Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.719
Filtrar
1.
Pak J Med Sci ; 40(6): 1087-1092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952500

RESUMEN

Objective: To investigate the effects of motivational interview education on psychological status, compliance behavior and quality of life in patients with malignant tumors combined with diabetes mellitus. Methods: This is a retrospective study. Eighty patients with malignant tumors combined with diabetes mellitus admitted at The Fourth Hospital of Hebei Medical University from January 2021 to June 2022 were included as subjects and divided into observation group and control group according to the intervention measures. Patients in the control group were given routine health education intervention, while those in the observation group were given motivational interviewing intervention on the basis of the control group. We compared the prognosis, cognitive function, quality of life, relief of cancer pain before intervention and three months after the intervention of the two groups were compared. Results: At three months after the intervention, the total remission rate of cancer pain in the observation group was higher than that in the control group(p<0.05), while the levels of FBG and 2hPG in the observation group were significantly lower than those in the control group(p<0.05). Self-Rating Anxiety Scale(SAS) and Self-rating depression scale(SDS) scores decreased in both groups three months after the intervention, with the level of reduction in the observation group being higher than that in the control group(p<0.05). The overall compliance was higher in the observation group than in the control group(p<0.05). Conclusion: Motivational interviewing leads to alleviate negative emotions, improve the psychological status, enhance compliance behavior and improve quality of life in patients with malignant tumors combined with diabetes mellitus.

2.
Environ Sci Technol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954631

RESUMEN

Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.

3.
Inorg Chem ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957956

RESUMEN

The separation of high-octane dibranched alkanes from naphtha is critical in the refining of gasoline. To date, research on the membrane-based separation of alkane isomers has been limited, with a particular paucity of investigations into mixed-matrix membranes. Herein, the continuous and dense UiO-66/PIM-1 mixed-matrix membrane, which was prepared through precise control of the interfacial structure, was first applied to the differentiation of C6 alkane isomers. Due to the synergistic combination of UiO-66 with differential adsorption capabilities for alkanes and PIM-1 that possesses a cross-linkable structure, the resulting UiO-66/PIM-1-(20) membrane demonstrated remarkable separation performance and high stability. Pervaporation measurements showed that the mass fraction of 2,2-dimethylbutane in the feed side was increased from 50.0 to 75.8 wt % while an excellent flux of 1700 g m-2 h-1 was maintained over a continuous 40 h period. The UiO-66/PIM-1-(20) membrane, characterized by its facile replication and processing, shows potential for large-scale fabrication. This study offers a new approach to the membrane separation of alkane isomers.

4.
J Exp Clin Cancer Res ; 43(1): 188, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965605

RESUMEN

BACKGROUND: The vast majority of lncRNAs have low expression abundance, which greatly limits their functional range and impact. As a high expression abundance lncRNA, FGD5-AS1's non-ceRNA biological function in cancer is unclear. METHODS: RNA-seq studies and chromatin immunoprecipitation (Chip) assays were performed to identify ZEB1-regulated lncRNAs. RNA sequencing, RNA pulldown, RNA Immunoprecipitation assays, and rescue assays were conducted to explore the molecular mechanisms of FGD5-AS1 in GC. RESULTS: As one of the most abundant lncRNAs in cells, FGD5-AS1 has been shown to be transcriptionally activated by ZEB1, thus closely related to epithelial-mesenchymal transition (EMT) signaling. Clinical analysis showed that FGD5-AS1 overexpression was clinically associated with lymph node metastasis, and predicted poor survival in GC. Loss-of-function studies confirmed that FGD5-AS1 knockdown inhibited GC proliferation and induced cisplatin chemosensibility, cell senescence, and DNA damage in GC cells. Mechanismically, FGD5-AS1 is a YBX1-binding lncRNA due to its mRNA contains three adjacent structural motifs (UAAUCCCA, ACCAGCCU, and CAGUGAGC) that can be recognized and bound by YBX1. And this RNA-protein interaction prolonged the half-life of the YBX1 protein in GC. Additionally, a rescue assay showed that FGD5-AS1 promotes GC by repressing cell senescence and ROS production via YBX1. CONCLUSION: FGD5-AS1 is a cellular high-abundant lncRNA that is transcriptionally regulated by ZEB1. FGD5-AS1 overexpression promoted GC progression by inhibiting cell senescence and ROS production through binding and stabilizing the YBX1 protein.


Asunto(s)
Proliferación Celular , Senescencia Celular , ARN Largo no Codificante , Especies Reactivas de Oxígeno , Neoplasias Gástricas , Proteína 1 de Unión a la Caja Y , Humanos , Proteína 1 de Unión a la Caja Y/metabolismo , Proteína 1 de Unión a la Caja Y/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Animales , Línea Celular Tumoral , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Transición Epitelial-Mesenquimal , Factores de Intercambio de Guanina Nucleótido
5.
Phytomedicine ; 132: 155841, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38971025

RESUMEN

BACKGROUND: Chemotherapy-induced peripheral neuropathy (CIPN) represents a prevailing and severe clinical concern, characterized by limited availability of clinically effective treatment strategies. Current evidence endorses matrine's potential as a neuroprotective and analgesic agent for CIPN. Nevertheless, the precise targets and mechanisms of action of matrine remain insufficiently explored, impeding comprehensive pharmacological investigation and clinical application. OBJECTIVE: This study endeavors to elucidate the analgesic and neuroprotective effects of matrine in mice with vincristine-induced neuropathic pain. A focal point is the identification of matrine's specific target and the underlying molecular mechanisms governing its analgesic and neuroprotective actions. METHODS: To discern matrine's analgesic effects in CIPN mice, we conducted behavioral experiments encompassing the Von Frey filament test and Hargreaves Test. Furthermore, we conducted electrophysiological and histopathological assessments involving HE staining, Nissl staining, and Fluoro-Jade B staining to evaluate matrine's effects on neuroprotection within dorsal root ganglia and the spinal cord of CIPN mice. Sequentially, thermal shift assay, GTP hydrolysis assay, and nucleotide exchange assay were executed to validate matrine's inhibitory effects on KRAS. Molecular docking and site-directed mutagenesis experiments were implemented to identify the precise binding pocket of matrine on KRAS. Lastly, matrine's inhibitory effects on downstream signaling pathways of KRAS were confirmed through experiments conducted at animal model. RESULTS: Matrine exhibited a notable increase in mechanical withdrawal threshold and thermal withdrawal latency in vincristine-treated mice. This compound substantially ameliorated the neurofunctional blockade associated with sensory and motor functions induced by vincristine. Moreover, matrine mitigated pathological damage within DRG and the L4-L5 spinal cord regions. The study's MST experiments indicated matrine's substantial elevation of KRAS's melting temperature. The GTP hydrolysis and nucleotide exchange assays revealed concentration-dependent inhibition of KRAS activity by matrine. Molecular docking provided insight into the binding mode of matrine with KRAS, while site-directed mutagenesis verified the specific binding site of matrine on KRAS. Lastly, matrine's inhibition of downstream Raf/Erk1/2 and PI3K/Akt/mTOR signaling pathways of KRAS was confirmed in VCR mice. CONCLUSION: Compared to previous studies, our research has identified matrine as a natural inhibitor of the elusive protein KRAS, often considered "undruggable." Furthermore, this study has revealed that matrine exerts its therapeutic effects on chemotherapy-induced peripheral neuropathy (CIPN) by inhibiting KRAS activation, subsequently suppressing downstream signaling pathways such as Raf/Erk1/2 and PI3K/Akt/mTOR. This investigation signifies the discovery of a novel target for matrine, thus expanding the potential scope of its involvement in KRAS-related biological functions and diseases. These findings hold the promise of providing a crucial experimental foundation for forthcoming drug development initiatives centered around matrine, thereby advancing the field of pharmaceutical research.

6.
Transl Lung Cancer Res ; 13(6): 1414-1419, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38973961

RESUMEN

Background: Lung cancer is the malignant tumor with high incidence and mortality in China, and more than 30% of non-small cell lung cancer (NSCLC) patients are in the locally advanced stage at the first-time diagnosis. Currently, neoadjuvant epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) combined with radical surgery is effective in the treatment of unresectable stage III EGFR-mutated NSCLC (NSCLCm), and related studies are gradually increasing. But the feasibility of neoadjuvant EGFR-TKI combined with radical surgery for unresectable stage III EGFR-mutant lung squamous cell carcinoma (LUSQm) remains controversial. Case Description: This report presented a successful case of neoadjuvant target-therapy with aumolertinib, the third-generation EGFR-TKI, combined with radical surgery for a stage IIIA LUSQm female patient. After four cycles (28 days/cycle) of neoadjuvant target-therapy, the tumor had a partial response on imaging evaluation and pathological evaluation after surgery showed complete tumor response. The neoadjuvant target-therapy was well tolerated. All adverse events (AEs) that occurred during the treatment were grade I, including decreased platelets, impaired liver function, and diarrhea. The patient was instructed to continue taking Aumolertinib for 3 years after surgery. At the cut-off date of April 1, 2024, the patient had no recurrence after 20 months of treatment. Conclusions: The result of patient treatment demonstrated the potential feasibility of neoadjuvant Aumolertinib monotherapy for locally advanced LUSQm. The report provides some support for neoadjuvant target-therapy for LUSQm.

7.
Heliyon ; 10(12): e32796, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975201

RESUMEN

Objective: The previous coronavirus disease 2019(COVID-19) epidemic inflicted significant psychological trauma on emergency and critical care nurses due to various factors, potentially leading to job burnout. Despite the rise of positive psychology, little is known about the post-traumatic growth experience of these nurses after the pandemic. The aim of this study was to assess the experience of post-traumatic growth among emergency and critical care nurses, in order to provide managerial insights for developing effective strategies and facilitating the transformation of nurses' negative emotions into positive ones. Design: A qualitative review. Data sources: PubMed, EBSCO, Medline, Elsvier, Cochrane Library, CINAHL, Web of Science, Embase, and Ovid and Chinese databases include the following: Chinese National Knowledge Infrastructure (CNKI), Wanfang Database (CECDB), VIP Database and China Biomedical Database (CBM). Review methods: All articles about emergency and critical care nurses' post-traumatic growth after the COVID-19 pandemic were included after searching and screening 13 databases. The meta-synthesis method was used to integrate and evaluate the included literature in qualitative research. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was used as a basis for reporting the review. The literature was selected and evaluated by two researchers, and then meta-integration was used for analysis. Results: From a total of 11 articles, 90 main results were presented, eight new categories were integrated, and three themes were formed: stress period, adjustment period and growth period. These three themes include eight sub-themes: negative emotion, psychological gap, self adjusting, social support, improvement of personal ability, increased sense of professional belonging, spiritual awakening and extended thinking, look ahead. Conclusion: Post-traumatic growth in emergency and critical care nurses is dynamic. Managers should monitor the psychological changes experienced by emergency and critical care nurses following traumatic events, offering targeted support at different stages, providing enhanced professional development opportunities, refining management strategies, guiding nurses in self-adjustment and active coping with trauma, and promoting their physical and mental well-being to ensure a positive mindset for effectively addressing future public health crises.

8.
Endosc Ultrasound ; 13(2): 65-75, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947752

RESUMEN

Artificial intelligence (AI) is an epoch-making technology, among which the 2 most advanced parts are machine learning and deep learning algorithms that have been further developed by machine learning, and it has been partially applied to assist EUS diagnosis. AI-assisted EUS diagnosis has been reported to have great value in the diagnosis of pancreatic tumors and chronic pancreatitis, gastrointestinal stromal tumors, esophageal early cancer, biliary tract, and liver lesions. The application of AI in EUS diagnosis still has some urgent problems to be solved. First, the development of sensitive AI diagnostic tools requires a large amount of high-quality training data. Second, there is overfitting and bias in the current AI algorithms, leading to poor diagnostic reliability. Third, the value of AI still needs to be determined in prospective studies. Fourth, the ethical risks of AI need to be considered and avoided.

10.
Artículo en Inglés | MEDLINE | ID: mdl-38941209

RESUMEN

Knowledge graph reasoning (KGR), aiming to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs), has become a fast-growing research direction. It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc. According to the graph types, existing KGR models can be roughly divided into three categories, i.e., static models, temporal models, and multi-modal models. Early works in this domain mainly focus on static KGR, and recent works try to leverage the temporal and multi-modal information, which are more practical and closer to real-world. However, no survey papers and open-source repositories comprehensively summarize and discuss models in this important direction. To fill the gap, we conduct a first survey for knowledge graph reasoning tracing from static to temporal and then to multi-modal KGs. Concretely, the models are reviewed based on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques and scenarios). Besides, the performances, as well as datasets, are summarized and presented. Moreover, we point out the challenges and potential opportunities to enlighten the readers. The corresponding open-source repository is shared on GitHub https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.

12.
J Mater Chem B ; 12(25): 6091-6101, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38828732

RESUMEN

Due to the rapid progression and aggressive metastasis of breast cancer, its diagnosis and treatment remain a great challenge. The simultaneous inhibition of tumor growth and metastasis is necessary for breast cancer to obtain ideal therapeutic outcomes. We herein report the development of radioactive hybrid semiconducting polymer nanoparticles (SPNH) for imaging-guided tri-modal therapy of breast cancer. Two semiconducting polymers are used to form SPNH with a diameter of around 60 nm via nano-coprecipitation and they are also labeled with iodine-131 (131I) to enhance the imaging functions. The formed SPNH show good radiolabeling stability and excellent photodynamic and photothermal effects under 808 nm laser irradiation to produce singlet oxygen (1O2) and heat. Moreover, SPNH can generate 1O2 with ultrasound irradiation via their sonodynamic properties. After intravenous tail vein injection, SPNH can effectively accumulate in the subcutaneous 4T1 tumors of living mice as verified via fluorescence and single photon emission computed tomography (SPECT) imaging. With the irradiation of tumors using an 808 nm laser and US, SPNH mediate photodynamic therapy (PDT), photothermal therapy (PTT) and sonodynamic therapy (SDT) to kill tumor cells. Such a tri-modal therapy leads to an improved efficacy in inhibiting tumor growth and suppressing tumor metastasis compared to the sole SDT and combinational PDT-PTT. This study thus demonstrates the applications of SPNH to diagnose tumors and combine different therapies for effective breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Radioisótopos de Yodo , Nanopartículas , Fotoquimioterapia , Polímeros , Semiconductores , Animales , Nanopartículas/química , Ratones , Femenino , Polímeros/química , Radioisótopos de Yodo/química , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Ratones Endogámicos BALB C , Humanos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Tamaño de la Partícula , Tomografía Computarizada de Emisión de Fotón Único , Terapia Fototérmica , Neoplasias Mamarias Experimentales/diagnóstico por imagen , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/patología
13.
J Phys Chem A ; 128(25): 4956-4965, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38868987

RESUMEN

Criegee intermediates exert a crucial influence on atmospheric chemistry, functioning as powerful oxidants that facilitate the degradation of pollutants, and understanding their reaction kinetics is essential for accurate atmospheric modeling. In this study, the kinetics of CH2OO and syn-CH3CHOO reactions with acetaldehyde (CH3CHO) were investigated using a flash photolysis reaction tube coupled with the OH laser-induced fluorescence (LIF) method. The experimental results indicate that the reaction of syn-CH3CHOO with CH3CHO is independent of pressure in the range of 5-50 Torr when using Ar as the bath gas. However, the rate coefficient for the reaction between CH2OO and CH3CHO at 5.5 Torr was found to be lower compared to the near-constant values observed between 10 and 100 Torr. Furthermore, the reaction of syn-CH3CHOO with CH3CHO demonstrated positive temperature dependence from 283 to 330 K, with a rate coefficient of (2.11 ± 0.45) × 10-13 cm3 molecule-1 s-1 at 298 K. The activation energy and pre-exponential factor derived from the Arrhenius plot for this reaction were determined to be 2.32 ± 0.49 kcal mol-1 and (1.66 ± 0.61) × 10-11 cm3 molecule-1 s-1, respectively. In comparison, the reaction of CH2OO with CH3CHO exhibited negative temperature dependence, with a rate coefficient of (2.16 ± 0.39) × 10-12 cm3 molecule-1 s-1 at 100 Torr and 298 K and an activation energy and a pre-exponential factor of -1.73 ± 0.31 kcal mol-1 and (1.15 ± 0.21) × 10-13 cm3 molecule-1 s-1, respectively, over the temperature range of 280-333 K.

14.
J Biol Chem ; 300(7): 107424, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823640

RESUMEN

Lysozyme is a ß-1,4-glycosidase that hydrolyzes the polysaccharide backbone of bacterial cell walls. With an additional bactericidal function mediated by a separate protein domain, lysozyme is considered a uniquely important antimicrobial molecule contributing to the host's innate immune response to infection. Elevated lysozyme production is found in various inflammatory conditions while patients with genetic risks for inflammatory bowel diseases demonstrate abnormal lysozyme expression, granule packaging, and secretion in Paneth cells. However, it remains unclear how a gain- or loss-of-function in host lysozyme may impact the host inflammatory responses to pathogenic infection. We challenged Lyz1-/- and ectopic Lyz1-expressing (Villin-Lyz1TG) mice with S. Typhimurium and then comprehensively assessed the inflammatory disease progression. We conducted proteomics analysis to identify molecules derived from human lysozyme-mediated processing of live Salmonella. We examined the barrier-impairing effects of these identified molecules in human intestinal epithelial cell monolayer and enteroids. Lyz1-/- mice are protected from infection in terms of morbidity, mortality, and barrier integrity, whereas Villin-Lyz1TG mice demonstrate exacerbated infection and inflammation. The growth and invasion of Salmonella in vitro are not affected by human or chicken lysozyme, whereas lysozyme encountering of live Salmonella stimulates the release of barrier-disrupting factors, InvE-sipC and Lpp1, which directly or indirectly impair the tight junctions. The direct engagement of host intestinal lysozyme with an enteric pathogen such as Salmonella promotes the release of virulence factors that are barrier-impairing and pro-inflammatory. Controlling lysozyme function may help alleviate the inflammatory progression.

15.
Acta Pharmacol Sin ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914677

RESUMEN

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have obvious advantages over MSC therapy. But the strong procoagulant properties of MSC-EVs pose a potential risk of thromboembolism, an issue that remains insufficiently explored. In this study, we systematically investigated the procoagulant activity of large EVs derived from human umbilical cord MSCs (UC-EVs) both in vitro and in vivo. UC-EVs were isolated from cell culture supernatants. Mice were injected with UC-EVs (0.125, 0.25, 0.5, 1, 2, 4 µg/g body weight) in 100 µL PBS via the tail vein. Behavior and mortality were monitored for 30 min after injection. We showed that these UC-EVs activated coagulation in a dose- and tissue factor-dependent manner. UC-EVs-induced coagulation in vitro could be inhibited by addition of tissue factor pathway inhibitor. Notably, intravenous administration of high doses of the UC-EVs (1 µg/g body weight or higher) led to rapid mortality due to multiple thrombus formations in lung tissue, platelets, and fibrinogen depletion, and prolonged prothrombin and activated partial thromboplastin times. Importantly, we demonstrated that pulmonary thromboembolism induced by the UC-EVs could be prevented by either reducing the infusion rate or by pre-injection of heparin, a known anticoagulant. In conclusion, this study elucidates the procoagulant characteristics and mechanisms of large UC-EVs, details the associated coagulation risk during intravenous delivery, sets a safe upper limit for intravenous dose, and offers effective strategies to prevent such mortal risks when high doses of large UC-EVs are needed for optimal therapeutic effects, with implications for the development and application of large UC-EV-based as well as other MSC-EV-based therapies.

16.
Chem Commun (Camb) ; 60(54): 6889-6892, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874540

RESUMEN

The separation of toluene (Tol) and pyridine (Py) azeotropes is significant in the chemical industry. Herein, we present a new method for the energy-efficient separation of Tol and Py using pillar[5]arene-based adaptive macrocycle co-crystals (MCCs) that can selectively separate Py from a Py/Tol equimolar mixture with 99.2% purity, accompanied by vapochromic behavior from white to yellow.

17.
J Am Chem Soc ; 146(26): 17847-17853, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888888

RESUMEN

In the presence of water, hydronium ions formed within the micropores of zeolite H-BEA significantly influence the surrounding environment and the reactivity of organic substrates. The positive charge of these ions, coupled with the zeolite's negatively charged framework, results in an ionic environment that causes a strongly nonideal solvation behavior of cyclohexanol. This leads to a significantly higher excess chemical potential in the initial state and stabilizes at the same time the charged transition state in the dehydration of cyclohexanol. As a result, the free-energy barrier of the reaction is lowered, leading to a marked increase in the reaction rates. Nonetheless, there is a limit to the reaction rate enhancement by the hydronium ion concentration. Experiments conducted with low concentrations of reactants show that beyond an optimal concentration, the required spatial rearrangement between hydronium ions and cyclohexanols inhibits further increases in the reaction rate, leading to a peak in the intrinsic activity of hydronium ions. The quantification of excess chemical potential in both initial and transition states for zeolites H-BEA, along with findings from HMFI, provides a basis to generalize and predict rates for hydronium-ion-catalyzed dehydration reactions in Brønsted zeolites.

18.
J Proteome Res ; 23(7): 2552-2560, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38864484

RESUMEN

Detection of exhaled volatile organic compounds (VOCs) is promising for noninvasive screening of esophageal cancer (EC). Cellular VOC analysis can be used to investigate potential biomarkers. Considering the crucial role of methionine (Met) during cancer development, exploring associated abnormal metabolic phenotypes becomes imperative. In this work, we employed headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) to investigate the volatile metabolic profiles of EC cells (KYSE150) and normal esophageal epithelial cells (HEECs) under a Met regulation strategy. Using untargeted approaches, we analyzed the metabolic VOCs of the two cell types and explored the differential VOCs between them. Subsequently, we utilized targeted approaches to analyze the differential VOCs in both cell types under gradient Met culture conditions. The results revealed that there were five/six differential VOCs between cells under Met-containing/Met-free culture conditions. And the difference in levels of two characteristic VOCs (1-butanol and ethyl 2-methylbutyrate) between the two cell types intensified with the increase of the Met concentration. Notably, this is the first report on VOC analysis of EC cells and the first to consider the effect of Met on volatile metabolic profiles. The present work indicates that EC cells can be distinguished through VOCs induced by Met regulation, which holds promise for providing novel insights into diagnostic strategies.


Asunto(s)
Neoplasias Esofágicas , Cromatografía de Gases y Espectrometría de Masas , Metionina , Compuestos Orgánicos Volátiles , Metionina/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Línea Celular Tumoral , Microextracción en Fase Sólida , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos
19.
Clin Med Insights Endocrinol Diabetes ; 17: 11795514241257122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835732

RESUMEN

Objective: There is no study on the relationship between triglyceride-glucose index (TyG index) and skeletal muscle mass in middle-aged and elderly C population. Therefore, the aim of the study is to investigate the relationship between the TyG index and weight-adjusted relative skeletal muscle index (RSMI) in middle-aged and elderly C population. Methods: We retrospectively studied 947 aged ⩾40 years subjects who got a routine medical examination in the Department of Geriatrics of R Hospital from May 2021 to March 2023. The RSMI was designed to evaluate skeletal muscle mass and calculated based on lean mass of the limbs(kg)/body weight(kg) × 100%. Skeletal muscle mass reduction was defined as a RSMI of 1-2 standard deviations (SD) below of healthy adults aged 30-49 years old. Considering the quartile groups of the TyG index, the subjects were assigned to 4 groups: Q1 (less than or equal to 8.171), Q2 (from 8.172 to 8.569), Q3 (from 8.570 to 8.992), and Q4 (greater than or equal to 8.993). Results: With TyG index increased, RSMI levels significantly reduced(P < .001). Spearman's correlation analysis showed that the TyG index was negatively correlated with RSMI in males (r = -0.320) and females (r = -0.240). The TyG index was positively correlated with body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) (P < .05). Besides, binary logistic regression analysis showed that the risk of developing reduced skeletal muscle mass in the group Q4 was 2.131 (95%CI:1.118-4.064) in males; and was 2.472 (95%CI:1.581-3.867) in females compared to the Q1 group. Conclusion: TyG index was negatively correlated with relative skeletal muscle index, and a higher TyG index was associated with the development of reduced skeletal muscle mass independently of other influencing factors. Therefore, the TyG index promises to be a predictor of skeletal muscle mass loss.

20.
BMC Nurs ; 23(1): 391, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844934

RESUMEN

BACKGROUND: The period of standardized training is a transitional stage when Generation Z newly graduated registered nurses (Gen Z NGRNs) change their role from student to nurse. Affected by the COVID-19, they lack clinical practice and practicum experience in emergency departments in their university studies. At the beginning of career, they are under great pressure. Resilience is one of the factors that reduce their stress level and increases endurance. It is of interest to understand how this representative group of nurses gained and played the experience of resilience early in their careers. OBJECTIVE: To explore Gen Z NGRNs' experience and process of resilience, to provide a new perspective and theoretical basis for psychological rehabilitation or intervention of medical staff who experienced transition shock. METHODS: This study employed a qualitative design based on the phenomenological approach. 18 nurses from a third-level class-A hospital in Shanghai who participated in standardized training in emergency department were enrolled using purposive sampling. Data collection was through in-depth and semi-structured interviews and continued until reaching data saturation. RESULTS: The investigation uncovered three themes and ten subthemes. Pressure and challenge contained high workload and high risk coexist, death's stress response, more emergencies and high professional requirements. Coping and adaptation contained team help, psychological restructuring, peer support, transformational leadership. Reflection and planning contained enhance learning, appreciate life. CONCLUSIONS: Our study described the embodiment and coping experience of the physical and mental stress faced by Gen Z NGRNs during their standardized training in the emergency department. It is emphasized that nurse educators should pay attention to the character and actual needs of Gen Z NGRNs, explore and formulate strategies, so as to guide NGRNs to quickly adapt and grow in the new role. The ultimate goal is to increase nurse retention and improve the quality of nursing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...