Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pract Lab Med ; 40: e00404, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38883563

RESUMEN

This study aims to investigate the correlation between plasma fat-soluble vitamin levels and blood lipid in elderly patients with coronary heart disease (CHD). A total of 120 participants were enrolled, including 60 CHD patients and 60 controls without CHD. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify plasma levels of vitamins A, D3, E, and K. Data analysis was conducted using the statistical analysis system module of MetaboAnalyst 5.0. The CHD group showed significantly higher levels of plasma total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) but not high-density lipoprotein cholesterol (HDL-C) compared to controls. The CHD group exhibited significantly higher plasma levels of VA and VE, positively correlating with TC, TG, and LDL-C. After adjusted by TG levels, the CHD group had significantly lower plasma levels of VA and VE, negatively correlating with TC, TG, and LDL-C. The CHD group also had significantly lower concentrations of VD3, independent of TG modification, compared to controls. VD3 negatively correlated with TC, TG, and LDL-C. Elderly individuals with CHD display abnormal blood lipid metabolism, and fat-soluble vitamins adjusted by TG levels can more accurately and timely response to implicit fat-soluble vitamins deficiency in CHD patients.

2.
ACS Omega ; 9(16): 18249-18259, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38680309

RESUMEN

Capacitive deionization (CDI) is an emerging desalination technology for seawater desalination. The development of high-desalination and long-life electrode materials is a research focus in the global water treatment field. In this experiment, Tween T80 was used as a surface activator, and a modified electrode was prepared by facilitating the deposition of TiO2 active sites onto the surface of activated carbon through a sol-gel/hydrothermal two-step synthesis strategy. The morphology and specific surface area of the composite material were analyzed through scanning electron microscopy, specific surface area measurements, and contact angle tests. The results indicated that the sol-gel/hydrothermal two-step synthesis strategy played a crucial role in the homogeneous combination and performance enhancement of the composite material. Under constant voltage mode, when the working voltage was 1.2 V, the desalination capacity of this composite material in a NaCl solution with an initial conductivity of 3000 µS·cm-1 reached 23.8 mg·g-1 (26% higher than materials prepared by conventional sol-gel methods). After 150 cycles, the capacity retention rate was 78%, and the retention capacity was significant (87%). Overall, the results demonstrate the potential of the sol-gel/hydrothermal two-step synthesis strategy in preparing high-performance CDI electrode materials. The modified electrode prepared using this method offers enhanced desalination capacity and durability, making it a promising candidate for seawater desalination and other water treatment applications.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38153831

RESUMEN

Walking is one of the most common daily movements of the human body. Therefore, quantitative evaluation of human walking has been commonly used to assist doctors in grasping the disease degree and rehabilitation process of patients in the clinic. Compared with the kinematic characteristics, the ground reaction force (GRF) during walking can directly reflect the dynamic characteristics of human walking. It can further help doctors understand the degree of muscle recovery and joint coordination of patients. This paper proposes a GRF estimation method based on the elastic elements and Newton-Euler equation hybrid driving GRF estimation method. Compared with the existing research, the innovations are as follows. 1) The hardware system consists of only two inertial measurement units (IMUs) placed on shanks. The acquisition of the overall motion characteristics of human walking is realized through the simplified four-link walking model and the thigh prediction method. 2) The method was validated not only on 10 healthy subjects but also on 11 Parkinson's patients and 10 stroke patients with normalized mean absolute errors (NMAEs) of 5.95%±1.32%, 6.09%±2.00%, 5.87%±1.59%. 3) This paper proposes a dynamic balance assessment method based on the acquired motion data and the estimated GRF. It evaluates the overall balance ability and fall risk at four key time points for all subjects recruited. Because of the low-cost system, ease of use, low motion interference and environmental constraints, and high estimation accuracy, the proposed GRF estimation method and walking balance automatic assessment have broad clinical value.


Asunto(s)
Pie , Marcha , Humanos , Marcha/fisiología , Pie/fisiología , Caminata/fisiología , Fenómenos Mecánicos , Pierna , Fenómenos Biomecánicos
4.
Sensors (Basel) ; 23(19)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37837147

RESUMEN

Due to the advantages of ease of use, less motion disturbance, and low cost, wearable systems have been widely used in the human-machine interaction (HRI) field. However, HRI in complex clinical rehabilitation scenarios has further requirements for wearable sensor systems, which has aroused the interest of many researchers. However, the traditional wearable system has problems such as low integration, limited types of measurement data, and low accuracy, causing a gap with the actual needs of HRI. This paper will introduce the latest progress in the current wearable systems of HRI from four aspects. First of all, it introduces the breakthroughs of current research in system integration, which includes processing chips and flexible sensing modules to reduce the system's volume and increase battery life. After that, this paper reviews the latest progress of wearable systems in electrochemical measurement, which can extract single or multiple biomarkers from biological fluids such as sweat. In addition, the clinical application of non-invasive wearable systems is introduced, which solves the pain and discomfort problems caused by traditional clinical invasive measurement equipment. Finally, progress in the combination of current wearable systems and the latest machine-learning methods is shown, where higher accuracy and indirect acquisition of data that cannot be directly measured is achieved. From the evidence presented, we believe that the development trend of wearable systems in HRI is heading towards high integration, multi-electrochemical measurement data, and clinical and intelligent development.


Asunto(s)
Robótica , Dispositivos Electrónicos Vestibles , Humanos , Sudor , Biomarcadores , Suministros de Energía Eléctrica
5.
Colloids Surf B Biointerfaces ; 229: 113441, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37422990

RESUMEN

OBJECTIVES: This study aims to investigate the cytotoxicity and sustainable antibacterial activity of unmodified PEEK under specific wavelength light treatment (365 nm), and its antibacterial mechanism was also preliminarily discussed. METHODS: A near-ultraviolet source with a wavelength of 365 nm and a power of 5 W were selected. The irradiation time was 30 min, and the distance was 100 mm. A water contact angle tester was used to characterize the surface of the PEEK after 1-15 light treatments. MC3TC-E1 cells were used to evaluate the cytotoxicity of the materials under light treatment. Five kinds of common oral bacteria were detected in vitro, and antibacterial efficiency was determined by colony-forming unit (CFU) and scanning electron microscope (SEM). The antibacterial mechanism of PEEK under light was preliminarily discussed by spectrophotometry. The membrane rupture of Staphylococcus aureus and Escherichia coli was detected by lactate dehydrogenase. Staphylococcus aureus and Staphylococcus mutans were selected for the cyclic antibacterial test. Statistical analysis was performed by one-way analysis of variance and Tukey multiple range test. A significance level of 0.05 was considered (α = 0.05). RESULTS: The results of the cell experiment showed that PEEK had no cytotoxicity (P > 0.05). CFU results showed that PEEK had an obvious antibacterial effect on Staphylococcus aureus, Staphylococcus mutans, Staphylococcus gordonii and Staphylococcus sanguis, but had no antibacterial effect on Escherichia coli (P < 0.05). The SEM results also verified the above antibacterial effect. The existence of singlet oxygen was confirmed by spectrophotometry. Meanwhile, the rupture of Staphylococcus aureus membrane was verified by lactate dehydrogenase assay. The water contact angle of the PEEK surface did not change significantly after 15 cycles of light treatment. Cyclic antibacterial experiments showed that the antibacterial effect was sustainable. CONCLUSIONS: This study showed that PEEK has good cytocompatibility with stable and sustainable antibacterial properties under near-ultraviolet. It provides a new idea to solve the non-antibacterial property of PEEK, and also provides a theoretical basis for its further application in dentistry.


Asunto(s)
Cetonas , Polietilenglicoles , Polietilenglicoles/farmacología , Cetonas/farmacología , Benzofenonas/farmacología , Staphylococcus aureus , Antibacterianos/farmacología , Escherichia coli , Agua , Lactato Deshidrogenasas , Éteres
6.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36850705

RESUMEN

The rehabilitation evaluation of Parkinson's disease has always been the research focus of human assistive systems. It is a research hotspot to objectively and accurately evaluate the gait condition of Parkinson's disease patients, thereby adjusting the actuators of the human-machine system and making rehabilitation robots better adapt to the recovery process of patients. The rehabilitation evaluation of Parkinson's disease has always been the research focus of rehabilitation robots. It is a research hotspot to be able to objectively and accurately evaluate the recovery of Parkinson's disease patients, thereby adjusting the driving module of the human-machine collaboration system in real time, so that rehabilitation robots can better adapt to the recovery process of Parkinson's disease. The gait task in the Unified Parkinson's Disease Rating Scale (UPDRS) is a widely accepted standard for assessing the gait impairments of patients with Parkinson's disease (PD). However, the assessments conducted by neurologists are always subjective and inaccurate, and the results are determined by the neurologists' observation and clinical experience. Thus, in this study, we proposed a novel machine learning-based method of automatically assessing the gait task in UPDRS with wearable sensors as a more convenient and objective alternative means for PD gait assessment. In the design, twelve gait features, including three spatial-temporal features and nine kinematic features, were extracted and calculated from two shank-mounted IMUs. A novel nonlinear model is developed for calculating the score of gait task from the gait features. Twenty-five PD patients and twenty-eight healthy subjects were recruited for validating the proposed method. For comparison purpose, three traditional models, which have been used in previous studies, were also tested by the same dataset. In terms of percentages of participants, 84.9%, 73.6%, 73.6%, and 66.0% of the participants were accurately assigned into the true level with the proposed nonlinear model, the support vector machine model, the naive Bayes model, and the linear regression model, respectively, which indicates that the proposed method has a good performance on calculating the score of the UPDRS gait task and conformance with the rating done by neurologists.


Asunto(s)
Conducción de Automóvil , Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Humanos , Enfermedad de Parkinson/diagnóstico , Teorema de Bayes , Marcha
7.
Chem Sci ; 13(24): 7269-7275, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35799808

RESUMEN

Metal clusters, such as iron-sulfur clusters, play key roles in sustaining life and are intimately involved in the functions of metalloproteins. Herein we report the formation and crystal structure of a planar square tetranuclear silver cluster when silver ions were mixed with human copper chaperone Atox1. Quantum chemical studies reveal that two Ag 5s1 electrons in the tetranuclear silver cluster fully occupy the one bonding molecular orbital, with the assumption that this Ag4 cluster is Ag4 2+, leading to extensive electron delocalization over the planar square and significant stabilization. This bonding pattern of the tetranuclear silver cluster represents an aromatic all-metal structure that follows a 4n + 2 electron counting rule (n = 0). This is the first time an all-metal aromatic silver cluster was observed in a protein.

8.
Microbiol Spectr ; 10(3): e0041322, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35670601

RESUMEN

Artemisinin-based combination therapies (ACTs) resistance has emerged and could be diffusing in Africa. As an offshore island on the African continent, the island of Bioko in Equatorial Guinea is considered severely affected and resistant to drug-resistant Plasmodium falciparum malaria. However, the spatial and temporal distribution remain unclear. Molecular monitoring targeting the Pfcrt, Pfk13, Pfpm2, and Pfmdr1 genes was conducted to provide insight into the impact of current antimalarial drug resistance on the island. Furthermore, polymorphic characteristics, haplotype network, and the effect of natural selection of the Pfk13 gene were evaluated. A total of 152 Plasmodium falciparum samples (collected from 2017 to 2019) were analyzed for copy number variation of the Pfpm2 gene and Pfk13, Pfcrt, and Pfmdr1 mutations. Statistical analysis of Pfk13 sequences was performed following different evolutionary models using 96 Bioko sequences and 1322 global sequences. The results showed that the prevalence of Pfk13, Pfcrt, and Pfmdr1 mutations was 73.68%, 78.29%, and 75.66%, respectively. Large proportions of isolates with multiple copies of Pfpm2 were observed (67.86%). In Bioko parasites, the genetic diversity of Pfk13 was low, and purifying selection was suggested by Tajima's D test (-1.644, P > 0.05) and the dN/dS test (-0.0004438, P > 0.05). The extended haplotype homozygosity analysis revealed that Pfk13_K189T, although most frequent in Africa, has not yet conferred a selective advantage for parasitic survival. The results suggested that the implementation of continuous drug monitoring on Bioko Island is an essential measure. IMPORTANCE Malaria, one of the tropical parasitic diseases with a high transmission rate in Bioko Island, Equatorial Guinea, especially caused by P. falciparum is highly prevalent in this region and is commonly treated locally with ACTs. The declining antimalarial susceptibility of artemisinin-based drugs suggested that resistance to artemisinin and its derivatives is developing in P. falciparum. Copy number variants in Pfpm2 and genetic polymorphisms in Pfk13, Pfcrt, and Pfmdr1 can be used as risk assessment indicators to track the development and spread of drug resistance. This study reported for the first time the molecular surveillance of Pfpm2, Pfcrt, Pfk13, and Pfmdr1 genes in Bioko Island from 2017 to 2019 to assess the possible risk of local drug-resistant P. falciparum.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Parásitos , Animales , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Variaciones en el Número de Copia de ADN , Resistencia a Medicamentos/genética , Guinea Ecuatorial/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Plasmodium falciparum , Proteínas Protozoarias/genética , Proteínas Protozoarias/farmacología , Proteínas Protozoarias/uso terapéutico
9.
Neuropathol Appl Neurobiol ; 48(4): e12802, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35191072

RESUMEN

OBJECTIVE: We aimed to characterise glioblastomas of adolescents and young adults (AYAs) that were isocitrate dehydrogenase (IDH) wild type (wt) and H3wt. MATERIALS AND METHODS: Fifty such patients (aged 16-32) were studied by methylation profiling, targeted sequencing and targeted RNA-seq. RESULTS: Tumours predominantly clustered into three methylation classes according to the terminology of Capper et al. (2018): (anaplastic) pleomorphic xanthoastrocytoma (PXA) (21 cases), GBM_midline (15 cases) and glioblastoma RTK/mesenchymal (seven cases). Two cases clustered with ANA_PA, four cases with LGG classes and one with GBM_MYCN. Only fifteen cases reached a calibrated score >0.84 when the cases were uploaded to DKFZ Classifier. GBM_midline-clustered tumours had a poorer overall survival (OS) compared with the PXA-clustered tumours (p = 0.030). LGG-clustered cases had a significantly better survival than GBM_midline-clustered tumours and glioblastoma RTK/mesenchymal-clustered tumours. Only 13/21 (62%) of PXA-clustered cases were BRAF V600E mutated. Most GBM_midline-clustered cases were not located in the midline. GBM_midline-clustered cases were characterised by PDGFRA amplification/mutation (73.3%), mutations of mismatch repair genes (40.0%), and all showed H3K27me3 and EZH1P loss, and an unmethylated MGMT promoter. Across the whole cohort, MGMT promoter methylation and wt TERT promoter were favourable prognosticators. Mismatch repair gene mutations were poor prognosticators and together with methylation class and MGMT methylation, maintained their significance in multivariate analyses. BRAF mutation was a good prognosticator in the PXA-clustered tumours. CONCLUSION: Methylation profiling is a useful tool in the diagnosis and prognostication of AYA glioblastomas, and the methylation classes have distinct molecular characteristics. The usual molecular diagnostic criteria for adult IDHwt glioblastoma should be applied with caution within the AYA age group.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioblastoma , Adolescente , Astrocitoma/patología , Neoplasias Encefálicas/patología , Metilación de ADN , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Glioblastoma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Adulto Joven
10.
Malar J ; 20(1): 374, 2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34538247

RESUMEN

BACKGROUND: Plasmodium falciparum erythrocyte binding antigen-175 (PfEBA-175) is a candidate antigen for a blood-stage malaria vaccine, while various polymorphisms and dimorphism have prevented to development of effective vaccines based on this gene. This study aimed to investigate the dimorphism of PfEBA-175 on both the Bioko Island and continent of Equatorial Guinea, as well as the genetic polymorphism and natural selection of global PfEBA-175. METHODS: The allelic dimorphism of PfEBA-175 region II of 297 bloods samples from Equatorial Guinea in 2018 and 2019 were investigated by nested polymerase chain reaction and sequencing. Polymorphic characteristics and the effect of natural selection were analyzed using MEGA 7.0, DnaSP 6.0 and PopART programs. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 and Foldx program. RESULTS: Both Bioko Island and Bata district populations, the frequency of the F-fragment was higher than that of the C-fragment of PfEBA-175 gene. The PfEBA-175 of Bioko Island and Bata district isolates showed a high degree of genetic variability and heterogeneity, with π values of 0.00407 & 0.00411 and Hd values of 0.958 & 0.976 for nucleotide diversity, respectively. The values of Tajima's D of PfEBA-175 on Bata district and Bioko Island were 0.56395 and - 0.27018, respectively. Globally, PfEBA-175 isolates from Asia were more diverse than those from Africa and South America, and genetic differentiation quantified by the fixation index between Asian and South American countries populations was significant (FST > 0.15, P < 0.05). A total of 310 global isolates clustered in 92 haplotypes, and only one cluster contained isolates from three continents. The mutations A34T, K109E, D278Y, K301N, L305V and D329N were predicted as probably damaging. CONCLUSIONS: This study demonstrated that the dimorphism of F-fragment PfEBA-175 was remarkably predominant in the study area. The distribution patterns and genetic diversity of PfEBA-175 in Equatorial Guinea isolates were similar another region isolates. And the levels of recombination events suggested that natural selection and intragenic recombination might be the main drivers of genetic diversity in global PfEBA-175. These results have important reference value for the development of blood-stage malaria vaccine based on this antigen.


Asunto(s)
Antígenos de Protozoos/genética , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Selección Genética , Adolescente , Adulto , Anciano , Niño , Preescolar , Guinea Ecuatorial , Humanos , Lactante , Malaria Falciparum/parasitología , Persona de Mediana Edad , Adulto Joven
11.
Malar J ; 20(1): 124, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33653360

RESUMEN

BACKGROUND: Thrombospondin-related adhesive protein (TRAP) is a transmembrane protein that plays a crucial role during the invasion of Plasmodium falciparum into liver cells. As a potential malaria vaccine candidate, the genetic diversity and natural selection of PfTRAP was assessed and the global PfTRAP polymorphism pattern was described. METHODS: 153 blood spot samples from Bioko malaria patients were collected during 2016-2018 and the target TRAP gene was amplified. Together with the sequences from database, nucleotide diversity and natural selection analysis, and the structural prediction were preformed using bioinformatical tools. RESULTS: A total of 119 Bioko PfTRAP sequences were amplified successfully. On Bioko Island, PfTRAP shows its high degree of genetic diversity and heterogeneity, with π value for 0.01046 and Hd for 0.99. The value of dN-dS (6.2231, p < 0.05) hinted at natural selection of PfTRAP on Bioko Island. Globally, the African PfTRAPs showed more diverse than the Asian ones, and significant genetic differentiation was discovered by the fixation index between African and Asian countries (Fst > 0.15, p < 0.05). 667 Asian isolates clustered in 136 haplotypes and 739 African isolates clustered in 528 haplotypes by network analysis. The mutations I116T, L221I, Y128F, G228V and P299S were predicted as probably damaging by PolyPhen online service, while mutations L49V, R285G, R285S, P299S and K421N would lead to a significant increase of free energy difference (ΔΔG > 1) indicated a destabilization of protein structure. CONCLUSIONS: Evidences in the present investigation supported that PfTRAP gene from Bioko Island and other malaria endemic countries is highly polymorphic (especially at T cell epitopes), which provided the genetic information background for developing an PfTRAP-based universal effective vaccine. Moreover, some mutations have been shown to be detrimental to the protein structure or function and deserve further study and continuous monitoring.


Asunto(s)
Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Epítopos , Guinea Ecuatorial/epidemiología , Frecuencia de los Genes , Variación Genética , Haplotipos , Humanos , Vacunas contra la Malaria , Malaria Falciparum/epidemiología , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Polimorfismo Genético , Proteínas Protozoarias/química , Proteínas Protozoarias/inmunología , Selección Genética
12.
Front Cell Infect Microbiol ; 11: 613304, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33598439

RESUMEN

Background: The emerging Coronavirus Disease-2019 (COVID-19) has challenged the public health globally. With the increasing requirement of detection for SARS-CoV-2 outside of the laboratory setting, a rapid and precise Point of Care Test (POCT) is urgently needed. Methods: Targeting the nucleocapsid (N) gene of SARS-CoV-2, specific primers, and probes for reverse transcription recombinase-aided amplification coupled with lateral flow dipstick (RT-RAA/LFD) platform were designed. For specificity evaluation, it was tested with human coronaviruses, human influenza A virus, influenza B viruses, respiratory syncytial virus, and hepatitis B virus, respectively. For sensitivity assay, it was estimated by templates of recombinant plasmid and pseudovirus of SARS-CoV-2 RNA. For clinical assessment, 100 clinical samples (13 positive and 87 negatives for SARS-CoV-2) were tested via quantitative reverse transcription PCR (RT-qPCR) and RT-RAA/LFD, respectively. Results: The limit of detection was 1 copies/µl in RT-RAA/LFD assay, which could be conducted within 30 min at 39°C, without any cross-reaction with other human coronaviruses and clinical respiratory pathogens. Compared with RT-qPCR, the established POCT assay offered 100% specificity and 100% sensitivity in the detection of clinical samples. Conclusion: This work provides a convenient POCT tool for rapid screening, diagnosis, and monitoring of suspected patients in SARS-CoV-2 endemic areas.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , SARS-CoV-2/genética , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19/instrumentación , Proteínas de la Nucleocápside de Coronavirus/genética , Cartilla de ADN/genética , Humanos , Fosfoproteínas/genética , Pruebas en el Punto de Atención , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/instrumentación , Recombinasas/metabolismo , Transcripción Reversa , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad
13.
Nanotechnology ; 32(10): 105705, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33232950

RESUMEN

The pursuit of optoelectronic devices operating in mid-infrared regime is driven by both fundamental interests and commercial applications. The narrow bandgap (0.3 eV) of layered Bi2Se3 makes it a promising material for mid-infrared photodetection. However, the weak absorption of mid-infrared optical power and high dark current level restrict its performance. Here, a supply-control technique is applied to modulate the growth mode of Bi2Se3 crystal, and Bi2Se3 crystals with various morphologies are obtained. The nanoplates pattern transits from maze to freestanding when source mass was tuned. Due to the strong infrared absorption and photoelectric conversion efficiency of vertical Bi2Se3 nanoplates, the as-prepared vertical Bi2Se3 nanoplates/Si heterojunction shows excellent photoresponse and extremely low dark current. Among these devices based on different Bi2Se3 morphologies, freestanding nanoplates show the optimal mid-infrared characteristics, namely a photo-to-dark ratio of 2.0 × 104, a dark current of 0.21 pA, a response time of 23 ms, a specific detectivity of 6.1 × 1010 Jones (calculated) and 1.2 × 1010 Jones (measured) under 2.7 µm illumination and at room temperature. Notably, the specific detectivity of our devices are comparable to commercial InGaAs photodetectors. With the tunable- morphology growing technique and excellent photoresponding characteristics, Bi2Se3 nanomaterials are worth attention in optoelectronic field.

14.
Mol Genet Genomic Med ; 8(12): e1540, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33128437

RESUMEN

BACKGROUND: Although glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common inherited disorder in the Chinese population, there is scarce evidence regarding the epidemiology, evolutionary origin, and malaria-induced positive selection effects of G6PD-deficient alleles in various Chinese ethnic populations. METHODS: We performed a large population-based screening (n = 15,690) to examine the impact of selection on human nucleotide diversity and to infer the evolutionary history of the most common deficiency alleles in Chinese populations. RESULTS: The frequencies of G6PD deficiency ranged from 0% to 11.6% in 12 Chinese ethnic populations. A frequency map based on geographic information showed that G6PD deficiency was highly correlated with historical malaria prevalence in China and was affected by altitude and latitude. The five most frequently occurring G6PD gene variants were NM_001042351.3:c.1376G>T, NM_001042351.3:c.1388G>A, NM_001042351.3:c.95A>G, NM_001042351.3:c.1311T>C, and NM_001042351.3:c.1024C>T, which were distributed with ethnic features. A pathogenic but rarely reported variant site (NM_001042351.3:c.448G>A) was identified in this study. Bioinformatic analysis revealed a strong and recent positive selection targeting the NM_001042351.3:c.1376G>T allele that originated in the past 3125 to 3750 years and another selection targeting the NM_001042351.3:c.1388G>A allele that originated in the past 5000 to 6000 years. Additionally, both alleles originated from a single ancestor. CONCLUSION: These results indicate that malaria has had a major impact on the Chinese genome since the introduction of rice agriculture.


Asunto(s)
Alelos , Evolución Molecular , Deficiencia de Glucosafosfato Deshidrogenasa , Glucosafosfato Deshidrogenasa/genética , Malaria , Mutación , Pueblo Asiatico , China/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/enzimología , Deficiencia de Glucosafosfato Deshidrogenasa/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/parasitología , Humanos , Malaria/enzimología , Malaria/epidemiología , Malaria/genética , Masculino , Prevalencia
15.
Malar J ; 19(1): 245, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660484

RESUMEN

BACKGROUND: Plasmodium falciparum circumsporozoite protein (PfCSP) is a potential malaria vaccine candidate, but various polymorphisms of the pfcsp gene among global P. falciparum population become the major barrier to the effectiveness of vaccines. This study aimed to investigate the genetic polymorphisms and natural selection of pfcsp in Bioko and the comparison among global P. falciparum population. METHODS: From January 2011 to December 2018, 148 blood samples were collected from P. falciparum infected Bioko patients and 96 monoclonal sequences of them were successfully acquired and analysed with 2200 global pfcsp sequences mined from MalariaGEN Pf3k Database and NCBI. RESULTS: In Bioko, the N-terminus of pfcsp showed limited genetic variations and the numbers of repetitive sequences (NANP/NVDP) were mainly found as 40 (35%) and 41 (34%) in central region. Most polymorphic characters were found in Th2R/Th3R region, where natural selection (p > 0.05) and recombination occurred. The overall pattern of Bioko pfcsp gene had no obvious deviation from African mainland pfcsp (Fst = 0.00878, p < 0.05). The comparative analysis of Bioko and global pfcsp displayed the various mutation patterns and obvious geographic differentiation among populations from four continents (p < 0.05). The global pfcsp C-terminal sequences were clustered into 138 different haplotypes (H_1 to H_138). Only 3.35% of sequences matched 3D7 strain haplotype (H_1). CONCLUSIONS: The genetic polymorphism phenomena of pfcsp were found universal in Bioko and global isolates and the majority mutations located at T cell epitopes. Global genetic polymorphism and geographical characteristics were recommended to be considered for future improvement of malaria vaccine design.


Asunto(s)
Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas Protozoarias/genética , Guinea Ecuatorial , Haplotipos , Selección Genética
16.
Infect Drug Resist ; 13: 1203-1212, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32431521

RESUMEN

PURPOSE: Antimalarial drug resistance is one of the major challenges in global efforts to control and eliminate malaria. In 2006, sulfadoxine-pyrimethamine (SP) replaced with artemisinin-based combination therapy (ACT) on Bioko Island, Equatorial Guinea, in response to increasing SP resistance, which is associated with mutations in the dihydrofolate reductase (Pfdhfr) and dihydropteroate synthase (Pfdhps) genes. PATIENTS AND METHODS: To evaluate the trend of molecular markers associated with SP resistance on Bioko Island from 2011 to 2017, 179 samples collected during active case detection were analysed by PCR and DNA sequencing. RESULTS: Pfdhfr and Pfdhps gene sequences were obtained for 90.5% (162/179) and 77.1% (138/179) of the samples, respectively. For Pfdhfr, 97.5% (158/162), 95.7% (155/162) and 98.1% (159/162) of the samples contained N51I, C59R and S108N mutant alleles, respectively. And Pfdhps S436A, A437G, K540E, A581G, and A613S mutations were observed in 25.4% (35/138), 88.4% (122/138), 5.1% (7/138), 1.4% (2/138), and 7.2% (10/138) of the samples, respectively. Two classes of previously described Pfdhfr-Pfdhps haplotypes associated with SP resistance and their frequencies were identified: partial (IRNI-SGKAA, 59.4%) and full (IRNI-SGEAA, 5.5%) resistance. Although no significant difference was observed in different time periods (p>0.05), our study confirmed a slowly increasing trend of the frequencies of these SP-resistance markers in Bioko parasites over the 7 years investigated. CONCLUSION: The findings reveal the general existence of SP-resistance markers on Bioko Island even after the replacement of SP as a first-line treatment for uncomplicated malaria. Continuous molecular monitoring and additional control efforts in the region are urgently needed.

17.
Nanotechnology ; 31(33): 335401, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32330907

RESUMEN

Photoelectrochemical (PEC) cells offer a promising approach for developing low-cost solar energy conversion systems. However, the lack of stable and cost-effective electrodes remains a bottleneck that hampers their practical applications. Here, we propose a kind of integrated all-in-one three-dimensional (3D) carbon nanowall (CNW) electrode without sensitized semiconductors for stable all-carbon PEC cells. The all-in-one CNW electrodes were fabricated by directly growing CNW on both sides of the SiO2/Si/SiO2 wafer employing the radio frequency plasmon enhanced chemical vapor deposition method. Benefitting from the interconnected 3D textured structure, the CNW can effectively absorb the incident light and provide a large electrochemical reaction interface at the CNW surface that promotes the separation of photogenerated charge carriers, which makes it a superior electrode material. Experimental results show that the all-in-one CNW electrodes possess excellent PEC performance with a photocurrent density of 830 µA cm-2. Moreover, the CNW electrodes exhibit excellent photoresponses over a wide waveband and superior stability with a maintained photocurrent response, even after 60 d, which outperforms the electrodes using the other two-dimensional layered materials or semiconductor sensitized electrodes. Such an all-in-one electrode with impressive photovoltaic properties provides a promising platform for PEC applications that is eco-friendly with high efficiency, excellent stability and low cost.

18.
Mol Genet Genomic Med ; 8(2): e1061, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31872983

RESUMEN

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme that protects red blood cells from oxidative damage. Although G6PD-deficient alleles appear to confer a protective effect of malaria, the link with clinical protection against Plasmodium infection is conflicting. METHODS: A case-control study was conducted on Bioko Island, Equatorial Guinea and further genotyping analysis used to detect natural selection of the G6PD A- allele. RESULTS: Our results showed G6PD A- allele could significantly reduce the risk of Plasmodium falciparum infection in male individuals (adjusted odds ratio [AOR], 0.43; 95% confidence interval [CI], 0.20-0.93; p < .05) and homozygous female individuals (AOR, 0.11; 95% CI, 0.01-0.84; p < .05). Additionally, the parasite densities were significantly different in the individuals with different G6PD A- alleles and individual levels of G6PD enzyme activity. The pattern of linkage disequilibrium and results of the long-range haplotype test revealed a strong selective signature in the region encompassing the G6PD A- allele over the past 6,250 years. The network of inferred haplotypes suggested a single origin of the G6PD A- allele in Africans. CONCLUSION: Our findings demonstrate that glucose-6-phosphate dehydrogenase (G6PD) A- allele could reduce the risk of P. falciparum infection in the African population and indicate that malaria has a recent positive selection on G6PD A- allele.


Asunto(s)
Alelos , Glucosafosfato Deshidrogenasa/genética , Malaria/genética , Población/genética , Selección Genética , Adolescente , Adulto , Población Negra/genética , Niño , Preescolar , Femenino , Guinea , Homocigoto , Humanos , Lactante , Islas , Desequilibrio de Ligamiento , Masculino , Plasmodium falciparum/patogenicidad , Polimorfismo de Nucleótido Simple
19.
ACS Appl Mater Interfaces ; 11(19): 17663-17669, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31007009

RESUMEN

Because of the slow relaxation process according to weak acoustic phonon interaction, the photothermionic effect in graphene could be much more obvious than in the metal film, so a graphene heterojunction photodetector based on the photothermionic effect is promising for infrared imaging applications. However, the 2.3% absorption rate of the graphene film presents a severe limitation. Here, in situ grown graphene nanowalls (GNWs) were integrated on the silicon substrate interfaced with Au nanoparticles. Because of the strong infrared absorption and hot-carrier relaxation process in GNWs, the as-prepared GNWs/Au/silicon heterojunction has a photo to dark ratio of 2 × 104, responsivity of 138 mA/W, and linear dynamic range of 89.7 dB, with a specific detectivity of 1.4 × 1010 and 1.6 × 109 cm Hz1/2/W based on calculated and measured noise, respectively, in 1550 nm at room temperature, and has the best performance among silicon-compatible infrared photodetectors without any complicated waveguide structures. Obvious photoresponses are also detected in the mid-infrared and terahertz band. The interface Au particle is found to reduce the barrier height and enhance absorption. The device structure in this report could be compatible with the semiconductor process, so that infrared photodetectors with high integration density and low cost could be potentially realized.

20.
Nanomaterials (Basel) ; 9(3)2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30875958

RESUMEN

Combining functional nanomaterials composite with three-dimensional graphene (3DG) is a promising strategy for improving the properties of stress sensors. However, it is difficult to realize stress sensors with both a wide measurement range and a high sensitivity. In this paper, graphene-SiO2 balls (GSB) were composed into 3DG in order to solve this problem. In detail, the GSB were prepared by chemical vapor deposition (CVD) method, and then were dispersed with graphene oxide (GO) solution to synthesize GSB-combined 3DG composite foam (GSBF) through one-step hydrothermal reduction self-assembly method. The prepared GSBF owes excellent mechanical (95% recoverable strain) and electrical conductivity (0.458 S/cm). Furthermore, it exhibits a broad sensing range (0⁻10 kPa) and ultrahigh sensitivity (0.14 kPa-1). In addition, the water droplet experiment demonstrates that GSBF is a competitive candidate of high-performance materials for stress sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...