Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Med Image Anal ; 97: 103250, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39096842

RESUMEN

Ischemic lesion segmentation and the time since stroke (TSS) onset classification from paired multi-modal MRI imaging of unwitnessed acute ischemic stroke (AIS) patients is crucial, which supports tissue plasminogen activator (tPA) thrombolysis decision-making. Deep learning methods demonstrate superiority in TSS classification. However, they often overfit task-irrelevant features due to insufficient paired labeled data, resulting in poor generalization. We observed that unpaired data are readily available and inherently carry task-relevant cues, but are less often considered and explored. Based on this, in this paper, we propose to fully excavate the potential of unpaired unlabeled data and use them to facilitate the downstream AIS analysis task. We first analyze the utility of features at the varied grain and propose a multi-grained contrastive learning (MGCL) framework to learn task-related prior representations from both coarse-grained and fine-grained levels. The former can learn global prior representations to enhance the location ability for the ischemic lesions and perceive the healthy surroundings, while the latter can learn local prior representations to enhance the perception ability for semantic relation between the ischemic lesion and other health regions. To better transfer and utilize the learned task-related representation, we designed a novel multi-task framework to simultaneously achieve ischemic lesion segmentation and TSS classification with limited labeled data. In addition, a multi-modal region-related feature fusion module is proposed to enable the feature correlation and synergy between multi-modal deep image features for more accurate TSS decision-making. Extensive experiments on the large-scale multi-center MRI dataset demonstrate the superiority of the proposed framework. Therefore, it is promising that it helps better stroke evaluation and treatment decision-making.

2.
iScience ; 27(7): 110377, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055922

RESUMEN

In this study, the theoretical calculations proves that the combination of oxygen vacancy and amorphous carbon films in TiO2 (VO-CT) can effectively reduce the energy bandgap and work function. The minimum Gibbs free energies required for the CO2RR reaction of VO-CT are 0.20 eV, which is lower than pure TiO2. The amorphous c@TiO2 nanomaterials with oxygen vacancy and mesoporous structures (VO-MCT) are prepared with the P123 surfactant as the template and oxalic acid as an inducer. The electron paramagnetic resonance indicates the presence of abundant oxygen vacancy defects in the samples. UV-vis spectra indicate that the mesoporous structure enhances light absorption capacity. The photocatalytic CO2 reduction tests show that the highest conversion rates for CH4 and CO of VO-MCT are 14 µmol g-1 h-1 and 10.66 µmol g-1 h-1, respectively. The electron consumption rate of VO-MCT is 12.43 times higher than that of commercial TiO2 (P200).

3.
Front Immunol ; 15: 1431224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040116

RESUMEN

Introduction: High-alkalinity water is a serious health hazard for fish and can cause oxidative stress and metabolic dysregulation in fish livers. However, the molecular mechanism of liver damage caused by high alkalinity in fish is unclear. Methods: In this study, 180 carp were randomly divided into a control (C) group and a high-alkalinity (A25) group and were cultured for 56 days. High-alkalinity-induced liver injury was analysed using histopathological, whole-transcriptome, and metabolomic analyses. Results: Many autophagic bodies and abundant mitochondrial membrane damage were observed in the A25 group. High alkalinity decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activity and the total antioxidant capacity (T-AOC) and increased the malondialdehyde (MDA) content in liver tissues, causing oxidative stress in the liver. Transcriptome analysis revealed 61 differentially expressed microRNAs (miRNAs) and 4008 differentially expressed mRNAs. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that mammalian target of rapamycin (mTOR), forkhead box O (FoxO), mitogen-activated protein kinase (MAPK), and the autophagy signalling pathway were the molecular mechanisms involved. High alkalinity causes oxidative stress and autophagy and results in autophagic damage in the liver. Bioinformatic predictions indicated that Unc-51 Like Kinase 2 (ULK2) was a potential target gene for miR-140-5p, demonstrating that high alkalinity triggered autophagy through the miR-140-5p-ULK2 axis. Metabolomic analysis revealed that the concentrations of cortisol 21-sulfate and beta-aminopropionitrile were significantly increased, while those of creatine and uracil were significantly decreased. Discussion: The effects of high alkalinity on oxidative stress and autophagy injury in the liver were analysed using whole-transcriptome miRNA-mRNA networks and metabolomics approaches. Our study provides new insights into liver injury caused by highly alkaline water.


Asunto(s)
Autofagia , Hígado , Metaboloma , Estrés Oxidativo , Transcriptoma , Animales , Hígado/metabolismo , Hígado/patología , Perfilación de la Expresión Génica , Álcalis/toxicidad , Álcalis/efectos adversos , MicroARNs/genética , Metabolómica , Enfermedades de los Peces/metabolismo
4.
Nanoscale ; 16(29): 14130-14142, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39011614

RESUMEN

Recently, water resources have become scarce due to the growing global population and human impact on the environment, coupled with the effects of climate change. For solving the problem of global freshwater shortage and increasing the value of discarded polyphenylene sulfide (PPS) filter bags, in this study, balsa wood was used as the base of a photothermal solar evaporator, chitosan solution was used as the binder, and the main photothermal conversion materials used were polyphenylene sulfide (CP) carbide and copper sulfide. In order to create synergistic photothermal conversion materials, freeze-drying and in situ precipitation were used to deposit the photothermal conversion materials on top of the balsa wood. The prepared CP/CuS-wood evaporator has excellent water evaporation performance and light conversion capability, with a water evaporation rate of 2.68 kg m-2 h-1 and a photothermal conversion efficiency of 93.2% under simulated one solar intensity irradiation. In addition, the evaporator can effectively remove organic dyes such as methylene blue and methyl orange. The evaporator's durability and seawater desalination capability have also been confirmed through seawater desalination experiments and outdoor tests. Studies have shown that solar interface photothermal evaporators are a viable solution for desalination and wastewater treatment. This eco-friendly, economically viable and stable photothermal evaporator mentioned in this paper has pioneering features and will be a new paradigm for desalination and wastewater treatment.

5.
Front Oncol ; 14: 1423874, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39045564

RESUMEN

In this report, we present a case of a woman with concurrent cervical intraepithelial neoplasia grade III (CIN III) and urethral cancer, both associated with HPV16 infection. This unique case was initially brought to attention due to postmenopausal vaginal bleeding, despite the absence of urological symptoms and negative tumor markers. An unexpected discovery of pelvic lymph node metastasis during a hysterectomy intended for CIN III highlighted the rare coexistence of these conditions, with urethral cancer also linked to HPV-16 within the urethral lesion. This case emphasizes the diagnostic challenges faced by HPV-related cervical lesions and the critical need for increased vigilance, even when urological symptoms are not apparent. The findings underline the potential complexity of HPV-associated lesions and advocate for comprehensive screening strategies to ensure the timely detection and management of such intricate cases.

6.
Anal Chem ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031062

RESUMEN

The electrochemiluminescence (ECL) effectiveness of the tris(bipyridine) ruthenium(II) (Ru(bpy)32+) system is hampered by aggregation-caused quenching (ACQ) in optoelectronic systems as a result of π-π accumulation of the aromatic ring structure. In this work, a negatively charged tetraphenylvinyl molecule (TPE-2SO3Na, TPE-4SO3Na) was synthesized to modify the electrode interface, and the π-π accumulation between Ru(bpy)32+ molecules was transformed into the π-π interaction between Ru(bpy)32+ and TPE molecules. Interestingly, the ECL signal intensity of the Ru(bpy)32+-tripropylamine (TPA) system in the presence of TPE-2SO3Na was increased by about 15 times due to the π-π action and electrostatic action. In comparison with traditional physical packaging with porous zeolites, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), the fabricated electrode interface modification strategy was simple and efficient to avoid π-π accumulation in aqueous solutions. Our success will inspire other researchers to investigate the supramolecular interaction (π-π interaction, electrostatic interaction, hydrophilic interaction, and host-guest interaction) at the electrode interface to amplify the ECL intensities of Ru(bpy)32+.

7.
J Biol Chem ; 300(8): 107554, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002667

RESUMEN

Cyclic GMP-AMP synthase (cGAS), a cytosolic DNA sensor, also exhibits nuclear genomic localization and is involved in DNA damage signaling. In this study, we investigated the impact of cGAS crotonylation on the regulation of the DNA damage response, particularly homologous recombination repair, following exposure to ionizing radiation (IR). Lysine 254 of cGAS is constitutively crotonylated by the CREB-binding protein; however, IR-induced DNA damage triggers sirtuin 3 (SIRT3)-mediated decrotonylation. Lysine 254 decrotonylation decreased the DNA-binding affinity of cGAS and inhibited its interaction with PARP1, promoting homologous recombination repair. Moreover, SIRT3 suppression led to homologous recombination repair inhibition and markedly sensitized cancer cells to IR and DNA-damaging chemicals, highlighting SIRT3 as a potential target for cancer therapy. Overall, this study revealed the crucial role of cGAS crotonylation in the DNA damage response. Furthermore, we propose that modulating cGAS and SIRT3 activities could be potential strategies for cancer therapy.

8.
IEEE Trans Med Imaging ; PP2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38875085

RESUMEN

Quantitative infarct estimation is crucial for diagnosis, treatment and prognosis in acute ischemic stroke (AIS) patients. As the early changes of ischemic tissue are subtle and easily confounded by normal brain tissue, it remains a very challenging task. However, existing methods often ignore or confuse the contribution of different types of anatomical asymmetry caused by intrinsic and pathological changes to segmentation. Further, inefficient domain knowledge utilization leads to mis-segmentation for AIS infarcts. Inspired by this idea, we propose a pathological asymmetry-guided progressive learning (PAPL) method for AIS infarct segmentation. PAPL mimics the step-by-step learning patterns observed in humans, including three progressive stages: knowledge preparation stage, formal learning stage, and examination improvement stage. First, knowledge preparation stage accumulates the preparatory domain knowledge of the infarct segmentation task, helping to learn domain-specific knowledge representations to enhance the discriminative ability for pathological asymmetries by constructed contrastive learning task. Then, formal learning stage efficiently performs end-to-end training guided by learned knowledge representations, in which the designed feature compensation module (FCM) can leverage the anatomy similarity between adjacent slices from the volumetric medical image to help aggregate rich anatomical context information. Finally, examination improvement stage encourages improving the infarct prediction from the previous stage, where the proposed perception refinement strategy (RPRS) further exploits the bilateral difference comparison to correct the mis-segmentation infarct regions by adaptively regional shrink and expansion. Extensive experiments on public and in-house NCCT datasets demonstrated the superiority of the proposed PAPL, which is promising to help better stroke evaluation and treatment.

9.
Emerg Microbes Infect ; 13(1): 2372364, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38923510

RESUMEN

Salmonellosis is one of the most common causes of diarrhea, affecting 1/10 of the global population. Salmonellosis outbreaks (SO) pose a severe threat to the healthcare systems of developing regions. To elucidate the patterns of SO in China, we conducted a systematic review and meta-analysis encompassing 1,134 reports across 74 years, involving 89,050 patients and 270 deaths. A rising trend of SO reports has been observed since the 1970s, with most outbreaks occurring east of the Hu line, especially in coastal and populated regions. It is estimated to have an overall attack rate of 36.66% (95% CI, 33.88-39.45%), and antimicrobial resistance towards quinolone (49.51%) and beta-lactam (73.76%) remains high. Furthermore, we developed an online website, the Chinese Salmonellosis Outbreak Database (CSOD), for visual presentation and data-sharing purposes. This study indicated that healthcare-associated SO required further attention, and our study served as a foundational step in pursuing outbreak intervention and prediction.


Asunto(s)
Brotes de Enfermedades , Infecciones por Salmonella , Humanos , China/epidemiología , Infecciones por Salmonella/epidemiología , Infecciones por Salmonella/microbiología , Antibacterianos/farmacología , Farmacorresistencia Bacteriana
10.
J Agric Food Chem ; 72(26): 14769-14785, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912664

RESUMEN

Stigmasterol (ST), a phytosterol found in food, has various biological activities. However, the effect of ST on milk synthesis in dairy cows remains unclear. Therefore, bovine primary mammary epithelial cells (BMECs) were isolated, cultured, and treated with ST to determine the effect of ST on milk synthesis. The study revealed that 10 µM ST significantly increased milk synthesis in BMECs by activating the mammalian target of rapamycin (mTOR) signaling pathway. Further investigation revealed that this activation depends on the regulatory role of oxysterol binding protein 5 (ORP5). ST induces the translocation of ORP5 from the cytoplasm to the lysosome, interacts with the mTOR, recruits mTOR to target the lysosomal surface, and promotes the activation of the mTOR signaling pathway. Moreover, ST was found to increase ORP5 protein levels by inhibiting its degradation via the ubiquitin-proteasome pathway. Specifically, the E3 ubiquitin ligase membrane-associated cycle-CH-type finger 4 (MARCH4) promotes the ubiquitination and subsequent degradation of ORP5. ST mitigates the interaction between MARCH4 and ORP5, thereby enhancing the structural stability of ORP5 and reducing its ubiquitination. In summary, ST stabilizes ORP5 by inhibiting the interaction between MARCH4 and ORP5, thereby activating mTOR signaling pathway and enhancing milk synthesis.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Leche , Transducción de Señal , Serina-Treonina Quinasas TOR , Ubiquitinación , Animales , Bovinos , Serina-Treonina Quinasas TOR/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Ubiquitinación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Leche/química , Leche/metabolismo , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-38945384

RESUMEN

Environmental endocrine disrupting chemical 4-tert-butylphenol (4-tBP), a widely-utilized surfactant in various industries, poses potential risks to aquatic organisms. Our previous sequencing results suggested that 4-tBP-induced common carp liver injury might be associated with Ca2+ signaling and autophagy. However, the intricate involvement of these pathways in 4-tBP-induced cytotoxic mechanisms remained unexplored. To bridge these knowledge gaps, this study focused on epithelioma papulosum cyprini (EPC) cells, a significant cell type in fish biology. Initial observations showed that 4-tBP induced a dose-dependent perturbation in Ca2+ levels. Further investigations, with siRNA and L-type Ca2+ channel agonist (BAYK8644), identified L-type calcium channel gene CACNA1D as a critical regulator of 4-tBP-induced Ca2+ overload. Predictive analysis using miRanda platform suggested a potential interaction between miR-363 and CACNA1D, which was subsequently verified through dual-luciferase reporter gene assays. We then established miR-363 mimic/inhibitor models, along with miR-363 and CACNA1D co-suppression models in EPC cells. Through TEM observation, immunofluorescence assay, Ca2+ staining, and qRT-PCR analysis, we evaluated the role of miR-363/CACNA1D axis in modulating the effects of 4-tBP on Ca2+ signaling and autophagy. Results showed that miR-363 inhibitor exacerbated 4-tBP-induced increase in CALM2, CAMKII, Calpain2, and p62 expression and also led to decrease in ATG5, ATG7, and LC3b expression. In contrast, miR-363 mimic notably alleviated these changes. Notably, siRNA CACNA1D effectively modulating miR-363 inhibitor's effect. Our study revealed that 4-tBP induced Ca2+ overload and subsequent autophagy impairment via miR-363/CACNA1D axis. These findings illuminated a profound understanding of molecular mechanisms underlying 4-tBP-induced cytotoxicity and spotlighted a potential therapeutic target.


Asunto(s)
Autofagia , Calcio , Disruptores Endocrinos , MicroARNs , Animales , Autofagia/efectos de los fármacos , MicroARNs/metabolismo , MicroARNs/genética , Calcio/metabolismo , Disruptores Endocrinos/toxicidad , Carpas/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Proteínas de Peces/metabolismo , Proteínas de Peces/genética
12.
Cell Prolif ; : e13678, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812355

RESUMEN

Biofilm formation constitutes the primary cause of various chronic infections, such as wound infections, gastrointestinal inflammation and dental caries. While preliminary achievement of biofilm inhibition is possible, the challenge lies in the difficulty of eliminating the bactericidal effects of current drugs that lead to microbiota imbalance. This study, utilizing in vitro and in vivo models of dental caries, aims to efficiently inhibit biofilm formation without inducing bactericidal effects, even against pathogenic bacteria. The tetrahedral framework nucleic acid (tFNA) was employed as a delivery vector for a small-molecule inhibitor (smI) specifically targeting the activity of glucosyltransferases C (GtfC). It was observed that tFNA loaded smI in a small-groove binding manner, efficiently transferring it into Streptococcus mutans, thereby inhibiting GtfC activity and extracellular polymeric substances formation without compromising bacterial survival. Furthermore, smI-loaded tFNA demonstrated a reduction in the severity of dental caries in vivo without adversely affecting oral microbial diversity and exhibited desirable topical and systemic biosafety. This study emphasizes the concept of 'ecological prevention of biofilm', which is anticipated to advance the optimization of biofilm prevention strategies and the clinical application of DNA nanocarrier-based drug formulations.

13.
Micromachines (Basel) ; 15(5)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38793234

RESUMEN

This paper proposes an improved method to calculate the mutual capacitance between interdigital transducer (IDT) electrodes to enhance the accuracy of the traditional coupling-of-modes (COM) model, which is commonly used to simulate surface acoustic wave (SAW) filters and duplexers. In this method, the boundary element method (BEM) is adopted to obtain the capacitance per unit length in a layered medium, while the partial capacitance (PC) method is used to derive the effective relative permittivity of the multi-layered IDT. Numerical results from commercially available software are provided for comparison with the results calculated using the proposed method. The consistent results verify the validity and accuracy of this method, which also demonstrates significantly faster calculation speed compared to commercially available software. Precise electrical response prediction of a dual-mode SAW (DMS) filter can be achieved by applying this method to the COM model, and this ultra-fast calculation method can also be included in filter design optimization.

14.
Clin Transl Med ; 14(5): e1690, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760896

RESUMEN

INTRODUCTION: Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES: To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS: DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS: The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION: Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.


Asunto(s)
Proteína Quinasa Activada por ADN , Transición Epitelial-Mesenquimal , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Proteína 1 Relacionada con Twist , Transición Epitelial-Mesenquimal/efectos de los fármacos , Animales , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Ubiquitinación , Humanos , Ratones Noqueados , Proteínas de Unión al ADN
15.
Virus Res ; 345: 199391, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754785

RESUMEN

Coronaviruses (CoVs) are enveloped single-stranded RNA viruses that predominantly attack the human respiratory system. In recent decades, several deadly human CoVs, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have brought great impact on public health and economics. However, their high infectivity and the demand for high biosafety level facilities restrict the pathogenesis research of CoV infection. Exacerbated inflammatory cell infiltration is associated with poor prognosis in CoV-associated diseases. In this study, we used human CoV 229E (HCoV-229E), a CoV associated with relatively fewer biohazards, to investigate the pathogenesis of CoV infection and the regulation of neutrophil functions by CoV-infected lung cells. Induced pluripotent stem cell (iPSC)-derived alveolar epithelial type II cells (iAECIIs) exhibiting specific biomarkers and phenotypes were employed as an experimental model for CoV infection. After infection, the detection of dsRNA, S, and N proteins validated the infection of iAECIIs with HCoV-229E. The culture medium conditioned by the infected iAECIIs promoted the migration of neutrophils as well as their adhesion to the infected iAECIIs. Cytokine array revealed the elevated secretion of cytokines associated with chemotaxis and adhesion into the conditioned media from the infected iAECIIs. The importance of IL-8 secretion and ICAM-1 expression for neutrophil migration and adhesion, respectively, was demonstrated by using neutralizing antibodies. Moreover, next-generation sequencing analysis of the transcriptome revealed the upregulation of genes associated with cytokine signaling. To summarize, we established an in vitro model of CoV infection that can be applied for the study of the immune system perturbations during severe coronaviral disease.


Asunto(s)
Células Epiteliales Alveolares , Células Madre Pluripotentes Inducidas , Neutrófilos , Humanos , Neutrófilos/inmunología , Neutrófilos/virología , Células Madre Pluripotentes Inducidas/virología , Células Epiteliales Alveolares/virología , COVID-19/virología , COVID-19/inmunología , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , SARS-CoV-2/inmunología , Interleucina-8/genética , Interleucina-8/metabolismo
16.
Biomater Sci ; 12(10): 2672-2688, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38596867

RESUMEN

Breast cancer, a pervasive malignancy affecting women, demands a diverse treatment approach including chemotherapy, radiotherapy, and surgical interventions. However, the effectiveness of doxorubicin (DOX), a cornerstone in breast cancer therapy, is limited when used as a monotherapy, and concerns about cardiotoxicity persist. Ginsenoside Rg3, a classic compound of traditional Chinese medicine found in Panax ginseng C. A. Mey., possesses diverse pharmacological properties, including cardiovascular protection, immune modulation, and anticancer effects. Ginsenoside Rg3 is considered a promising candidate for enhancing cancer treatment when combined with chemotherapy agents. Nevertheless, the intrinsic challenges of Rg3, such as its poor water solubility and low oral bioavailability, necessitate innovative solutions. Herein, we developed Rg3-PLGA@TMVs by encapsulating Rg3 within PLGA nanoparticles (Rg3-PLGA) and coating them with membranes derived from tumor cell-derived microvesicles (TMVs). Rg3-PLGA@TMVs displayed an array of favorable advantages, including controlled release, prolonged storage stability, high drug loading efficiency and a remarkable ability to activate dendritic cells in vitro. This activation is evident through the augmentation of CD86+CD80+ dendritic cells, along with a reduction in phagocytic activity and acid phosphatase levels. When combined with DOX, the synergistic effect of Rg3-PLGA@TMVs significantly inhibits 4T1 tumor growth and fosters the development of antitumor immunity in tumor-bearing mice. Most notably, this delivery system effectively mitigates the toxic side effects of DOX, particularly those affecting the heart. Overall, Rg3-PLGA@TMVs provide a novel strategy to enhance the efficacy of DOX while simultaneously mitigating its associated toxicities and demonstrate promising potential for the combined chemo-immunotherapy of breast cancer.


Asunto(s)
Doxorrubicina , Ginsenósidos , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ginsenósidos/química , Ginsenósidos/farmacología , Ginsenósidos/administración & dosificación , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Femenino , Nanopartículas/química , Ratones , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Micropartículas Derivadas de Células/química , Micropartículas Derivadas de Células/efectos de los fármacos , Ratones Endogámicos BALB C , Línea Celular Tumoral , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Liberación de Fármacos , Portadores de Fármacos/química , Células Dendríticas/efectos de los fármacos
17.
Angew Chem Int Ed Engl ; 63(25): e202402624, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38622075

RESUMEN

Challenges such as shuttle effect have hindered the commercialization of lithium-sulfur batteries (LSBs), despite their potential as high-energy-density storage devices. To address these issues, we explore the integration of solar energy into LSBs, creating a photo-assisted lithium-sulfur battery (PA-LSB). The PA-LSB provides a novel and sustainable solution by coupling the photocatalytic effect to accelerate sulfur redox reactions. Herein, a perovskite quantum dot-loaded MOF material serves as a cathode for the PA-LSB, creating built-in electric fields at the micro-interface to extend the lifetime of photo-generated charge carriers. The band structure of the composite material aligns well with the electrochemical reaction potential of lithium-sulfur, enabling precise regulation of polysulfides in the cathode of the PA-LSB system. This is attributed to the selective catalysis of the liquid-solid reaction stage in the lithium-sulfur electrochemical process by photocatalysis. These contribute to the outstanding performance of PA-LSBs, particularly demonstrating a remarkably high reversible capacity of 679 mAh g-1 at 5 C, maintaining stable cycling for 1500 cycles with the capacity decay rate of 0.022 % per cycle. Additionally, the photo-charging capability of the PA-LSB holds the potential to compensate for non-electric energy losses during the energy storage process, contributing to the development of lossless energy storage devices.

18.
iScience ; 27(5): 109578, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638573

RESUMEN

In this study, a method was developed to create oxygen vacancies in Cu2O/TiO2 heterojunctions. By varying the amounts of ethylenediaminetetraacetic acid (EDTA), sodium citrate, and copper acetate, Cu2O/TiO2 with different Cu ratios were synthesized. Tests on CO2 photocatalytic reduction revealed that Cu2O/TiO2's performance is influenced by Cu content. The ideal Cu mass fraction in Cu2O/TiO2, determined by inductively coupled plasma (ICP), is between 0.075% and 0.55%, with the highest CO yield being 10.22 µmol g-1 h-1, significantly surpassing pure TiO2. High-resolution transmission electron microscopy and electron paramagnetic resonance studies showed optimal oxygen vacancy in the most effective heterojunction. Density functional theory (DFT) calculations indicated a 0.088 eV lower energy barrier for ∗CO2 to ∗COOH conversion in Cu2O/TiO2 with oxygen vacancy compared to TiO2, suggesting that oxygen vacancies enhance photocatalytic activity.

19.
Microorganisms ; 12(4)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38674623

RESUMEN

The production of municipal sludge is steadily increasing in line with the production of sewage. A wealth of organic contaminants, including nutrients and energy, are present in municipal sludge. Anaerobic fermentation can be used to extract useful resources from sludge, producing hydrogen, methane, short-chain fatty acids, and, via further chain elongation, medium-chain fatty acids. By comparing the economic and use values of these retrieved resources, it is concluded that a high-value resource transformation of municipal sludge can be achieved via the production of medium-chain fatty acids using anaerobic fermentation, which is a hotspot for future research. In this study, the selection of the pretreatment method, the method of producing medium-chain fatty acids, the influence of the electron donor, and the technique used to enhance product synthesis in the anaerobic fermentation process are introduced in detail. The study outlines potential future research directions for medium-chain fatty acid production using municipal sludge. These acids could serve as a starting point for investigating other uses for municipal sludge.

20.
J Chin Med Assoc ; 87(5): 488-497, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38451105

RESUMEN

BACKGROUND: Mesenchymal stem cells (MSCs) have promising potential in clinical application, whereas their limited amount and sources hinder their bioavailability. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have become prominent options in regenerative medicine as both possess the ability to differentiate into MSCs. METHODS: Recently, our research team has successfully developed human leukocyte antigen (HLA)-homozygous iPSC cell lines with high immune compatibility, covering 13.5% of the Taiwanese population. As we deepen our understanding of the differences between these ESCs and HLA-homozygous iPSCs, our study focused on morphological observations and flow cytometry analysis of specific surface marker proteins during the differentiation of ESCs and iPSCs into MSCs. RESULTS: The results showed no significant differences between the two pluripotent stem cells, and both of them demonstrated the equivalent ability to further differentiate into adipose, cartilage, and bone cells. CONCLUSION: Our research revealed that these iPSCs with high immune compatibility exhibit the same differentiation potential as ESCs, enhancing the future applicability of highly immune-compatible iPSCs.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes Inducidas/citología , Humanos , Células Madre Embrionarias/citología , Células Madre Mesenquimatosas , Mesodermo/citología , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA