Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.491
Filtrar
1.
Carbohydr Polym ; 344: 122552, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218563

RESUMEN

Solid-state zinc-ion hybrid supercapacitors (ZHSCs) featuring hydrogel electrolytes have become ideal for large-scale flexible energy storage. However, existing polyacrylic acid (PAA) hydrogel electrolytes often lack the combined traits of ionic conductivity, mechanical robustness, and temperature tolerance. Herein, a versatile PAA-based hydrogel electrolyte (ACBH-Zn) containing a ZnCl2-cellulose solution and bentonite (BT) is delivered, facilitated by cooperative coordination bonds and hydrogen bonds. The coordination bonds between Zn2+ and -COOH of PAA, in conjunction with cellulose and BT, alongside the abundant hydrogen bonds within cellulose and PAA, are conducive to upgrading mechanical strength and ionic conductivity, while the BT's lamellar structure further provides sufficient ion migration channels. Consequently, the ACBH-Zn showcases exceptional mechanical properties, satisfying ionic conductivity (88.9 mS cm-1), and excellent temperature tolerance at -60 °C (30.3 mS cm-1). The ACBH-ZHSC, when assembled, attains a remarkable maximum energy density (323.4 Wh kg-1), maintaining an impressive capacity retention rate (92 %) even after undergoing 10,000 cycles at 10.0 A g-1. Furthermore, the assembled self-powered triboelectric wearable electronic device effectively converts mechanical energy from human movement into electrical energy, enabling efficient storage and utilization, and offering promising insights into the application of flexible wearable devices.

2.
J Sci Food Agric ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39247959

RESUMEN

BACKGROUND: Soybean meal yogurt was prepared from soybean meal using papain and Bifidobacterium animalis subsp. lactis. A non-targeted metabolomics approach was employed to analyze the relevance of papain to the differences in volatile and non-volatile metabolites of soybean meal yogurt. RESULTS: The results showed that the main up-regulated metabolites and metabolic pathways after enzymatic digestion were dominated by amino acids and their derivatives. Conversely, the main down-regulated metabolites and pathways were predominantly associated with flavonoid metabolism. Amino acids and their derivatives, as well as flavonoids, were found to be highly correlated with the formation of sweet, umami, astringent, and bitterness. The addition of papain enriched the content of aromatic compounds in soybean meal yogurt. Aromatic components such as 2-heptanone, naphthalene, and p-xylene increased in concentration. Synthetic peptide of aspartate and serine, gramine, geissospermine, N-desmethyl vinblastine, and 3,7-dihydroxyflavone were the major non-volatile differential metabolites distinguishing the soybean meal yogurt. CONCLUSION: This study provided a comprehensive analysis of the metabolic traits of products co-fermented by papain and Bifidobacterium animalis subsp. lactis, offering insights for the application of papain in fermented goods. © 2024 Society of Chemical Industry.

3.
Minerva Anestesiol ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39104227

RESUMEN

BACKGROUND: Opioids are the main analgesic drugs used in the perioperative period, but they often have various adverse effects. Recent studies have shown that quadratus lumborum block (QLB) has an opioid sparing effect. The aim of this study was to further evaluate the effect of opioid-free anesthesia (OFA) combined with regional block on the quality of recovery in patients undergoing retroperitoneoscopic renal surgery. METHODS: Sixty patients undergoing elective retroperitoneoscopic renal surgery were divided into the opioid-free anesthesia with quadratus lumborum block group (OFA group, N.=30) and opioid anesthesia with quadratus lumborum block group (OA group, N.=30) using the random number table method. The main outcome measures were the quality of recovery assessed by Quality of Recover-40 (QoR-40) at the 24th postoperative hour. Secondary outcomes were postoperative pain score, postoperative opioid consumption, postoperative nausea and vomiting, time to ambulate, and time to readiness for discharge. RESULTS: The QoR-40 score on the first postoperative day was significantly higher in the OFA group than that in the OA group (175.41±6.74 vs. 165.07±4.55; P<0.05). OFA also significantly reduced postoperative pain (P<0.05) and morphine consumption at both the 24th and 48th postoperative hour (P<0.05), as well as time to ambulate, and time to readiness for discharge (P<0.05). CONCLUSIONS: OFA with regional block is superior to opioid anesthesia with regional block in the quality of recovery after retroperitoneiscopic renal surgery.

4.
Physiol Plant ; 176(4): e14475, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140303

RESUMEN

Rhizoctonia solani is a fungal pathogen that causes significant losses in agricultural production. Because of its rapid transmission and broad host range, the exploration of genes involved in defense responses to the infection of R. solani has become an important task. Here, we performed a time-course RNA-Seq experiment to explore crucial genes or pathways involved in host responses to R. solani AG3-TB infection at 6, 12, 24, 36, 48, and 72 hours post inoculation (hpi). GO and KEGG enrichment analysis revealed that most DEGs were enriched in the basal metabolism pathways, including carbohydrate metabolic processes and the biosynthesis of amino acids. Moreover, catalase (CAT) and superoxide dismutase (SOD) were up-regulated, and transcription factors (TFs) such as WRKY, AP2, and MYB were increased significantly compared to the control (0 hpi). Silencing of WRKY70 and catalase-3 exhibited elevated susceptibility to the fungal infection. To summarize, the TFs WRKY70 and WRKY75, genes involved in jasmonic acid (JA), salicylic acid (SA), and brassinosteroids (BR) signaling pathways, and defense-related enzymes may play crucial roles in the host responses to R. solani AG3-TB infection.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Rhizoctonia , Factores de Transcripción , Rhizoctonia/fisiología , Rhizoctonia/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Interacciones Huésped-Patógeno/genética
5.
Heliyon ; 10(14): e33890, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108873

RESUMEN

Context: Ultrasound (US) is the most economical and widely used method for detecting lesions in parathyroid regions. Identifying typically parathyroid adenomas as hypoechoic nodules with clear margins. However, 10 % of lesions exhibit atypical features, such as the dual concentric sign, and the cognition of them still needs to be improved. Objective: To promote understanding of clinical and histopathological features for parathyroid lesions with the dual concentric echo sign and to investigate its pathogenesis and methods for distinguishing from cervical lymph nodes to improve US diagnostic accuracy. Methods: Retrospectively, patients were categorized into three groups: Group 1, with 36 patients showing parathyroid lesions with dual concentric echo signs; Group 2, with 40 patients displaying classic hypoechoic parathyroid lesions; and Group 3, comprising 36 patients with identified lymph nodes, which were all examined from January 2018 to December 2019. The clinical data on demographics, clinical symptoms, serum levels, histopathologic findings, and US image characteristics were thoroughly reviewed. Results: According to the clinical data, no significant differences in demographics or lesion sizes were observed in Group 1 and Group 2 (p > 0.05). No significant variances were noted in biochemical markers, including PTH, T-25OHD, and ALP. However, a notable difference was identified in adjusted serum calcium levels, which were significantly lower in Group 1 compared to Group 2 (p < 0.05). Additionally, the proportion of asymptomatic patients was significantly higher in Group 1 compared to Group 2 (p < 0.05). Pathological examination revealed that all lesions with dual concentric echo signs were parathyroid adenomas. The isoechoic central region predominantly corresponded to areas of loose edema, while the hypoechoic peripheral layer was primarily associated with chief and/or oncocytic cells. By comparing the ultrasonography of Groups 1 and 3, the parathyroid lesions with dual concentric echo signs exhibited significant distinctions from lymph nodes in size, blood flow classification, vascular distribution, and anatomical location (p < 0.05). Conclusion: The parathyroid lesions with dual concentric echo signs in US corresponded to specific histopathological manifestations and relatively mild clinical features in the patients, this finding may increase the likelihood of incidental detection of parathyroid lesions by US. Attention to the details of size, location, and blood flow, especially, may aid US physicians in differentiating parathyroid adenomas from cervical lymph nodes.

6.
Int J Biol Macromol ; 278(Pt 4): 134849, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39159794

RESUMEN

Genes play a pivotal role in regulating the germination of cereal grains; however, there is limited research on the impact of germination genes on the physicochemical properties of germinated cereal starch. We investigated the effects of the OsGA20ox1 gene on the multiscale structural features and adhesion behavior of germinated brown rice starch. Compared to the knockout lines group, the wild type exhibited a decrease in double-helix content (62.74 %), relative crystallinity (47.39 %), and short-range molecular ordering (2.47 %), accompanied by enhanced erosion on the surface of starch granules. The damage to glycosidic bonds at the double-helix level and the heightened structural amorphization (90.95 %) led to reduced entanglement and interaction among starch molecules, ultimately resulting in reduced characteristic viscosity. Further transcriptomic analysis revealed that OsGA20ox1 could regulate the expression of starch-related enzyme genes in the starch metabolism pathway during germination of brown rice. This study contributes to understanding the role of germination genes in promoting the physicochemical properties of starch in germinated grains, thereby opening up new avenues for the improvement of plant-based starch, and paving the way for further research in this field.

7.
ChemSusChem ; : e202401401, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183184

RESUMEN

Dendrite growth of lithium (Li) metal anodes is considered as one of the most tough issues for Li metal batteries with a theoretically high energy density. This is attributed to the rapid exhaustion of Li ions at the electrode/electrolyte interface, which is even worse at low temperatures with poor diffusion kinetics of Li ions. Here, pulse charge with intermittent rest time during battery charging is proposed to handle the dendrite growth issue of Li metal anodes at low temperatures. The depleted Li ions near the interfaces can be rapidly replenished during the rest time, thus effectively suppressing the dendrites growth. Further investigations indicate that the large dendrites can be suppressed at the Li ion nucleation stage. The equivalent lifespan considering the rest time is proposed. At -10oC, the lifespan of Li||Li batteries cycled under 3 mA cm-2 and 1 mAh cm-2 is increased from 24 h to equivalent 64 h. Li ||LiNi0.5Co0.2Mn0.3O2 batteries with 80% capacity retention can be stably operated from 39 cycles to 56 cycles. This design presents an efficient and convenient strategy to regulate the deposition behaviors of Li metal anodes with a dendrite-free morphology.

8.
Chem Sci ; 15(31): 12598-12605, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39118617

RESUMEN

Exploring strategies to enhance reverse intersystem crossing (RISC) is of great significance to develop efficient thermally activated delayed fluorescent (TADF) molecules. In this study, we investigate the substantial impact of nonplanar structure on improving the rate of RISC (k RISC). Three emitters based on spiroacridine donors are developed to evaluate this hypothesis. All molecules exhibit high photoluminescent quantum yields (PLQYs) of 96-98% due to their rigid donor and acceptor. Leveraging the synergistic effects of heavy element effect and nonplanar geometry, S2-TRZ exhibits an accelerated k RISC of 24.2 × 105 s-1 compared to the 11.1 × 105 s-1 of S1-TRZ, which solely incorporates heavy atoms. Additionally, O1-TRZ possesses a further lower k RISC of 9.42 × 105 s-1 because of the absence of these effects. Remarkably, owing to the high PLQYs and suitable TADF behaviors, devices based on these emitters exhibit state-of-the-art performance, including a maximum external quantum efficiency of up to 40.1% and maximum current efficiency of 124.7 cd A-1. More importantly, devices utilizing S2-TRZ as an emitter achieve a relieved efficiency roll-off of only 7% under 1000 cd m-2, in contrast to the 12% for O1-TRZ and 11% for S1-TRZ, respectively. These findings advance our fundamental understanding of TADF processes for high-performance electroluminescent devices.

9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(8): 761-766, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39215675

RESUMEN

Medical Microbiology and Medical Immunology are important components of our university's the modular teaching on fundamentals of immunity and infection. Among these, Bacterial Infection and Immunity serves as a bridge between Medical Microbiology and Medical Immunology. This chapter mainly introduces how pathogenic bacteria invade the body to cause infection and how the body's immune system resists bacterial infection. Studying this chapter, students can build a framework knowledge on infection-immunity. However, due to the complexity of the content and the limited duration of the course, the traditional teaching method struggles to help students clarify the knowledge structure, resulting in poor learning outcomes. Therefore, there is an urgent need for reforms. Using the bacterial infection and immunity chapter as an example, this article explores the teaching reform of the Fundamentals of Immunology and Infection module based on the O-PIRTAS flipped classroom model, providing valuable insights for subsequent teaching reforms.


Asunto(s)
Alergia e Inmunología , Humanos , Universidades , Alergia e Inmunología/educación , Curriculum , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/microbiología , Inmunidad , Enseñanza
10.
Int J Biol Macromol ; 279(Pt 2): 135144, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39208892

RESUMEN

Soybean hull polysaccharides (SHPS) enhance the physicochemical properties of plant-based yogurt. However, their effects on the nutritional profile and biochemical mechanisms remain unclear. This study aimed to assess the impact of SHPS addition on the nonvolatile components of plant-based yogurt and its underlying mechanisms through widely targeted metabolomics analysis. The results demonstrated that the addition of SHPS (0.2 %-1.0 % w/v) enhanced the levels of free amino acids, sugars, and organic acids, with the addition of 0.6 % w/v being particularly effective in improving yogurt quality. Widely targeted metabolomics analysis revealed 278 differential metabolites between yogurt supplemented with 0.6 % SHPS (SPY) and the control sample. SHPS increased the content of various metabolites, including amino acids and derivatives, saccharides, organic acids, and flavonoids, among others. Key metabolic pathways affected by SHPS included pantothenate and CoA biosynthesis; valine, leucine, and isoleucine biosynthesis; and benzoate degradation. As the primary component of SHPS, galacturonic acid affected the metabolic products in yogurt by participating in the pentose and glucuronate interconversions and ascorbate and aldarate metabolism pathways. These findings elucidate the role of SHPS in modulating the nutritional composition of plant-based yogurt, offering valuable insights into its functional mechanisms in food processing.

11.
Zool Res ; 45(5): 1048-1060, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39147719

RESUMEN

Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with ß-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.


Asunto(s)
Cadherinas , Adhesión Celular , Animales , Masculino , Porcinos , Adhesión Celular/fisiología , Ratones , Cadherinas/metabolismo , Cadherinas/genética , Ratones Noqueados , Espermatogonias/metabolismo , Espermatogonias/fisiología , Testículo/metabolismo , Testículo/fisiología , Células Madre Germinales Adultas/metabolismo , Células Madre Germinales Adultas/fisiología , Regulación de la Expresión Génica , Células Madre/fisiología , Células Madre/metabolismo
12.
Free Radic Biol Med ; 224: 232-245, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39209137

RESUMEN

Hantavirus causes two types of acute diseases: hemorrhagic fever with renal syndrome and hantavirus pulmonary syndrome. It is a major health concern due to its high mortality and lack of effective treatment. Type I interferon treatment has been suggested to be effective against hantavirus when treated in advance. Interferons induce multiple interferon-stimulated genes (ISGs), whose products are highly effective at resisting and controlling viruses. A product of ISGs, the enzyme cholesterol 25-hydroxylase (CH25H), catalyzes the oxidation of cholesterol to 25-hydroxycholesterol (25HC). 25HC can inhibit multiple enveloped-virus infections, but the mechanism is largely unknown, and whether 25HC plays an important role in regulating hantavirus remains unexplored. In this study, we show that Hantaan virus (HTNV), the prototype hantavirus, induced CH25H gene in infected cells. Overexpression of CH25H and treatment with 25HC, inhibited HTNV infection, possibly by lowering 3-hydroxy-3-methyl-glutaryl coenzyme A reductase (HMG-CoA reductase, HMGCR), which inhibits cholesterol biosynthesis. In addition, cholesterol-lowering drugs such as HMGCR-targeting statins have potent hantavirus inhibitory effects. Our results indicate that 25HC and some statins are potential antiviral agents effective against hantavirus infections. This study provides evidence that targeting cholesterol metabolism is promising in developing specific hantavirus antivirals and indicates the possibility of repurposing FDA-approved cholesterol-lowering drug, statins for treating hantavirus infection.

13.
Int J Biol Macromol ; 277(Pt 3): 134378, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097048

RESUMEN

The soy hull polysaccharide (SHP) exhibits excellent interfacial activity and holds potential as an emulsifier for emulsions. To reveal the behavior of SHP at the water/oil (W/O) interface in situ, molecular dynamics (MD) simulations and particle tracking microrheology were used in this study. The results of MD reveal that SHP molecular spontaneously move toward the interface and rhamnogalacturonan-I initiates this movement, while its galacturonic acids on it act as anchors to immobilize the SHP molecules at the W/O interface. Microrheology results suggest that SHP forms microgels at the W/O interface, with the lattices of the microgels continually undergoing dynamic changes. At low concentrations of SHP and short interfacial formation time, the network of the microgels is weak and dominated by viscous properties. However, when SHP reaches 0.75 % and the interfacial formation time is about 60 min, the microgels show perfect elasticity, which is beneficial for stabilizing emulsions.


Asunto(s)
Emulsiones , Glycine max , Simulación de Dinámica Molecular , Polisacáridos , Reología , Agua , Agua/química , Glycine max/química , Polisacáridos/química , Emulsiones/química , Aceites/química , Viscosidad , Pectinas/química , Microgeles/química
14.
Eur J Med Chem ; 277: 116762, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39151275

RESUMEN

In 2023, the European Medicines Agency (EMA) granted approval to 77 new molecular entities (NMEs), consisting of 45 new chemical entities (NCEs) and 32 new biological entities (NBEs). These pharmacological agents encompass a broad spectrum of therapeutic domains, including oncology, cardiology, dermatology, diagnostic medicine, endocrinology, gastroenterology and hepatology, metabolic disorders, and neurology. Among the 77 approved pharmaceuticals, three received accelerated review status, and 17 (22 %) were granted orphan drug designation for the treatment of rare diseases. This review provides an overview of the clinical applications and synthetic routes of 42 newly approved NCEs by the EMA in 2023. The objective is to offer a comprehensive understanding of the synthetic approaches used in the development of these drug molecules, thereby inspiring the creation of novel, efficient, and applicable synthetic methodologies.


Asunto(s)
Aprobación de Drogas , Humanos , Europa (Continente) , Estructura Molecular
15.
Eur J Med Chem ; 277: 116769, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163778

RESUMEN

Phosphodiesterases (PDEs) constitute a family of enzymes that play a pivotal role in the regulation of intracellular levels of cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Dysregulation of PDE activity has been implicated in diverse pathological conditions encompassing cardiovascular disorders, pulmonary diseases, and neurological disorders. Small-molecule inhibitors targeting PDEs have emerged as promising therapeutic agents for the treatment of these ailments, some of which have been approved for their clinical use. Despite their success, challenges such as resistance mechanisms and off-target effects persist, urging continuous research for the development of next-generation PDE inhibitors. The objective of this review is to provide an overview of the synthesis and clinical application of representative approved small-molecule PDE inhibitors, with the aim of offering guidance for further advancements in the development of novel PDE inhibitors.


Asunto(s)
Inhibidores de Fosfodiesterasa , Hidrolasas Diéster Fosfóricas , Bibliotecas de Moléculas Pequeñas , Animales , Humanos , Estructura Molecular , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/síntesis química , Inhibidores de Fosfodiesterasa/química , Hidrolasas Diéster Fosfóricas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/síntesis química , Relación Estructura-Actividad , AMP Cíclico/química , AMP Cíclico/metabolismo , AMP Cíclico/farmacología
16.
Bioresour Technol ; 412: 131381, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39214178

RESUMEN

Microbial electrosynthesis (MES) shows great promise for converting CO2 into high-value chemicals. However, cathode biofilm erosion by high CO2 sparging and the unclear role of plankton in MES hinders the continuous improvement of its performance. This study aims to enhance biofilm resistance and improve interactions between bio-cathode and plankton by upgrading waste algal biomass into 3-D porous algal electrode (PAE) with rough surface. Results showed that the acetate synthesis of PAE under 20 mL/min CO2 sparging (PAE-20) was up to 3330.61 mol/m3, 4.63 times that of carbon felt under the same conditions (CF-20). The microbial loading of PAE-20 biofilm was twice that of CF-20. Furthermore, higher cumulative abundance of functional microorganisms was observed in plankton of PAE-20 (55 %), compared to plankton of CF-20 (14 %), and enhanced biocathode-plankton interactions significantly suppressed acetate consumption. Thus, this efficient and sustainable 3-D electrode advances MES technology and offers new perspectives for waste biomass recycling.

17.
Int J Biol Macromol ; 278(Pt 1): 134678, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137852

RESUMEN

Inhibition of carbohydrate digestive enzymes is a key focus across diverse fields, given the prominence of α-glucosidase inhibitors as preferred oral hypoglycaemic drugs for diabetes treatment. ß-conglycinin is the most abundant functional protein in soy; however, it is unclear whether the peptides produced after its gastrointestinal digestion exhibit α-glucosidase inhibitory properties. Therefore, we examined the α-glucosidase inhibitory potential of soy peptides. Specifically, ß-conglycinin was subjected to simulated gastrointestinal digestion by enzymatically cleaving it into 95 peptides with gastric, pancreatic and chymotrypsin enzymes. Eight soybean peptides were selected based on their predicted activity; absorption, distribution, metabolism, excretion and toxicity score; and molecular docking analysis. The results indicated that hydrogen bonding and electrostatic interactions play important roles in inhibiting α-glucosidase, with the tripeptide SGR exhibiting the greatest inhibitory effect (IC50 = 10.57 µg/mL). In vitro studies revealed that SGR markedly improved glucose metabolism disorders in insulin-resistant HepG2 cells without affecting cell viability. Animal experiments revealed that SGR significantly improved blood glucose and decreased maltase activity in type 2 diabetic zebrafish larvae, but it did not result in the death of zebrafish larvae. Transcriptomic analysis revealed that SGR exerts its anti-diabetic and hypoglycaemic effects by attenuating the expression of several genes, including Slc2a1, Hsp70, Cpt2, Serpinf1, Sfrp2 and Ggt1a. These results suggest that SGR is a potential food-borne bioactive peptide for managing diabetes.

18.
J Food Sci ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126703

RESUMEN

Germinated brown rice has recently garnered widespread attention due to its high nutritional value. Previous research demonstrated that the bioactive components and functional properties of germinated brown rice varieties exhibit significant differences. Three germinated rice cultivars weedy rice WR04-6 (WR) and two cultivated rice cultivars with superior eating quality, Koshihikari (YG) and Daohuaxiang (DHX), were analyzed using metabolites and transcriptome profiling. Widely targeted metabolomics results showed that 85.9% and 71.2% of differential metabolites for WR vs. YG and WR vs. DHX were enriched in WR, respectively. The substances mainly included amino acids and derivatives, carbohydrates and its derivatives, organic acids and its derivatives, and flavonoids. Higher antioxidant activity was detected in WR compared to cultivated rice in metabolome analysis. Transcriptome analyses indicated that 18 responsive genes played pivotal roles in the conversion of key metabolites. These findings will provide theoretical underpinnings for the development of rice germplasm resources and the formulation of functional germinated grain foods.

19.
Nano Lett ; 24(33): 10040-10046, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39133069

RESUMEN

Quantum interference is a natural consequence of wave-particle duality in quantum mechanics, and is widely observed at the atomic scale. One interesting manifestation of quantum interference is coherent population trapping (CPT), first proposed in three-level driven atomic systems and observed in quantum optical experiments. Here, we demonstrate CPT in a gate-defined semiconductor double quantum dot (DQD), with some unique twists as compared to the atomic systems. Specifically, we observe CPT in both driven and nondriven situations. We further show that CPT in a driven DQD could be used to generate adiabatic state transfer. Moreover, our experiment reveals a nontrivial modulation to the CPT caused by the longitudinal driving field, yielding an odd-even effect and a tunable CPT. Our results broaden the field of CPT, and open up the possibility of quantum simulation and quantum computation based on adiabatic passage in quantum dot systems.

20.
Sci Bull (Beijing) ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38997942

RESUMEN

Lacustrine systems since the Mesozoic have sequestered large quantities of organic carbon, which may have important value for global climate cooling, but there is still a lack of geological evidence of this sequestration. Taking the Songliao Basin in China as a case study, we elucidate the important function of lacustrine basins as sinks of a large amount of organic carbon, particularly when the contemporaneous marine sediments were poor sinks of organic carbon. Volcanic activities and orbital forcing were likely key factors influencing the water transportation between the land and oceans, as well as the alternating burial of organic carbon in the oceans and land. Microorganisms related to methane metabolism may have been highly involved in the mineralization and sequestration of lacustrine organic carbon. This study provides new insights into the coupled carbon-water cycle between the land and oceans and the influence of this process on global climate evolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA