the PVN. Intravenous injections of IPP also attenuated sympathetic activity (-15.1 ± 2.1%, P < 0.001) and hypertension (-16.8 ± 2.3 mmHg, P < 0.001) via inhibiting ACE activity and oxidative stress in both PVN and arteries of 2K1C rats. The duration of the effects of the intravenous IPP was longer than those of the PVN microinjection, but the sympatho-inhibitory effect of intravenous injections occurred later than that of the PVN microinjection. Intraperitoneal injection of IPP (400 pmol/day for 20 days) attenuated hypertension and vascular remodeling via inhibiting ACE activity and oxidative stress in both PVN and arteries of 2K1C rats. These results indicate that IPP attenuates hypertension and sympathetic activity by inhibiting ACE activity and oxidative stress. The sympathoinhibitory effect of peripheral IPP is mainly caused by the ACE inhibition in PVN, and the antihypertensive effect is related to the sympathoinhibition and the arterial ACE inhibition. Long-term intraperitoneal IPP therapy attenuates hypertension, oxidative stress and vascular remodeling.

2.
J Pharm Anal ; 14(6): 100930, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39005843

RESUMEN

Non-communicable diseases (NCDs), including cardiovascular diseases, cancer, metabolic diseases, and skeletal diseases, pose significant challenges to public health worldwide. The complex pathogenesis of these diseases is closely linked to oxidative stress and inflammatory damage. Nuclear factor erythroid 2-related factor 2 (Nrf2), a critical transcription factor, plays an important role in regulating antioxidant and anti-inflammatory responses to protect the cells from oxidative damage and inflammation-mediated injury. Therefore, Nrf2-targeting therapies hold promise for preventing and treating NCDs. Quercetin (Que) is a widely available flavonoid that has significant antioxidant and anti-inflammatory properties. It modulates the Nrf2 signaling pathway to ameliorate oxidative stress and inflammation. Que modulates mitochondrial function, apoptosis, autophagy, and cell damage biomarkers to regulate oxidative stress and inflammation, highlighting its efficacy as a therapeutic agent against NCDs. Here, we discussed, for the first time, the close association between NCD pathogenesis and the Nrf2 signaling pathway, involved in neurodegenerative diseases (NDDs), cardiovascular disease, cancers, organ damage, and bone damage. Furthermore, we reviewed the availability, pharmacokinetics, pharmaceutics, and therapeutic applications of Que in treating NCDs. In addition, we focused on the challenges and prospects for its clinical use. Que represents a promising candidate for the treatment of NCDs due to its Nrf2-targeting properties.

3.
Front Oncol ; 14: 1404799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007100

RESUMEN

Background: Our study aimed to develop a nomogram incorporating cytokeratin fragment antigen 21-1 (CYFRA21-1) to assist in differentiating between patients with intrahepatic cholangiocarcinoma (ICC) and hepatocellular carcinoma (HCC). Methods: A total of 487 patients who were diagnosed with ICC and HCC at Qilu Hospital of Shandong University were included in this study. The patients were divided into a training cohort and a validation cohort based on whether the data collection was retrospective or prospective. Univariate and multivariate analyses were employed to select variables for the nomogram. The discrimination and calibration of the nomogram were evaluated using the area under the receiver operating characteristic curve (AUC) and calibration plots. Decision curve analysis (DCA) was used to assess the nomogram's net benefits at various threshold probabilities. Results: Six variables, including CYFRA21-1, were incorporated to establish the nomogram. Its satisfactory discriminative ability was indicated by the AUC (0.972 for the training cohort, 0.994 for the validation cohort), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) values. The Hosmer-Lemeshow test and the calibration plots demonstrated favorable consistency between the nomogram predictions and the actual observations. Moreover, DCA revealed the clinical utility and superior discriminative ability of the nomogram compared to the model without CYFRA21-1 and the model consisting of the logarithm of alpha-fetoprotein (Log AFP) and the logarithm of carbohydrate antigen 19-9 (Log CA19-9). Additionally, the AUC values suggested that the discriminative ability of Log CYFRA21-1 was greater than that of the other variables used as diagnostic biomarkers. Conclusions: This study developed and validated a nomogram including CYFRA21-1, which can aid clinicians in the differential diagnosis of ICC and HCC patients.

4.
FASEB J ; 38(14): e23823, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39008003

RESUMEN

Hepatic ischemia-reperfusion injury (HIRI) represents a major risk factor in liver transplantation and resection surgeries. Kupffer cells (KCs) produce proinflammatory cytokines and lead to hepatic neutrophil infiltration in the liver, which is one of the leading causes of HIRI. Mid1 is involved in immune infiltration, but the role of Mid1 remains poorly understood. Herin, our study aimed to investigate the effect of Mid1 on HIRI progression. Male C57BL/6 mice aged 6 weeks were used for the HIRI model established. The function of Mid1 on liver injury and hepatic inflammation was evaluated. In vitro, KCs were used to investigate the function and mechanism of Mid1 in modulating KC inflammation upon lipopolysaccharide (LPS) stimulation. We found that Mid1 expression was up-regulated upon HIRI. Mid1 inhibition alleviated liver damage, as evidenced by neutrophil infiltration, intrahepatic inflammation, and hepatocyte apoptosis. In vitro experiments further revealed that Mid1 knockdown reduced the secretion of proinflammatory cytokines and chemokines in KCs. Moreover, silenced-Mid1 suppressed proinflammatory responses by the inhibition of NF-κB, JNK, and p38 signaling pathways. Taken together, Mid1 contributes to HIRI via regulating the proinflammatory response of KCs and inducing neutrophil infiltration. Targeting Mid1 may be a promising strategy to protect against HIRI.


Asunto(s)
Macrófagos del Hígado , Hígado , Ratones Endogámicos C57BL , Daño por Reperfusión , Animales , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/inmunología , Ratones , Masculino , Macrófagos del Hígado/metabolismo , Hígado/patología , Hígado/metabolismo , Infiltración Neutrófila , Citocinas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , FN-kappa B/metabolismo , Apoptosis , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal
5.
Artículo en Inglés | MEDLINE | ID: mdl-38991972

RESUMEN

The vacuum flash solution method has gained widespread recognition in the preparation of perovskite thin films, laying the foundation for the industrialization of perovskite solar cells. However, the low volatility of dimethyl sulfoxide and its weak interaction with formamidine-based perovskites significantly hinder the preparation of cell modules and the further improvement of photovoltaic performance. In this study, we describe an efficient and reproducible method for preparing large-scale, highly uniform formamidinium lead triiodide (FAPbI3) perovskite films. This is achieved by accelerating the vacuum flash rate and leveraging the complex synergism. Specifically, we designed a dual pump system to accelerate the depressurization rate of the vacuum system and compared the quality of perovskite film formed at different depressurization rates. Further, to overcome the limitations posed by DMSO, we substituted N-methylpyrrolidone as the ligand solvent, creating a stable intermediate complex phase. After annealing, it can be transformed into a uniform and pinhole-free FAPbI3 film. Due to the superior quality of these films, the large area perovskite solar module achieved a power conversion efficiency of 22.7% with an active area of 21.4 cm2. Additionally, it obtained an official certified efficiency of 22.1% with an aperture area of 22 cm2, and it demonstrated long-term stability.

6.
Am J Clin Nutr ; 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950778

RESUMEN

BACKGROUND: The influence of adherence to a planetary health diet (PHD) proposed by the EAT-Lancet Commission on cardiovascular disease (CVD) is inconclusive. Besides, whether genetic susceptibility to CVD can modify the association of PHD with CVD remains unknown. OBJECTIVE: We aimed to investigate the association between adherence to PHD and CVD, and to evaluate the interaction between PHD and genetic predisposition to CVD. METHODS: This study included 114,165 participants who completed at least two 24-hour dietary recalls and were initially free of cardiovascular disease from the UK biobank. PHD score was calculated to assess adherence to PHD. Genetic risk was evaluated using the polygenic risk score. Incidence of total CVD, ischemic heart disease (IHD), atrial fibrillation (AF), heart failure (HF), and stroke were identified via electronic health records. Cox proportional hazards regression models were used to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS: During a median follow-up of 9.9 years, 10,071 (8.8%) incident CVD cases were documented. Compared to participants with the lowest adherence to PHD, HRs (95% CIs) for total CVD, IHD, AF, HF, and stroke among those with the highest adherence were 0.79 (0.74, 0.84), 0.73 (0.67, 0.79), 0.90 (0.82, 0.99), 0.69 (0.59, 0.82), and 0.88 (0.75, 1.04), respectively. No significant interaction between genetic risk of CVD and PHD was observed. Participants with high genetic risk and low PHD score, as compared with those with low genetic risk and high PHD score, had a 48% (95% CI, 40%, 56%) higher risk of CVD. The population-attributable risk (95% CI) of CVD for poor adherence to PHD ranged from 8.79% (5.36%, 12.51%) to 14.00% (9.00%, 18.88%). CONCLUSIONS: These findings suggest that higher adherence to PHD was associated with lower risks of total CVD, IHD, AF, and HF in populations across all genetic risk categories.

7.
J Chem Phys ; 161(1)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38949280

RESUMEN

In this work, we performed static density functional theory calculations and ab initio metadynamics simulations to systematically investigate the association mechanisms and dynamic structures of four kinds of ion pairs that could be formed before the nucleation of CaCO3. For Ca2+-HCO3- and Ca2+-CO32- pairs, the arrangement of ligands around Ca2+ evolves between the six-coordinated octahedral structure and the seven-coordinated pentagonal bipyramidal structure. The formation of ion pairs follows an associative ligand substitution mechanism. Compared with HCO3-, CO32- exhibits a stronger affinity to Ca2+, leading to the formation of a more stable precursor phase in the prenucleation stage, which promotes the subsequent CaCO3 nucleation. In alkaline environments, excessive OH- ions decrease the coordination preference of Ca2+. In this case, the formation of Ca(OH)+-CO32- and Ca(OH)2-CO32- pairs favors the dissociative ligand substitution mechanism. The inhibiting effects of OH- ion on the CaCO3 association can be interpreted from two aspects, i.e., (1) OH- neutralizes positive charges on Ca2+, decreases the electrostatic interactions between Ca2+ and CO32-, and thus hinders the formation of the CaCO3 monomer, and (2) OH- decreases the capacity of Ca2+ for accommodating O, making it easier to separate Ca2+ and CO32- ions. Our findings on the ion association behaviors in the initial stage of CaCO3 formation not only help scientists evaluate the impact of ocean acidification on biomineralization but also provide theoretical support for the discovery and development of more effective approaches to manage undesirable scaling issues.

8.
Microbiome ; 12(1): 120, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956705

RESUMEN

BACKGROUND: Functional redundancy (FR) is widely present, but there is no consensus on its formation process and influencing factors. Taxonomically distinct microorganisms possessing genes for the same function in a community lead to within-community FR, and distinct assemblies of microorganisms in different communities playing the same functional roles are termed between-community FR. We proposed two formulas to respectively quantify the degree of functional redundancy within and between communities and analyzed the FR degrees of carbohydrate degradation functions in global environment samples using the genetic information of glycoside hydrolases (GHs) encoded by prokaryotes. RESULTS: Our results revealed that GHs are each encoded by multiple taxonomically distinct prokaryotes within a community, and the enzyme-encoding prokaryotes are further distinct between almost any community pairs. The within- and between-FR degrees are primarily affected by the alpha and beta community diversities, respectively, and are also affected by environmental factors (e.g., pH, temperature, and salinity). The FR degree of the prokaryotic community is determined by deterministic factors. CONCLUSIONS: We conclude that the functional redundancy of GHs is a stabilized community characteristic. This study helps to determine the FR formation process and influencing factors and provides new insights into the relationships between prokaryotic community biodiversity and ecosystem functions. Video Abstract.


Asunto(s)
Bacterias , Biodiversidad , Glicósido Hidrolasas , Polisacáridos , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Polisacáridos/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Ecosistema , Microbiota , Células Procariotas/metabolismo , Células Procariotas/clasificación , Filogenia , Concentración de Iones de Hidrógeno
9.
Adv Sci (Weinh) ; : e2405210, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984453

RESUMEN

The modulation of the chemical microenvironment surrounding metal nanoparticles (NPs) is an effective means to enhance the selectivity and activity of catalytic reactions. Herein, a post-synthetic modification strategy is developed to modulate the hydrophobic microenvironment of Ru nanoparticles encapsulated in a metal-organic framework (MOF), MIP-206, namely Ru@MIP-Fx (where x represents perfluoroalkyl chain lengths of 3, 5, 7, 11, and 15), in order to systematically explore the effect of the hydrophobic microenvironment on the electrocatalytic activity. The increase of perfluoroalkyl chain length can gradually enhance the hydrophobicity of the catalyst, which effectively suppresses the competitive hydrogen evolution reaction (HER). Moreover, the electrocatalytic production rate of ammonia and the corresponding Faraday efficiency display a volcano-like pattern with increasing hydrophobicity, with Ru@MIP-F7 showing the highest activity. Theoretical calculations and experiments jointly show that modification of perfluoroalkyl chains of different lengths on MIP-206 modulates the electronic state of Ru nanoparticles and reduces the rate-determining step for the formation of the key intermediate of N2H2 *, leading to superior electrocatalytic performance.

10.
Chin J Cancer Res ; 36(3): 240-256, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988488

RESUMEN

Bruton's tyrosine kinase inhibitors (BTKis) have revolutionized the treatment of B-cell lymphomas. However, safety issues related to the use of BTKis may hinder treatment continuity and further affect clinical efficacy. A comprehensive and systematic expert consensus from a pharmacological perspective is lacking for safety issues associated with BTKi treatment. A multidisciplinary consensus working group was established, comprising 35 members from the fields of hematology, cardiovascular disease, cardio-oncology, clinical pharmacy, and evidence-based medicine. This evidence-based expert consensus was formulated using an evidence-based approach and the Delphi method. The Joanna Briggs Institute Critical Appraisal (JBI) tool and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach were used to rate the quality of evidence and grade the strength of recommendations, respectively. This consensus provides practical recommendations for BTKis medication based on nine aspects within three domains, including the management of common adverse drug events such as bleeding, cardiovascular events, and hematological toxicity, as well as the management of drug-drug interactions and guidance for special populations. This multidisciplinary expert consensus could contribute to promoting a multi-dimensional, comprehensive and standardized management of BTKis.

11.
Mater Horiz ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990691

RESUMEN

The anomalous Hall effect (AHE), significantly enhanced by the extrinsic mechanism, has attracted attention for its almost unlimited Hall response, which exceeds the upper limit of the Berry curvature mechanism. However, due to the high conductivity in the clean regime and weak skew scattering, it is a great challenge to obtain large anomalous Hall conductivities and large anomalous Hall angles at the same time. Here, we unveil a new magnetic metal system, EuAl2Si2, which hosts both colossal anomalous Hall conductivity (σAxy ≥ 104 Ω-1 cm-1) and large anomalous Hall angle (AHA >10%). The scaling relation suggests that the skew scattering mechanism is dominant in the colossal anomalous Hall response and gives rise to a large skew scattering constant. The large effective SOC and large magnetic moment may account for this anomaly. Our results indicate that EuAl2Si2 is a good platform to study the extrinsic AHE mechanism.

12.
Nurse Educ Pract ; 79: 104070, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003784

RESUMEN

AIM: This systematic review aimed to assess the psychometric properties of existing nursing informatics scales of competence and provide an evidence-based basis for selecting the most appropriate assessment instruments for specific populations. BACKGROUND: Informatics competency is one of the fundamental competencies that nurses should have. Using an informatics competency assessment instrument is an effective way to identify competency gaps and develop a professional development plan to address them. However, no systematic reviews summarizing and assessing the psychometric properties of all nursing informatics competency assessment instruments exist. DESIGN: This study systematically reviews measurement properties using the Consensus-based Standards for the Selection of Health Measurement Instruments (COSMIN) methodology. METHODS: Eight electronic databases (PubMed, Embase, Web of Science, CINAHL Complete, MEDLINE, PsychInfo, China National Knowledge Infrastructure and WanFang Data) were systematically searched from inception until January 10, 2024. Methodological quality was assessed using the COSMIN Risk of Bias Checklist. We used the COSMIN criteria to summarize and rate the psychometric properties. RESULTS: Twenty-seven studies reported twenty-five various versions of the instruments. Eighteen instruments assessed only one to three psychometric properties. No studies report cross-cultural effectiveness/measurement invariance and measurement error. The quality of evidence for structural validity or internal consistency for the three instruments failed to satisfy the COSMIN criteria. The SANICS-C has moderate to high-quality evidence of adequate content validity and internal consistency. In the end, the SANICS-C was an A recommendation, three instruments were C recommendations and the rest were B recommendations. CONCLUSION: The Nursing Informatics Competencies Scale for Nursing Students, SANICS-C and ICAT can be used to assess the informatics competencies of undergraduate, graduate and doctoral nursing students, respectively. The C-NICAS-FR is recommended for the assessment of nurses' informatics competence. The Self-Assessment Questionnaire for Nursing Informatics Competencies of Nursing Manager can be recommended for assessing nurse leaders' informatics competencies. Future research needs to validate these instruments' cross-cultural applicability further and comprehensively assess their psychometric properties. Along with emerging technologies, researchers should continually revisit and revise existing assessment instruments and develop instruments to assess the informatics competencies of nursing teachers.

13.
Cell Mol Life Sci ; 81(1): 283, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963422

RESUMEN

Protein SUMOylation is a prevalent stress-response posttranslational modification crucial for maintaining cellular homeostasis. Herein, we report that protein SUMOylation modulates cellular signaling mediated by cAMP, an ancient and universal stress-response second messenger. We identify K561 as a primary SUMOylation site in exchange protein directly activated by cAMP (EPAC1) via site-specific mapping of SUMOylation using mass spectrometry. Sequence and site-directed mutagenesis analyses reveal that a functional SUMO-interacting motif in EPAC1 is required for the binding of SUMO-conjugating enzyme UBC9, formation of EPAC1 nuclear condensate, and EPAC1 cellular SUMOylation. Heat shock-induced SUMO modification of EPAC1 promotes Rap1/2 activation in a cAMP-independent manner. Structural modeling and molecular dynamics simulation studies demonstrate that SUMO substituent on K561 of EPAC1 promotes Rap1 interaction by increasing the buried surface area between the SUMOylated receptor and its effector. Our studies identify a functional SUMOylation site in EPAC1 and unveil a novel mechanism in which SUMOylation of EPAC1 leads to its autonomous activation. The findings of SUMOylation-mediated activation of EPAC1 not only provide new insights into our understanding of cellular regulation of EPAC1 but also will open up a new field of experimentation concerning the cross-talk between cAMP/EPAC1 signaling and protein SUMOylation, two major cellular stress response pathways, during cellular homeostasis.


Asunto(s)
AMP Cíclico , Factores de Intercambio de Guanina Nucleótido , Sumoilación , Enzimas Ubiquitina-Conjugadoras , Proteínas de Unión al GTP rap1 , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/química , Humanos , AMP Cíclico/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Proteínas de Unión al GTP rap1/metabolismo , Proteínas de Unión al GTP rap1/genética , Células HEK293 , Simulación de Dinámica Molecular , Complejo Shelterina/metabolismo , Transducción de Señal , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap/genética , Respuesta al Choque Térmico , Secuencia de Aminoácidos , Unión Proteica
14.
Stem Cells ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995653

RESUMEN

Efficient homing of infused hematopoietic stem and progenitor cells (HSPCs) into the bone marrow (BM) is the prerequisite for successful hematopoietic stem cell transplantation. However, only a small part of infused HSPCs find their way to the BM niche. A better understanding of the mechanisms that facilitate HSPC homing will help to develop strategies to improve the initial HSPC engraftment and subsequent hematopoietic regeneration. Here, we show that irradiation upregulates the endomucin expression of endothelial cells in vivo and in vitro. Furthermore, depletion of endomucin in irradiated endothelial cells with short interfering RNA (siRNA) increases the HSPC-endothelial cell adhesion in vitro. To abrogate the endomucin of BM sinusoidal endothelial cells (BM-SECs) in vivo, we develop a siRNA-loaded bovine serum albumin nanoparticle for targeted delivery. Nanoparticle-mediated siRNA delivery successfully silences endomucin expression in BM-SECs and improves HSPC homing during transplantation. These results reveal that endomucin plays a critical role in HSPC homing during transplantation and that gene-based manipulation of BM-SEC endomucin in vivo can be exploited to improve the efficacy of HSPC transplantation.

15.
Int J Cardiol Heart Vasc ; 53: 101434, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38974459

RESUMEN

Coronary heart disease (CHD) is a serious cardiovascular illness, for which an elevated uric acid (UA) level presents as a considerable risk factor. This can be treated with UA-lowering drugs such as allopurinol and benzbromarone, which can reduce UA levels by the inhibition of UA production or by promoting its excretion. Such drugs can also be beneficial to CHD in other ways, such as reducing the degree of coronary arteriosclerosis, improving myocardial blood supply and alleviating ventricular remodeling. Different UA-lowering drugs are used in different ways: allopurinol is preferred as a single agent in clinical application, but in absence of the desired response, a combination of drugs such as benzbromarone with ACE inhibitors may be used. Patients must be monitored regularly to adjust the medication regimen. Appropriate use of UA-lowering drugs has great significance for the prevention and treatment of CHD. However, the specific mechanisms of the drugs and individualized drug use need further research. This review article expounds the mechanisms of UA-lowering drugs on CHD and their clinical application strategy, thereby providing a reference for further optimization of treatment.

16.
Front Pharmacol ; 15: 1396606, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953104

RESUMEN

Background: Niraparib, a poly ADP-ribose polymerase inhibitors (PARPi), has been widely applied in the intervention of epithelial ovarian, fallopian tube, or primary peritoneal cancer. Nevertheless, as of the present moment, there are limited instances demonstrating favorable outcomes stemming from niraparib therapy in patients with clear cell renal cell carcinoma (ccRCC). Case presentation: Here, we report a case of a 50-year-old patient with ccRCC who subsequently developed distant metastasis. The patient received monotherapy with pazopanib and combination therapy with axitinib and tislelizumab, demonstrating limited efficacy. Liquid biopsy revealed missense mutations in the CDK12 and RAD51C of the homologous recombination repair (HRR) pathway, suggesting potential sensitivity to PARPi. Following niraparib treatment, the patient's condition improved, with no significant side effects. Conclusion: In summary, patients with ccRCC harboring HRR pathway gene mutation may potentially benefit from niraparib. This will present more options for ccRCC patients with limited response to conventional treatments.

17.
Hepatol Int ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954360

RESUMEN

BACKGROUND: The management of severe immune-related hepatotoxicity (irH) needs to be further optimized. This study aims to analyze the clinical characteristics of severe irH; improve the therapeutic strategy, especially salvage treatment in steroid-refractory irH; and determine the safety of immune checkpoint inhibitor (ICPi)-rechallenge. METHODS: This multicenter retrospective study included patients who developed severe irH and those without irH after immunotherapy between May 2019 and June 2023. Propensity score matching was used to match these two cohorts with similar baseline characteristics. RESULTS: Among 5,326 patients receiving ICPis, 51 patients developed severe irH. irH occurred after a median duration of 36 days and a median of two doses after the first ICPi administration. Patients receiving PD-L1 inhibitors faced a lower risk of developing severe irH. A higher dose of glucocorticoids (GCS) was administered to grade 4 irH than grade 3 irH. For steroid-sensitive patients, grade 4 irH individuals received a higher dosage of GCS than those with grade 3 irH, with no difference in time to resolution. Meanwhile, a significantly higher dose of GCS plus immunosuppression was needed in the steroid-refractory group. Liver biopsy of the steroid-refractory patients exhibited heterogeneous histological features. Twelve patients were retreated with ICPi. No irH reoccurred after a median follow-up of 9.3 months. CONCLUSION: irH requires multidimensional evaluation. PD-L1 inhibitors correlated with a lower risk of severe irH. Grade 4 irH demands a higher dose of GCS than recommended. Pathology may guide the salvage treatment for steroid-refractory irH. ICPi rechallenge in severe irH is feasible and safe.

19.
Br J Pharmacol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978400

RESUMEN

BACKGROUND AND PURPOSE: This study investigated the involvement of discoidin domain receptor (DDR) in dry eye and assessed the potential of specific DDR inhibitors as a therapeutic strategy for dry eye by exploring the underlying mechanism. EXPERIMENTAL APPROACH: Dry eye was induced in Wistar rats by applying 0.2% benzalkonium chloride (BAC), after which rats were treated topically for 7 days with DDR1-IN-1, a selective inhibitor of DDR1. Clinical manifestations of dry eye were assessed on Day-7 post-treatment. Histological evaluation of corneal damage was performed using haematoxylin and eosin (H&E) staining. In vitro, immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress (HS) were treated with varying doses of DDR1-IN-1 for 24 h. The levels of lipid peroxidation in dry eye corneas or HS-stimulated HCECs were assessed. Protein levels of DDR1/DDR2 and related pathways were detected by western blotting. The cellular distribution of acyl-CoA synthetase long chain family member 4 (ACSL4) and Yes-associated protein (YAP) was evaluated using immunohistochemistry or immunofluorescent staining. KEY RESULTS: In dry eye corneas, only DDR1 expression was significantly up-regulated compared with normal controls. DDR1-IN-1 treatment significantly alleviated dry eye symptoms in vivo. The treatment remarkably reduced lipid hydroperoxide (LPO) levels and suppressed the expression of ferroptosis markers, particularly ACSL4. Overexpression or reactivation of YAP diminished the protective effects of DDR1-IN-1, indicating the involvement of the Hippo/YAP pathway in DDR1-targeted therapeutic effects. CONCLUSIONS AND IMPLICATIONS: This study confirms the significance of DDR1 in dry eye and highlights the potential of selective DDR1 inhibitor(s) for dry eye treatment.

20.
Cell Death Discov ; 10(1): 314, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972937

RESUMEN

Kidney fibrosis is considered to be the ultimate aggregation pathway of chronic kidney disease (CKD), but its underlying mechanism remains elusive. Protein kinase C-delta (PKC-δ) plays critical roles in the control of growth, differentiation, and apoptosis. In this study, we found that PKC-δ was highly upregulated in human biopsy samples and mouse kidneys with fibrosis. Rottlerin, a PKC-δ inhibitor, alleviated unilateral ureteral ligation (UUO)-induced kidney fibrosis, inflammation, VDAC1 expression, and cGAS-STING signaling pathway activation. Adeno-associated virus 9 (AAV9)-mediated VDAC1 silencing or VBIT-12, a VDAC1 inhibitor, attenuated renal injury, inflammation, and activation of cGAS-STING signaling pathway in UUO mouse model. Genetic and pharmacologic inhibition of STING relieved renal fibrosis and inflammation in UUO mice. In vitro, hypoxia resulted in PKC-δ phosphorylation, VDAC1 oligomerization, and activation of cGAS-STING signaling pathway in HK-2 cells. Inhibition of PKC-δ, VDAC1 or STING alleviated hypoxia-induced fibrotic and inflammatory responses in HK-2 cells, respectively. Mechanistically, PKC-δ activation induced mitochondrial membrane VDAC1 oligomerization via direct binding VDAC1, followed by the mitochondrial DNA (mtDNA) release into the cytoplasm, and subsequent activated cGAS-STING signaling pathway, which contributed to the inflammation leading to fibrosis. In conclusion, this study has indicated for the first time that PKC-δ is an important regulator in kidney fibrosis by promoting cGAS-STING signaling pathway which mediated by VDAC1. PKC-δ may be useful for treating renal fibrosis and subsequent CKD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...