Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.430
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087465

RESUMEN

A novel resonance-assisted self-doping mechanism has been demonstrated in ladder-type oligoaniline-derived organic conductors. The new class of compounds has a unique structure incorporating acidic phenolic hydroxyl groups into the ladder-type cyclohexadiene-1,4-diimine core, enabling efficient proton transfer and self-doping without the need for external dopants. Mechanistic studies and computational studies confirm the open-shell, zwitterionic nature of the self-doped state and the significant role played by the dielectric environment. This new self-doping mechanism allows for higher stability and durability in the material's electronic performance. The self-doped form retains durability under harsh conditions and maintains its properties over extended periods of time.

2.
Small ; : e2405051, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092657

RESUMEN

Metal-organic frameworks (MOFs)-related Cu materials are promising candidates for promoting electrochemical CO2 reduction to produce valuable chemical feedstocks. However, many MOF materials inevitable undergo reconstruction under reduction conditions; therefore, exploiting the restructuring of MOF materials is of importance for the rational design of high-performance catalyst targeting multi-carbon products (C2). Herein, a facile solvent process is choosed to fabricate HKUST-1 with an anionic framework (a-HKUST-1) and utilize it as a pre-catalyst for alkaline CO2RR. The a-HKUST-1 catalyst can be electrochemically reduced into Cu with significant structural reconstruction under operating reaction conditions. The anionic HKUST-1 derived Cu catalyst (aHD-Cu) delivers a FEC2H4 of 56% and FEC2 of ≈80% at -150 mA cm-2 in alkaline electrolyte. The resulting aHD-Cu catalyst has a high electrochemically active surface area and low coordinated sites. In situ Raman spectroscopy indicates that the aHD-Cu surface displays higher coverage of *CO intermediates, which favors the production of hydrocarbons.

3.
Int J Biol Sci ; 20(10): 3725-3741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113703

RESUMEN

The probability of cardiovascular events has been reported lower in rheumatoid arthritis (RA) patients treated with leflunomide. However, the anti-atherosclerotic and cardiovascular protective effects and metabolism of leflunomide are not explored. In this study, we assessed the potential benefits of leflunomide on atherosclerosis and revealed the underlying mechanism. ApoE-/- mice were fed a western diet (WD) alone or supplemented with leflunomide (20 mg/kg, oral gavage, once per day) for 12 weeks. Samples of the aorta, heart, liver, serum, and macrophages were collected. We found that leflunomide significantly reduced lesion size in both en-face aortas and aortic root in WD-fed ApoE-/- mice. Leflunomide also obviously improved dyslipidemia, reduced hepatic lipid content, and improved disorders of glucose and lipid metabolism in vivo. RNA-Seq results showed that leflunomide effectively regulated the genes' expression involved in the lipid metabolism pathway. Importantly, leflunomide significantly increased the phosphorylation levels of AMPKα and acetyl-CoA carboxylase (ACC) in vivo. Furthermore, leflunomide and its active metabolite teriflunomide suppressed lipid accumulation in free fatty acid (FFA)-induced AML12 cells and improved endothelial dysfunction in palmitic acid (PA)-induced HUVECs through activating AMPK signaling and inhibiting dihydroorotate dehydrogenase (DHODH) signaling pathway. We present evidence that leflunomide and teriflunomide ameliorate atherosclerosis by regulating lipid metabolism and endothelial dysfunction. Our findings suggest a promising use of antirheumatic small-molecule drugs leflunomide and teriflunomide for the treatment of atherosclerosis and related cardiovascular diseases (CVDs).


Asunto(s)
Antirreumáticos , Aterosclerosis , Dihidroorotato Deshidrogenasa , Leflunamida , Metabolismo de los Lípidos , Transducción de Señal , Animales , Leflunamida/uso terapéutico , Leflunamida/farmacología , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Dihidroorotato Deshidrogenasa/metabolismo , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Masculino , Ratones Endogámicos C57BL , Células Endoteliales de la Vena Umbilical Humana/metabolismo
4.
Int J Biol Macromol ; : 134524, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111488

RESUMEN

Crop straws provide enormous lignocellulose resources transformable for sustainable biofuels and valuable bioproducts. However, lignocellulose recalcitrance basically restricts essential biomass enzymatic saccharification at large scale. In this study, the mushroom-derived cellobiohydrolase (LeGH7) was introduced into Trichoderma reesei (RutC30) to generate two desirable strains, namely GH7-5 and GH7-6. Compared to the Rut-C30 strain, both engineered strains exhibited significantly enhanced enzymatic activities, with ß-glucosidases, endocellulases, cellobiohydrolases, and xylanase activities increasing by 113 %, 140 %, 241 %, and 196 %, respectively. By performing steam explosion and mild alkali pretreatments with mature straws of five bioenergy crops, diverse lignocellulose substrates were effectively digested by the crude enzymes secreted from the engineered strains, leading to the high-yield hexoses released for bioethanol production. Notably, the LeGH7 enzyme purified from engineered strain enabled to act as multiple cellulases and xylanase at higher activities, interpreting how synergistic enhancement of enzymatic saccharification was achieved for distinct lignocellulose substrates in major bioenergy crops. Therefore, this study has identified a novel enzyme that is active for simultaneous hydrolyses of cellulose and xylan, providing an applicable strategy for high biomass enzymatic saccharification and bioethanol conversion in bioenergy crops.

6.
Curr Res Microb Sci ; 7: 100260, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39129758

RESUMEN

HIV-1 envelope glycoprotein gp41 mediates fusion between HIV-1 and host cell membranes, making inhibitors of gp41 attractive anti-HIV drugs. We previously reported an efficient HIV-1 fusion inhibitor, ADS-J1, with a Y-shaped structure. Here, we discovered a new compound, ADS-J21, with a Y-shaped structure similar to that of ADS-J1 but with a lower molecular weight. Moreover, ADS-J21 exhibited effective anti-HIV-1 activity against divergent HIV-1 strains in vitro, including several HIV-1 laboratory-adapted strains and primary isolates with different subtypes (clades A to F) and tropisms (X4 or R5). Mechanistic studies have demonstrated that ADS-J21 blocks the formation of the gp41 six-helix bundle (6-HB) by targeting conserved amino acids Lys35 and Trp32. These findings suggest that ADS-J21 can be used as a new lead compound for further optimization in the development of a small-molecule fusion inhibitor.

7.
ACS Omega ; 9(31): 33679-33691, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39130577

RESUMEN

Low-oxygen (oxygen concentration below 18.5%) phenomena often occur in the top coal caving working face of ultrathick coal seams, posing a serious threat to the safety of workers. The characteristics of oxygen consumption and gas production at low-constant temperature and the corresponding functional group evolution of residual coal in goaf were studied by temperature-programmed and infrared spectrum experiments. The influence of different factors on the emission of low-oxygen gases was studied through numerical calculation. The results show that low-temperature oxygen consumption and gas production occurred when the coal was about 40 °C. When the temperature was constant, the oxygen consumption and gas production rate increased with the extension of time. In the early stage of coal oxidation, the aliphatic C-H components were attacked by oxygen molecules and reacted with them. The asymmetric methyl and methylene groups were more likely to oxidize and produce carbonyl compounds. With the increase of nitrogen injection, the overall width of the oxidation zone (oxygen concentration was defined as 10-18%) narrowed, and the range of the oxidation zone moved forward from the depth of the goaf. The oxygen concentration in the air return corner decreased gradually, and the low-oxygen area in the air return corner expanded gradually. The distance between the low-oxygen area of the working face and the air intake corner was gradually shortened. With the increase of air intake, the width of the oxidation zone increased and moved to the depth of goaf, and the degree of low oxygen in the air return corner increased. The research results are of great significance for the understanding and prevention of the low-oxygen phenomenon in ultrathick coal seams.

8.
J Environ Manage ; 367: 121979, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39088904

RESUMEN

Cadmium (Cd) is readily absorbed by tobacco and accumulates in the human body through smoke inhalation, posing threat to human health. While there have been many studies on the negative impact of cadmium in tobacco on human health, the specific adaptive mechanism of tobacco roots to cadmium stress is not well understood. In order to comprehensively investigate the effects of Cd stress on the root system of tobacco, the combination of transcriptomic, biochemical, and physiological methods was utilized. In this study, tobacco growth was significantly inhibited by 50 µM of Cd, which was mainly attributed to the destruction of root cellular structure. By comparing the transcriptome between CK and Cd treatment, there were 3232 up-regulated deferentially expressed genes (DEGs) and 3278 down-regulated DEGs. The obvious differential expression of genes related to the nitrogen metabolism, metal transporters and the transcription factors families. In order to mitigate the harmful effects of Cd, the root system enhances Cd accumulation in the cell wall, thereby reducing the Cd content in the cytoplasm. This result may be mediated by plant hormones and transcription factor (TF). Correlational statistical analysis revealed significant negative correlations between IAA and GA with cadmium accumulation, indicated by correlation coefficients of -0.91 and -0.93, respectively. Conversely, ABA exhibited a positive correlation with a coefficient of 0.96. In addition, it was anticipated that 3 WRKY TFs would lead to a reduction in Cd accumulation. Our research provides a theoretical basis for the systematic study of the specific physiological processes of plant roots under Cd stress.


Asunto(s)
Cadmio , Reguladores del Crecimiento de las Plantas , Factores de Transcripción , Transcriptoma , Cadmio/toxicidad , Cadmio/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Transcriptoma/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Estrés Fisiológico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
9.
Adv Healthc Mater ; : e2401556, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138979

RESUMEN

The application of titanium (Ti) implants for patients with diabetes mellitus (DM) is still facing a significant challenge due to obstacles such as hyperglycemia, reactive oxygen species (ROS), and chronic inflammation, which hinders osseointegration. To address this issue, a Ti implant with dual functions of regulating polarization of macrophages and facilitating osseointergration is developed via hydrothermal reaction and hydrogel coating. The reactive oxygen species (ROS) and glucose (Glu) responsive hydrogel coating can locally deliver adenosine (ADO) in the early stage of implantation. The controlled release of ADO regulated the phenotype of macrophages, restored oxidative balance, and enhanced mitochondrial function during the early stages of implantation. Subsequently, strontium (Sr) ions will be released to promote osteogenic differentiation and proliferation of mesenchymal stem cells (MSCs), as the hydrogel coating degraded. It eventually leads to bone reconstruction during the late stages, aligning with the biological cascade of bone healing. The modified Ti implants showed effective osteogenesis for bone defects in DM patients, shedding light on the design and biological mechanisms of surface modification. This research offers promising potential for improving the treatment of bone-related complications in diabetic patients.

10.
Sci Rep ; 14(1): 18709, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134588

RESUMEN

In order to strengthen the overall planning and coordination of urban construction and ecological space in Baishan City, we should formulate a scientific land type planning of Production-Living-Ecological Space (PLES). In this paper, land use dynamic attitude model, land use transfer matrix, land use function center of gravity transfer model, eco-environmental quality index(EEQI) and geographic detector model are used to discuss the spatio-temporal evolution of PLES in Baishan City from 2000 to 2020. Spatio-temporal evolution of EEQI and its influencing factors. The results show that: (1) During the study period, Baishan City showed the characteristics that the production space first increased and then decreased, the ecological space decreased, and the living space continued to increase. Among them, the ecological space is the dominant space of Baishan City, covering an area of more than 80%. From the perspective of the transformation of PLES, from 2000 to 2020, Baishan City is mainly characterized by the transformation of ecological space into production space and living space. In the second type of space, green ecological space, forestry ecological space and other ecological space have decreased, while other types of space have increased in varying degrees. (2) During the study period, the overall EEQI of Baishan City remained in good condition, and the ecological environment quality(EEQ) of the three periods were 0.6571, 0.6412 and 0.6562 respectively. The higher EEQI is distributed in Changbai County and Linjiang City, while the areas with lower EEQI are concentrated in the north-central part of Hunjiang City, the middle part of Jiangyuan District and the northwest of Fusong County. (3) According to the analysis of the influencing factors of EEQ, the influence of the factors of spatial differentiation of EEQI in Baishan City changed significantly from 2000 to 2020, and the average annual rainfall was the core factor affecting the spatial differentiation of EEQ in Baishan City, the second is the urbanization rate and the distance from the county government, and the interaction between the average annual rainfall and the distance from the county government has a strong influence on the spatial differentiation of EEQ in Baishan City. This study reveals the evolution of spatial types and EEQ of PLES in Baishan City, and provides a scientific reference for the effective management and utilization of land resources in Baishan City.

11.
Molecules ; 29(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125024

RESUMEN

Dimeric prodrugs have been investigated intensely as carrier-free drug self-delivery systems (DSDSs) in recent decades, and their stimuli-responsive drug release has usually been controlled by the conjugations between the drug molecules, including the stimuli (pH or redox) and responsive sensitivity. Here, an acid-triggered dimeric prodrug of doxorubicin (DOX) was synthesized by conjugating two DOX molecules with an acid-labile ketal linker. It possessed high drug content near the pure drug, while the premature drug leakage in blood circulation was efficiently suppressed. Furthermore, its aggregation structures were controlled by fabricating nanomedicines via different approaches, such as fast precipitation and slow self-assembly, to regulate the drug release performance. Such findings are expected to enable better anti-tumor efficacy with the desired drug release rate, beyond the molecular structure of the dimeric prodrug.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Profármacos , Profármacos/química , Profármacos/farmacología , Doxorrubicina/química , Doxorrubicina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Portadores de Fármacos/química , Estructura Molecular
12.
Molecules ; 29(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39125103

RESUMEN

Studying efficient and accurate soil heavy-metal detection technology is of great significance to establishing a modern system for monitoring soil pollution, early warning and risk assessment, which contributes to the continuous improvement of soil quality and the assurance of food safety. Laser-induced breakdown spectroscopy (LIBS) is considered to be an emerging and effective tool for heavy-metal detection, compared with traditional detection technologies. Limited by the soil matrix effect, the LIBS signal of target elements for soil heavy-metal detection is prone to interference, thereby compromising the accuracy of quantitative detection. Thus, a series of signal-enhancement methods are investigated. This study aims to explore the effect of conductive materials of NaCl and graphite on the quantitative detection of lead (Pb) in soil using LIBS, seeking to find a reliable signal-enhancement method of LIBS for the determination of soil heavy-metal elements. The impact of the addition amount of NaCl and graphite on spectral intensity and parameters, including the signal-to-background ratio (SBR), signal-to-noise ratio (SNR), and relative standard deviation (RSD), were investigated, and the mechanism of signal enhancement by NaCl and graphite based on the analysis of the three-dimensional profile data of ablation craters and plasma parameters (plasmatemperature and electron density) were explored. Univariate and multivariate quantitative analysis models including partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and extreme learning machine (ELM) were developed for the quantitative detection of Pb in soil with the optimal amount of NaCl and graphite, and the performance of the models was further compared. The PLSR model with the optimal amount of graphite obtained the best prediction performance, with an Rp that reached 0.994. In addition, among the three spectral lines of Pb, the univariate model of Pb I 405.78 nm showed the best prediction performance, with an Rp of 0.984 and the lowest LOD of 26.142 mg/kg. The overall results indicated that the LIBS signal-enhancement method based on conductive materials combined with appropriate chemometric methods could be a potential tool for the accurate quantitative detection of Pb in soil and could provide a reference for environmental monitoring.

13.
PLoS One ; 19(8): e0308710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133689

RESUMEN

BACKGROUND: Late-onset breast milk jaundice (LBMJ) is a common form of hyperbilirubinemia, which can result in serious complications for newborns with persistently high bilirubin levels. The aim of this study was to investigate the differences in fecal metabolites between breastfed infants with and without LBMJ in order to elucidate potential biological mechanisms. METHODS: Biological samples were collected from 12 infants with LBMJ and 12 healthy individuals. Ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF/MS) was utilized for non-targeted determination of fecal metabolites. Principal components analysis (PCA), cluster analysis, and differential metabolite analysis were performed in both positive ion mode and negative ion mode for the two groups. Additionally, the KEGG database was employed to comprehensively analyze the pathways of differential metabolites. RESULTS: There were no significant differences in maternal and neonatal demographic characteristics between the two groups (p > 0.05). The results of PCA and cluster heat map analysis in both modes showed that there were significant differences in metabolites between the two groups. Among 751 differential metabolites (DMs) detected in positive ion mode, 720 were up-regulated in the case group while 31 were down-regulated. In negative ion mode, 1891 DMs were detected, including 817 up-regulated metabolites and 1074 down-regulated metabolites in the case group. Analysis of differential metabolic pathways showed that the DMs of the two groups were mainly annotated and enriched in Biotin metabolism, N-Glycan biosynthesis, Taurine and hypotaurine metabolism, Pyrimidine metabolism, and Pentose and glucuronate interconversions. CONCLUSION: Significant differences exist in fecal metabolites between LBMJ infants and healthy controls. The study of differential metabolic pathways provides insights into the mechanism of LBMJ.


Asunto(s)
Metabolómica , Leche Humana , Humanos , Femenino , Metabolómica/métodos , Masculino , Leche Humana/metabolismo , Leche Humana/química , Recién Nacido , Lactante , Lactancia Materna , Heces/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas en Tándem/métodos , Estudios de Casos y Controles , Análisis de Componente Principal
14.
J Multidiscip Healthc ; 17: 3835-3847, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135850

RESUMEN

Background: Whether machine learning (ML) can assist in the diagnosis of Crohn's disease (CD) and intestinal tuberculosis (ITB) remains to be explored. Methods: We collected clinical data from 241 patients, and 51 parameters were included. Six ML methods were tested, including logistic regression, decision tree, k-nearest neighbor, multinomial NB, multilayer perceptron, and XGBoost. SHAP and LIME were subsequently introduced as interpretability methods. The ML model was tested in a real-world clinical practice and compared with a multidisciplinary team (MDT) meeting. Results: XGBoost displays the best performance among the six ML models. The diagnostic AUROC and the accuracy of XGBoost were 0.946 and 0.884, respectively. The top three clinical features affecting our ML model's result prediction were T-spot, pulmonary tuberculosis, and onset age. The ML model's accuracy, sensitivity, and specificity in clinical practice were 0.860, 0.833, and 0.871, respectively. The agreement rate and kappa coefficient of the ML and MDT methods were 90.7% and 0.780, respectively (P<0.001). Conclusion: We developed an ML model based on XGBoost. The ML model could provide effective and efficient differential diagnoses of ITB and CD with diagnostic bases. The ML model performs well in real-world clinical practice, and the agreement between the ML model and MDT is strong.

15.
Skin Res Technol ; 30(8): e13874, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086160

RESUMEN

BACKGROUND: Alopecia areata is an autoimmune hair loss disorder with an incompletely understood etiology. Although trace elements, serum metabolites, and inflammatory factors are implicated in the disease, the potential causal relationships between these factors and alopecia areata require further investigation. METHODS: This study employed Mendelian randomization (MR), utilizing data from genome-wide association studies, to explore the causal relationships between 15 trace elements, 1400 serum metabolites, and 91 inflammatory factors and alopecia areata. The analysis was conducted using the inverse variance weighted (IVW) method complemented by various sensitivity analyses, including Cochran's Q test, MR-Egger regression intercept test, MR-PRESSO global test, and leave-one-out analysis, to assess the robustness of the results. RESULTS: MR analysis indicated a negative correlation between copper levels and the risk of developing alopecia areata (odds ratio = 0.86, 95% confidence interval: 0.75-0.99, p = 0.041). Additionally, causal relationships were identified between 15 serum metabolites and 6 inflammatory factors and the risk of alopecia areata (IVW, all p values < 0.05). CONCLUSION: This study provides genetic evidence of the relationships between trace elements, serum metabolites, and alopecia areata, underscoring the potential value of targeted therapeutic strategies and preventive measures. Future research should expand to diverse populations and further explore the specific roles of these biomarkers in the disease mechanism.


Asunto(s)
Alopecia Areata , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Alopecia Areata/genética , Alopecia Areata/sangre , Humanos , Predisposición Genética a la Enfermedad/genética , Oligoelementos/sangre , Polimorfismo de Nucleótido Simple
16.
Bioorg Chem ; 151: 107688, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39106712

RESUMEN

Ergosterol peroxide (EP) isolated from the edible medicinal fungus Pleurotus ferulae has a wide range of anti-tumor activity, but poor water solubility and low bioavailability limit further application. In this study, EP was structurally modified using triphenylphosphine (TPP+), which combines mitochondrial targeting, amphiphilicity, and cytotoxicity. A series of TPP+-conjugated ergosterol peroxide derivatives (TEn) with different length linker arms were synthesized. The structure-activity relationship showed that the anticancer activity of TEn gradually decreased with the elongation of the linker arm. The compound TE3 has the optimal and broadest spectrum of antitumor effects. It mainly through targeting mitochondria, inducing ROS production, disrupting mitochondrial function, and activating mitochondria apoptosis pathway to exert anti-cervical cancer activity. Among them, TPP+ only acted as a mitochondrial targeting group, while EP containing peroxide bridge structure served as an active group to induce ROS. In vivo experiments have shown that TE3 has better anti-cervical cancer activity and safety than the first-line anticancer drug cisplatin, and can activate the immune response in mice. Although TE3 exhibits some acute toxicity, it is not significant at therapeutic doses. Therefore, TE3 has the potential for further development as an anti-cervical cancer drug.

17.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3818-3827, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099355

RESUMEN

To explore the mechanism of Liangfang Wenjing Decoction regulating coiled-coil-helix coiled-coil-helix domain containing 4(CHCHD4) in the treatment of hypoxia on endometriosis(EMs) with cold coagulation and blood stasis. The rat model of cold coagulation and blood stasis syndrome was prepared by the ice-water bath method, and then the EMs model was established by autologous intimal transplantation. The rats were randomly divided into model group, low, medium, and high(4.7, 9.4, and 18.8 g·kg~(-1)) dose groups of Liangfang Wenjing Decoction, Shaofu Zhuyu Decoction group, and sham group, with 10 rats in each group. The rats were given intragastric administration for four weeks. During the modeling, the general condition and vaginal smear of rats were observed, and the blood flow of ears and uterus were detected by laser speckle contrast imaging(LSCI) to judge the syndrome of cold coagulation and blood stasis. After the administration, the general condition of the rats was observed, and the area of ectopic lesions was measured by caliper. The localization and expression of CHCHD4 and hypoxia inducible factors-1α(HIF-1α) were detected by immunohistochemistry, and the mRNA and protein expressions of CHCHD4 and HIF-1α were detected by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot. The primary culture of ectopic endometrial stromal cells(ESCs) from EMs patients was performed, and the CHCHD4 overexpression plasmid was constructed and transfected to establish the ESCs model of CHCHD4 overexpression. The cells were divided into the control group, CHCHD4 overexpression group, CHCHD4 overexpression+control serum group, and CHCHD4 overexpression+Liangfang Wenjing Decoction serum group. The protein expression of CHCHD4 and HIF-1α was detected by Western blot, and the glucose consumption and lactic acid level were detected. The cell proliferation was detected by MTT assay. The experiment found that compared with normal rats, the modeling rats showed symptoms of cold coagulation and blood stasis, such as mental malaise, reduced diet and drinking water, disordered estrous cycle, and blocked blood circulation in ears and uterine microvessels. Compared with the sham group, the ectopic lesions in the model group were uplifted, and the mRNA and protein expressions of CHCHD4 and HIF-1α were significantly increased(P<0.05). Compared with the model group, the symptoms of cold coagulation and blood stasis in each treatment group were improved, and the area of ectopic lesions was significantly reduced(P<0.05 or P<0.01). The mRNA and protein expression levels of CHCHD4 and HIF-1α were significantly decreased(P<0.05 or P<0.01). In the cell model, compared with the control group, the expression of CHCHD4, HIF-1α protein, glucose consumption, lactic acid level, and cell proliferation activity in the CHCHD4 overexpression group were significantly increased(P<0.01). Compared with the CHCHD4 overexpression group, there was no significant change in each index in the control serum group, while the protein expression of CHCHD4 and HIF-1α in the Liangfang Wenjing Decoction serum group was decreased significantly(P<0.05 or P<0.01). The glucose consumption, lactic acid level, and cell proliferation activity decreased significantly(P<0.01). It can be seen from the above that the therapeutic effect of Liangfang Wenjing Decoction on EMs with cold coagulation and blood stasis might be related to reducing the expression of CHCHD4 and then improving the hypoxia of ectopic lesions and ectopic ESCs.


Asunto(s)
Medicamentos Herbarios Chinos , Endometriosis , Hipoxia , Ratas Sprague-Dawley , Animales , Femenino , Endometriosis/tratamiento farmacológico , Endometriosis/genética , Endometriosis/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Ratas , Humanos , Hipoxia/genética , Hipoxia/tratamiento farmacológico , Hipoxia/fisiopatología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
18.
Int J Biol Macromol ; 277(Pt 3): 134489, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111493

RESUMEN

Chitooligosaccharides (COS) has attracted increasing attention due to the various promising bioactivities, tremendous potential in agricultural, environmental nutritional and functional food fields. COS as the major degradation product from chitosan or chitin is prepared via enzymatic, chemical and physical methods. Further obtained COS generally possesses different structural characteristics, such as molecular weight, degree of acetylation and degree of polymerization. Innovations into COS modification has also broadened application of COS in nutrition as well as in agricultural safety. Due to the affinity between structure and bioactivity, diversity of structural characteristics endows COS with various bioactivities like antitumor, antioxidant and anti-inflammatory effects, especially hepatoprotective activity. Therefore, the present review narrates the recent developments in COS physicochemical properties, while paying considerable attention to preparation strategies of COS and their advantages and disadvantages. Moreover, the modification of COS is also discussed including alkylation, quaternization and sulfation, herein the structure-activity relationship of COS was highlighted. Additionally, we summarize the latest research on hepatoprotective activity and mechanisms of COS. Eventually, the future directions of research on COS were discussed, which would provide a new appreciation for the future use of COS.

19.
Front Microbiol ; 15: 1436382, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144227

RESUMEN

The quality of fermented plant leaves is closely related to the interleaf microorganisms and their metabolic activities. In this experiment, a multi-omics analysis was applied to investigate the link between the structural composition of the phyllosphere microbial community and the main metabolites during the fermentation process. It was found that the whole fermentation process of cigar leaves could be divided into three stages, in which the Mid-Stage was the most active period of microbial metabolic activities and occupied an important position. Staphylococcus, Brevundimonas, Acinetobacter, Brevibacterium, Pantoea, Aspergillus, Wallemia, Meyerozyma, Sampaiozyma, Adosporium and Trichomonascus played important roles in this fermentation. Staphylococcus and Aspergillus are the microorganisms that play an important role in the fermentation process. Staphylococcus were strongly correlated with lipids and amino acids, despite its low abundance, Stenotrophomonas is importantly associated with terpene and plays a significant role throughout the process. It is worth noting that Wapper exists more characteristic fungal genera than Filler and is more rapid in fermentation progress, which implies that the details of the fermentation process should be adjusted appropriately to ensure stable quality when faced with plant leaves of different genotypes. This experiment explored the relationship between metabolites and microorganisms, and provided a theoretical basis for further optimizing the fermentation process of plant leaves and developing techniques to improve product quality. Biomarker is mostly present in the pre-fermentation phase, but the mid-fermentation phase is the most important part of the process.

20.
Heliyon ; 10(15): e34682, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39144934

RESUMEN

We proposed an original type of multipass cell named symmetric optical multipass matrix system (SMMS), in which the same matrix patterns of various sizes can be formed on both sides. According to its special symmetric configurations, the SMMS design problem is modeled as a variant of the classical traveling salesman problem, which can be rapidly solved by evolutionary optimization algorithms. Two sets of 3-mirror SMMSs are designed, analyzed and built, which show superior characteristics of high stability, desirable beam quality and adjustable optical path lengths. Additionally, they can support simultaneous detection of multiple species with multi-laser channels. The proposed method is further extended to design a 4-mirror SMMS, which verifies the universality and robustness of the design methodology. The experimental observations are in consistent with the theoretical calculations. The newly proposed SMMSs have a broad application prospect in trace gas measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA