Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Gastrointest Surg ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39089487

RESUMEN

BACKGROUND: Weekend surgical time is an underused asset. Concerns over a possible weekend effect (substandard care) may be a barrier. METHODS: This study examined whether a weekend effect applies to elective colorectal surgery via a single-center retrospective analysis comparing outcomes between patients who underwent elective colorectal surgery on a weekend versus a weekday. Demographics, length of stay, operative and anesthesia time, the rate of reoperation within 30 days, and the rate of major complications were compared between patient groups. RESULTS: Of the 2,008 patients identified, 1,721 (85.7%) underwent surgery on a weekday, and 287 (14.3%) underwent surgery on a weekend. The proportion of operations with an open approach was higher on weekends than weekdays (49.5% vs. 41.8%, p=0.017). Patients who underwent surgery on the weekend tended to have a shorter mean (SE) length of stay (4.2 (0.2) vs. 6.1 (0.2), p<0.001), anesthesia time (233.8 (6.5) vs. 307.6 (3.3) minutes, p<0.001), and operative time (225.4 (6.4) vs. 297.6 (3.3) minutes, p<0.001). On multivariable analysis, patients who had an operation on a weekend had a 38% lower chance of having a prolonged length of stay (>75th percentile of length of stay) compared to those on a weekday (aOR=0.62, 95% CI (0.42, 0.92)). There were no differences in rates of complications or reoperation for patients undergoing surgery on a weekend compared to a weekday. CONCLUSION: At centers with experienced anesthesiologists, appropriately trained nursing staff, and expert surgeons, colorectal surgery performed on a weekend has similar safety outcomes as surgeries performed on a weekday.

2.
Sci Total Environ ; 948: 174733, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39032744

RESUMEN

Soil thallium (Tl) contamination is of major public concern but little is known about soil Tl ecological toxicity or potential ecological remediation strategies. Here, two soil animal species with different ecological niches, Folsomia candida and Enchytraeus crypticus, were used to test Tl toxicity and modification by exogenous organic materials (i.e. maize straw and biochar). The endpoints of Tl ecotoxicity to F. candida and E. crypticus were studied at two biological levels, i.e., the individual (body Tl concentrations) and the population (survival, reproduction, and growth). Thallium concentrations in F. candida and E. crypticus increased with increasing soil Tl concentration, and their survival and reproduction rates decreased with increasing soil Tl concentration. The LC50 value of Tl effects on F. candida mortality (28 d) was 24.0 mg kg-1 and the EC50 value of reproduction inhibition was 6.51 mg kg-1. The corresponding values were 4.15 mg kg-1 and 2.31 mg kg-1 respectively for E. crypticus showing higher sensitivity to soil Tl than F. candida. These effective values are comparable to or much lower than the environmental Tl concentrations in field soils, suggesting high potential ecological risk. Both biochar and straw can decrease animal body Tl concentrations in different ways, i.e. reducing Tl availability or offering clean food sources, and addition of exogenous organic materials clearly mitigated Tl ecotoxicity in highly polluted soil. The results highlight the potential Tl ecological risk to soil animals and the potential use of organic materials to control the toxicity.

3.
Huan Jing Ke Xue ; 45(7): 4006-4013, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022948

RESUMEN

This study aimed to explore the effects of different disturbances on the fungal communities in the sediments of the Jialing River in order to provide scientific basis for the protection of the river ecosystem. The fungal community in the sediments of the main stream of the Jialing River was taken as the research object, and high-throughput sequencing and bioinformatics techniques were used to analyze the differences in the composition and function of fungal communities in river sediment of different types of disturbance (project disturbance, tributary disturbance, sand mining disturbance, and reclamation disturbance) and non-disturbance sections. The results showed that: ① The reclamation and project disturbances significantly inhibited the diversity and richness of fungal communities (P<0.05). The tributary disturbance increased the richness of fungal communities, whereas the impact of sand mining disturbance on sediment fungal communities was not significant. ② The diversity and composition of fungal communities tended to be similar at the different sampling sites in the section with low input of exogenous substances (non-disturbance and sand mining disturbance), whereas there were obvious differences in the diversity of fungal communities at the different sampling sites of high input of external substances (tributary disturbance, project disturbance, and reclamation disturbance) sections. ③ Ascomycota, Rozellomycota, and Basidiomycota were the main dominant fungal phyla in the sediments of the Jialing River. The relative abundance of Rozellomycota was the highest in the sand mining interference section, and the relative abundance of Basidiomycota was the highest in the tributary interference section. Project disturbance significantly increased the relative abundance of saprotrophs, animal pathogens, plant pathogens, and dung saprotrophs, whereas other disturbances inhibited the relative abundance of fungal parasitic fungi, plant pathogens, and plant saprophytes. In conclusion, human disturbance has caused changes in fungal diversity, community structure, and function in the sediment of the Jialing River, and xenobiotic input was a key factor contributing to this phenomenon. The results can provide a reference for predicting and evaluating the ecological quality of river sediments.


Asunto(s)
Hongos , Sedimentos Geológicos , Ríos , Ríos/microbiología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Hongos/clasificación , China , Ecosistema , Biodiversidad , Monitoreo del Ambiente
4.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893322

RESUMEN

The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein-peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Olea , Fenoles , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Olea/química , Fenoles/farmacología , Fenoles/química , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Depresión/tratamiento farmacológico , Aceite de Oliva/química , Simulación por Computador
5.
Front Immunol ; 15: 1418025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903515

RESUMEN

Toll-like receptors (TLRs) are a key family of pattern recognition receptors (PRRs) in the innate immune system. The activation of TLRs will not only prevent pathogen infection but also respond to damage-induced danger signaling. Increasing evidence suggests that TLRs play a critical role in breast cancer development and treatment. However, the activation of TLRs is a double-edged sword that can induce either pro-tumor activity or anti-tumor effect. The underlying mechanisms of these opposite effects of TLR signaling in cancer are not fully understood. Targeting TLRs is a promising strategy for improving breast cancer treatment, either as monotherapies or by improving other current therapies. Here we provide an update on the role of TLRs in breast cancer immunity and immunotherapy.


Asunto(s)
Neoplasias de la Mama , Inmunoterapia , Transducción de Señal , Receptores Toll-Like , Humanos , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Receptores Toll-Like/metabolismo , Receptores Toll-Like/inmunología , Femenino , Inmunoterapia/métodos , Animales , Inmunidad Innata
6.
Foods ; 13(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38790822

RESUMEN

Cereal and legume proteins, pivotal for human health, significantly influence the quality and stability of processed foods. Despite their importance, the inherent limited functional properties of these natural proteins constrain their utility across various sectors, including the food, packaging, and pharmaceutical industries. Enhancing functional attributes of cereal and legume proteins through scientific and technological interventions is essential to broadening their application. Cold plasma (CP) technology, characterized by its non-toxic, non-thermal nature, presents numerous benefits such as low operational temperatures, lack of external chemical reagents, and cost-effectiveness. It holds the promise of improving proteins' functionality while maximally retaining their nutritional content. This review delves into the pros and cons of different cold plasma generation techniques, elucidates the underlying mechanisms of protein modification via CP, and thoroughly examines research on the application of cold plasma in augmenting the functional properties of proteins. The aim is to furnish theoretical foundations for leveraging CP technology in the modification of cereal and legume proteins, thereby enhancing their practical applicability in diverse industries.

7.
Aging (Albany NY) ; 16(9): 8110-8141, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38728242

RESUMEN

The management of patients with advanced non-small cell lung cancer (NSCLC) presents significant challenges due to cancer cells' intricate and heterogeneous nature. Programmed cell death (PCD) pathways are crucial in diverse biological processes. Nevertheless, the prognostic significance of cell death in NSCLC remains incompletely understood. Our study aims to investigate the prognostic importance of PCD genes and their ability to precisely stratify and evaluate the survival outcomes of patients with advanced NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA), Least Absolute Shrinkage and Selection Operator (LASSO), univariate and multivariate Cox regression analyses for prognostic gene screening. Ultimately, we identified seven PCD-related genes to establish the PCD-related risk score for the advanced NSCLC model (PRAN), effectively stratifying overall survival (OS) in patients with advanced NSCLC. Multivariate Cox regression analysis revealed that the PRAN was the independent prognostic factor than clinical baseline factors. It was positively related to specific metabolic pathways, including hexosamine biosynthesis pathways, which play crucial roles in reprogramming cancer cell metabolism. Furthermore, drug prediction for different PRAN risk groups identified several sensitive drugs explicitly targeting the cell death pathway. Molecular docking analysis suggested the potential therapeutic efficacy of navitoclax in NSCLC, as it demonstrated strong binding with the amino acid residues of C-C motif chemokine ligand 14 (CCL14), carboxypeptidase A3 (CPA3), and C-X3-C motif chemokine receptor 1 (CX3CR1) proteins. The PRAN provides a robust personalized treatment and survival assessment tool in advanced NSCLC patients. Furthermore, identifying sensitive drugs for distinct PRAN risk groups holds promise for advancing targeted therapies in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/tratamiento farmacológico , Pronóstico , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Simulación del Acoplamiento Molecular , Redes Reguladoras de Genes , Persona de Mediana Edad , Perfilación de la Expresión Génica
8.
Clin Cancer Res ; 30(11): 2609-2618, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38564595

RESUMEN

PURPOSE: Black women experience the highest breast cancer mortality rate compared with women of other racial/ethnic groups. To gain a deeper understanding of breast cancer heterogeneity across diverse populations, we examined a VEGF-hypoxia gene expression signature in breast tumors from women of diverse ancestry. EXPERIMENTAL DESIGN: We developed a NanoString nCounter gene expression panel and applied it to breast tumors from Nigeria (n = 182) and the University of Chicago (Chicago, IL; n = 161). We also analyzed RNA sequencing data from Nigeria (n = 84) and The Cancer Genome Atlas (TCGA) datasets (n = 863). Patient prognosis was analyzed using multiple datasets. RESULTS: The VEGF-hypoxia signature was highest in the basal-like subtype compared with other subtypes, with greater expression in Black women compared with White women. In TCGA dataset, necrotic breast tumors had higher scores for the VEGF-hypoxia signature compared with non-necrosis tumors (P < 0.001), with the highest proportion in the basal-like subtype. Furthermore, necrotic breast tumors have higher scores for the proliferation signature, suggesting an interaction between the VEGF-hypoxia signature, proliferation, and necrosis. T-cell gene expression signatures also correlated with the VEGF-hypoxia signature when testing all tumors in TCGA dataset. Finally, we found a significant association of the VEGF-hypoxia profile with poor outcomes when using all patients in the METABRIC (P < 0.0001) and SCAN-B datasets (P = 0.002). CONCLUSIONS: These data provide further evidence for breast cancer heterogeneity across diverse populations and molecular subtypes. Interventions selectively targeting VEGF-hypoxia and the immune microenvironment have the potential to improve overall survival in aggressive breast cancers that disproportionately impact Black women in the African Diaspora.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Factor A de Crecimiento Endotelial Vascular , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pronóstico , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Población Negra/genética , Transcriptoma , Adulto , Anciano , Hipoxia/genética , Microambiente Tumoral/genética , Regulación hacia Arriba
9.
J Contemp Brachytherapy ; 16(1): 35-47, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38584884

RESUMEN

Purpose: To use failure modes and effects analysis (FMEA) to identify failure modes for gynecological high-dose-rate (HDR) brachytherapy pathway and score with severity, occurrence, and detectability. Material and methods: A research team was organized to observe gynecological HDR brachytherapy pathway, and draw detailed process map to identify all potential failure modes (FMs). The whole team scored FMs based on three parameters, including occurrence (O), detectability (D), and severity (S), and then multiplied three scores to obtain risk priority number (RPN). All FMs were ranked according to RPNs and/or severity scores, and FMs with the highest RPN scores (> 100) and severity scores (> 8) were selected for in-depth analysis. Fault tree analysis (FTA) was applied to find progenitor causes of high-risk FMs and their propagation path, and determine which steps in the process need to be changed and optimized. Efficiency of each existing preventive methods to detect and stop FMs was analyzed, and proposals to improve quality management (QM) and ensure patient safety were suggested. Results: The whole gynecological HDR brachytherapy pathway consisted of 5 sub-processes and 30 specific steps, in which 57 FMs were identified. Twelve high-risk FMs were found, including 7 FMs with RPNs > 100 and 5 FMs with severity scores > 8. For these FMs, 2 were in the insertion stage, 1 in the imaging stage, 4 in the treatment planning stage, and 5 in the final stage of treatment delivery. The most serious of these FMs was the change in organ at risk (OAR) during treatment delivery (RPN = 245.7). The FM that occurred most frequently was the applicator shift during patient transfer. Conclusions: Failure modes and effects analysis is a prospective risk-based tool that can identity high-risk steps before failures occur, provide preventive measures to stop their occurrence, and improve quality management system.

10.
Brain Behav ; 14(4): e3487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38648385

RESUMEN

INTRODUCTION: Demyelination is a key factor in axonal degeneration and neural loss, leading to disability in multiple sclerosis (MS) patients. Transforming growth factor beta activated kinase 1 (TAK1) is a critical molecule involved in immune and inflammatory signaling pathways. Knockout of microglia TAK1 can inhibit autoimmune inflammation of the brain and spinal cord and improve the outcome of MS. However, it is unclear whether inhibiting TAK1 can alleviate demyelination. METHODS: Eight-week-old male c57bl/6j mice were randomly divided into five groups: (a) the control group, (b) the group treated with cuprizone (CPZ) only, (c) the group treated with 5Z-7-Oxozaenol (OZ) only, and (d) the group treated with both cuprizone and 15 µg/30 µg OZ. Demyelination in the mice of this study was induced by administration of CPZ (ig) at a daily dose of 400 mg/kg for consecutive 5 weeks. OZ was intraperitoneally administered at mentioned doses twice a week, starting from week 3 after beginning cuprizone treatment. Histology, rotarod test, grasping test, pole test, Western blot, RT-PCR, and ELISA were used to evaluate corpus callosum demyelination, behavioral impairment, oligodendrocyte differentiation, TAK1 signaling pathway expression, microglia, and related cytokines. RESULTS: Our results demonstrated that OZ protected against myelin loss and behavior impairment caused by CPZ. Additionally, OZ rescued the loss of oligodendrocytes in CPZ-induced mice. OZ inhibited the activation of JNK, p65, and p38 pathways, transformed M1 polarized microglia into M2 phenotype, and increased brain-derived neurotrophic factor (BDNF) expression to attenuate demyelination in CPZ-treated mice. Furthermore, OZ reduced the expression of proinflammatory cytokines and increases anti-inflammatory cytokines in CPZ-treated mice. CONCLUSION: These findings suggest that inhibiting TAK1 may be an effective approach for treating demyelinating diseases.


Asunto(s)
Cuprizona , Enfermedades Desmielinizantes , Lactonas , Ratones Endogámicos C57BL , Microglía , Resorcinoles , Zearalenona/administración & dosificación , Animales , Cuprizona/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Desmielinizantes/tratamiento farmacológico , Enfermedades Desmielinizantes/inducido químicamente , Ratones , Masculino , Quinasas Quinasa Quinasa PAM/metabolismo , Zearalenona/farmacología , Zearalenona/análogos & derivados , Polaridad Celular/efectos de los fármacos , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/patología , Cuerpo Calloso/metabolismo , Modelos Animales de Enfermedad
11.
Talanta ; 275: 126126, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38678923

RESUMEN

ß-cyclodextrin (ß-CD), as an important pseudo-stationary phase (PSP) in capillary electrophoresis (CE), frequently confronts challenges stemming from its limited water solubility, particularly when high concentrations are required for resolving complex analytes. Traditionally, researchers often resort to the use of (toxic) organic solvents to enhance the solubility of ß-CD, establishing non-aqueous capillary electrophoresis (NACE) for specific separations. However, such practices are hazardous to health and run counter to the principles of green analytical chemistry. In this study, we demonstrate a deep eutectic solvent (DES), Proline:Urea (PU), as a promising alternative to conventional organic solvents for ß-CD-based CE separations. The DES exhibits a solubility of up to 30% for ß-CD, a significant improvement compared to the 1.8% solubility in the aqueous phase. Utilizing this DES-type separation medium, we achieved simultaneous baseline separation of a complex analyte composed of eight structurally similar naphthoic acid derivatives. Furthermore, we conducted a systematic comparison of ß-CD's performance in aqueous CE buffers, organic solvents, and DESs, highlighting the superiority of this novel and environmentally friendly CE separation medium.

12.
J Immunother Cancer ; 12(3)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531664

RESUMEN

BACKGROUND: The role of CD161 expression on CD8+ T cells in tumor immunology has been explored in a few studies, and the clinical significance of CD161+CD8+ T cells in pancreatic ductal adenocarcinoma (PDAC) remains unclear. This study seeks to clarify the prognostic value and molecular characteristics linked to CD161+CD8+ T cell infiltration in PDAC. METHODS: This study included 186 patients with confirmed PDAC histology after radical resection. CD161+CD8+ T cell infiltration was assessed using immunofluorescence staining on tumor microarrays. Flow cytometry and single-cell RNA sequencing were used to evaluate their functional status. RESULTS: We observed significant associations between tumor-infiltrating CD161+CD8+ T cells and clinicopathological factors, such as tumor differentiation, perineural invasion, and serum CA19-9 levels. Patients with higher tumor-infiltrating CD161+CD8+ T cell levels had longer overall survival (OS) and recurrence-free survival (RFS) than those with lower levels. Multivariable analysis confirmed tumor-infiltrating CD161+CD8+ T cell as an independent prognostic indicator for both OS and RFS. Notably, a combination of tumor-infiltrating CD161+CD8+ T cell and CA19-9 levels showed a superior power for survival prediction, and patients with low tumor-infiltrating CD161+CD8+ T cell and high CA19-9 levels had the worst survival. Furthermore, lower tumor-infiltrating CD161+CD8+ T cells were associated with a better response to adjuvant chemotherapy. Finally, we identified tumor-infiltrating CD161+CD8+ T cells as a unique subtype of responsive CD8+ T cells characterized by increased levels of cytotoxic cytokines and immune checkpoint molecules. CONCLUSION: CD161+CD8+ T cells exhibit elevated levels of both cytotoxic and immune-checkpoint molecules, indicating as a potential and attractive target for immunotherapy. The tumor-infiltrating CD161+CD8+ T cell is a valuable and promising predictor for survival and therapeutic response to adjuvant chemotherapy in PDAC. Further research is warranted to validate its role in the risk stratification and optimization of therapeutic strategies.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfocitos T CD8-positivos , Antígeno CA-19-9 , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Pronóstico
13.
Food Chem ; 445: 138699, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38359566

RESUMEN

This study investigated the effectiveness of cold-plasma treatment using air and argon as input gas on deactivation of lipolytic enzymes in lightly-milled-rice (LMR). The results showed no significant inactivation in lipase and lipoxygenase using air-plasma. However, using argon as input gas, the residual activities of lipase and lipoxygenase were reduced to 64.51 % and 29.15 % of initial levels, respectively. Argon plasma treatment resulted in more substantial augmentation in peak and breakdown viscosities of LMR starch, suggesting an enhancement in palatability of cooked LMR with increased stickiness and decreased hardness. In contrast to the decrease in volatile compounds in LMR following argon plasma treatment, the concentrations of several prevalent aroma compounds, including 1-hexanol, 1-hexanal, and 2-pentylfuran, exhibited significant increments, reaching 1489.70 ng/g, 3312.10 ng/g, and 58.80 ng/g, respectively. These findings suggest the potential for enhancing various facets of the commercial qualities of LMR by utilizing different input gases during plasma treatment.


Asunto(s)
Oryza , Gases em Plasma , Oryza/química , Argón , Lipasa/metabolismo , Lipooxigenasas/metabolismo
14.
J Agric Food Chem ; 72(7): 3644-3653, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38335068

RESUMEN

The limited availability of high-cost nucleotide sugars is a significant constraint on the application of their downstream products (glycosides and prebiotics) in the food or pharmaceutical industry. To better solve the problem, this study presented a one-pot approach for the biosynthesis of UDP-Gal using a thermophilic multienzyme system consisting of GalK, UGPase, and PPase. Under optimal conditions, a 2 h reaction resulted in a UTP conversion rate of 87.4%. In a fed-batch reaction with Gal/ATP = 20 mM:10 mM, UDP-Gal accumulated to 33.76 mM with a space-time yield (STY) of 6.36 g/L·h-1 after the second feeding. In repetitive batch synthesis, the average yield of UDP-Gal over 8 cycles reached 10.80 g/L with a very low biocatalyst loading of 0.002 genzymes/gproduct. Interestingly, Galk (Tth0595) could synthesize Gal-1P using ADP as a donor of phosphate groups, which had never been reported before. This approach possessed the benefits of high synthesis efficiency, low cost, and superior reaction system stability, and it provided new insights into the rapid one-pot synthesis of UDP-Gal and high-value glycosidic compounds.


Asunto(s)
Nucleótidos , Uridina Difosfato Galactosa , Uridina Difosfato , Galactosa
16.
Environ Toxicol ; 39(5): 2667-2680, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38224486

RESUMEN

BACKGROUND: Hexokinase (HK) is the first rate-limiting enzyme of glycolysis, which can convert glucose to glucose-6-phosphate. There are several subtypes of HK, including HK2, which is highly expressed in a variety of different tumors and is closely associated with survival. METHODS: Non-small cell lung cancer (NSCLC) A549 cells with stable overexpression and knockdown of HK2 were obtained by lentivirus transfection. The effects of overexpression and knockdown of HK2 on proliferation, migration, invasion, and glycolytic activity of A549 cells were investigated. The effects on apoptosis were also analyzed using western blot and flow cytometry. In addition, the mitochondria and cytoplasm were separated and the expression of apoptotic proteins was detected by western blot respectively. RESULTS: Upregulation of HK2 could promote glycolysis, cell proliferation, migration, and invasion, which would be inhibited through the knockdown of HK2. HK2 overexpression contributed to cisplatin resistance, whereas HK2 knockdown enhanced cisplatin-induced apoptosis in A549 cells. CONCLUSIONS: Overexpression of HK2 can promote the proliferation, migration, invasion, and drug resistance of A549 cells by enhancing aerobic glycolysis and inhibiting apoptosis. Reducing HK2 expression or inhibiting HK2 activity can inhibit glycolysis and induce apoptosis in A549 cells, which is expected to be a potential treatment method for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Cisplatino/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Hexoquinasa/genética , Hexoquinasa/metabolismo , Pulmón/patología , Línea Celular Tumoral , Proliferación Celular , Apoptosis
17.
Foods ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38254541

RESUMEN

Enzyme inactivation is crucial for enhancing the shelf life of lightly milled rice (LMR), yet the impact of diverse superheated steam (SS) treatment conditions on lipolytic enzyme efficiency, physicochemical properties, and volatile profiles of LMR remains unclear. This study investigated varying SS conditions, employing temperatures of 120 °C, 140 °C, and 160 °C and exposure times of 2, 4, 6, and 8 min. The research aimed to discern the influence of these conditions on enzyme activities, physicochemical characteristics, and quality attributes of LMR. Results indicated a significant rise in the inactivation rate with increased treatment temperature or duration, achieving a notable 70% reduction in enzyme activities at 120 °C for 6 min. Prolonged exposure to higher temperatures also induced pronounced fissures on LMR surfaces. Furthermore, intensive SS treatment led to a noteworthy 5.52% reduction in the relative crystallinity of LMR starch. GC/MS analysis revealed a consequential decrease, ranging from 44.7% to 65.7%, in undesirable odor ketones post-SS treatment. These findings underscore the potential of SS treatment in enhancing the commercial attributes of LMR.

18.
Methods Mol Biol ; 2748: 267-278, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070119

RESUMEN

Chimeric antigen receptor (CAR)-T cell immunotherapy emerges as an effective cancer treatment. However, significant safety concerns remain, such as cytokine release syndrome (CRS) and "on-target, off-tumor" cytotoxicity, due to a lack of precise control over conventional CAR-T cell activity. To address this issue, a nano-optogenetic approach has been developed to enable spatiotemporal control of CAR-T cell activity. This system is comprised of synthetic light-sensitive CAR-T cells and upconversion nanoparticles acting as an in situ nanotransducer, allowing near-infrared light to wirelessly control CAR-T cell immunotherapy.


Asunto(s)
Neoplasias , Receptores de Antígenos de Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/genética , Inmunoterapia , Neoplasias/terapia , Optogenética , Linfocitos T , Inmunoterapia Adoptiva
19.
Ann Appl Stat ; 17(4): 2924-2943, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38046186

RESUMEN

In The Cancer Genome Atlas (TCGA) data set, there are many interesting nonlinear dependencies between pairs of genes that reveal important relationships and subtypes of cancer. Such genomic data analysis requires a rapid, powerful and interpretable detection process, especially in a high-dimensional environment. We study the nonlinear patterns among the expression of pairs of genes from TCGA using a powerful tool called Binary Expansion Testing. We find many nonlinear patterns, some of which are driven by known cancer subtypes, some of which are novel.

20.
Front Oncol ; 13: 1274439, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38152367

RESUMEN

Purpose: TOPBP1 interacting checkpoint and replication regulator (TICRR), a hub gene of the Cdk2-mediated initiation step of DNA replication, has been shown an essential role in tumorigenesis by accelerating the DNA replication of tumor cells. Methods: RT-qPCR was used to detect the mRNA expression of TICRR in LUAD tumors and adjacent normal tissues. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database of LUAD were acquired to analyze the critical role of TICRR expression in survival prognosis and clinicopathology characters in LUAD. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) were performed using the R package. The correlation of TICRR expression with immune cell infiltration, RNA epigenetic modification, DNA damage repair (DDR) pathway, and cell metabolism of LUAD was further explored to verify significant conclusions. Results: TICRR was significantly upregulated in most cancer types, including LUAD, lung squamous cell carcinoma (LUSC), and others. Cox regression analysis indicated the overexpression of TICRR was associated with poor survival in several cancers. In LUAD, TICRR expression was positively correlated with tumor stage and was increased in smoking, male, and high tumor mutational burden (TMB) patients. Enrichment analysis revealed that TICRR could influence tumor proliferation and prognosis via activating pathways involving cell cycle, DNA repair, DNA replication, cysteine metabolism, oxidative phosphorylation, and ubiquitin-mediated proteolysis pathways. Interestingly, high TICRR expression correlated with DDR pathway signature (34 genes), 37 m6A/m5C regulated genes, and some metabolism-regulated genes. Silencing the TICRR gene affects cysteine metabolism and modifies cancer-related pathways, with decreased cell cycle and increased B/T cell receptor signaling. Our TICRR risk model accurately predicts LUAD patient prognosis, validated across GEO datasets, and is integrated with clinical characteristics via a nomogram, facilitating personalized treatment strategies and enhancing patient management. Conclusions: Taken together, TICRR has emerged as a promising prognostic biomarker in lung adenocarcinoma (LUAD), with implications in immune activation, cell cycle regulation, RNA modification, and tumor energy metabolism. These findings suggest that TICRR could serve as a viable therapeutic target and a reliable prognostic indicator for LUAD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA