Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Nat Med ; 30(6): 1761-1770, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760589

RESUMEN

p75 neurotrophin receptor (p75NTR) signaling pathways substantially overlap with degenerative networks active in Alzheimer disease (AD). Modulation of p75NTR with the first-in-class small molecule LM11A-31 mitigates amyloid-induced and pathological tau-induced synaptic loss in preclinical models. Here we conducted a 26-week randomized, placebo-controlled, double-blinded phase 2a safety and exploratory endpoint trial of LM11A-31 in 242 participants with mild to moderate AD with three arms: placebo, 200 mg LM11A-31 and 400 mg LM11A-31, administered twice daily by oral capsules. This trial met its primary endpoint of safety and tolerability. Within the prespecified secondary and exploratory outcome domains (structural magnetic resonance imaging, fluorodeoxyglucose positron-emission tomography and cerebrospinal fluid biomarkers), significant drug-placebo differences were found, consistent with the hypothesis that LM11A-31 slows progression of pathophysiological features of AD; no significant effect of active treatment was observed on cognitive tests. Together, these results suggest that targeting p75NTR with LM11A-31 warrants further investigation in larger-scale clinical trials of longer duration. EU Clinical Trials registration: 2015-005263-16 ; ClinicalTrials.gov registration: NCT03069014 .


Asunto(s)
Enfermedad de Alzheimer , Tomografía de Emisión de Positrones , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Masculino , Femenino , Anciano , Método Doble Ciego , Anciano de 80 o más Años , Imagen por Resonancia Magnética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Persona de Mediana Edad , Biomarcadores/líquido cefalorraquídeo , Resultado del Tratamiento , Isoleucina/análogos & derivados , Morfolinas , Proteínas del Tejido Nervioso
2.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785269

RESUMEN

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.


Asunto(s)
Conducta Animal , Espinas Dendríticas , Proteína 2 de Unión a Metil-CpG , Fenotipo , Receptor trkB , Síndrome de Rett , Animales , Síndrome de Rett/patología , Síndrome de Rett/tratamiento farmacológico , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Espinas Dendríticas/patología , Femenino , Receptor trkB/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Conducta Animal/efectos de los fármacos , Ligandos , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/patología , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Heterocigoto , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Benzamidas
3.
Alzheimers Dement ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38779814

RESUMEN

INTRODUCTION: Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aß) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS: PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS: In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION: BD10-2 prevented APPL/S/Aß-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS: Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.

4.
Alzheimers Dement (N Y) ; 10(2): e12461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650747

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is the predominant dementia globally, with heterogeneous presentation and penetrance of clinical symptoms, variable presence of mixed pathologies, potential disease subtypes, and numerous associated endophenotypes. Beyond the difficulty of designing treatments that address the core pathological characteristics of the disease, therapeutic development is challenged by the uncertainty of which endophenotypic areas and specific targets implicated by those endophenotypes to prioritize for further translational research. However, publicly funded consortia driving large-scale open science efforts have produced multiple omic analyses that address both disease risk relevance and biological process involvement of genes across the genome. METHODS: Here we report the development of an informatic pipeline that draws from genetic association studies, predicted variant impact, and linkage with dementia associated phenotypes to create a genetic risk score. This is paired with a multi-omic risk score utilizing extensive sets of both transcriptomic and proteomic studies to identify system-level changes in expression associated with AD. These two elements combined constitute our target risk score that ranks AD risk genome-wide. The ranked genes are organized into endophenotypic space through the development of 19 biological domains associated with AD in the described genetics and genomics studies and accompanying literature. The biological domains are constructed from exhaustive Gene Ontology (GO) term compilations, allowing automated assignment of genes into objectively defined disease-associated biology. This rank-and-organize approach, performed genome-wide, allows the characterization of aggregations of AD risk across biological domains. RESULTS: The top AD-risk-associated biological domains are Synapse, Immune Response, Lipid Metabolism, Mitochondrial Metabolism, Structural Stabilization, and Proteostasis, with slightly lower levels of risk enrichment present within the other 13 biological domains. DISCUSSION: This provides an objective methodology to localize risk within specific biological endophenotypes and drill down into the most significantly associated sets of GO terms and annotated genes for potential therapeutic targets.

5.
Nature ; 624(7990): 164-172, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38057571

RESUMEN

Animal studies show aging varies between individuals as well as between organs within an individual1-4, but whether this is true in humans and its effect on age-related diseases is unknown. We utilized levels of human blood plasma proteins originating from specific organs to measure organ-specific aging differences in living individuals. Using machine learning models, we analysed aging in 11 major organs and estimated organ age reproducibly in five independent cohorts encompassing 5,676 adults across the human lifespan. We discovered nearly 20% of the population show strongly accelerated age in one organ and 1.7% are multi-organ agers. Accelerated organ aging confers 20-50% higher mortality risk, and organ-specific diseases relate to faster aging of those organs. We find individuals with accelerated heart aging have a 250% increased heart failure risk and accelerated brain and vascular aging predict Alzheimer's disease (AD) progression independently from and as strongly as plasma pTau-181 (ref. 5), the current best blood-based biomarker for AD. Our models link vascular calcification, extracellular matrix alterations and synaptic protein shedding to early cognitive decline. We introduce a simple and interpretable method to study organ aging using plasma proteomics data, predicting diseases and aging effects.


Asunto(s)
Envejecimiento , Biomarcadores , Enfermedad , Salud , Especificidad de Órganos , Proteoma , Proteómica , Adulto , Humanos , Envejecimiento/sangre , Enfermedad de Alzheimer/sangre , Biomarcadores/sangre , Encéfalo/metabolismo , Disfunción Cognitiva/sangre , Proteoma/análisis , Aprendizaje Automático , Estudios de Cohortes , Progresión de la Enfermedad , Insuficiencia Cardíaca/sangre , Matriz Extracelular/metabolismo , Sinapsis/metabolismo , Calcificación Vascular/sangre , Corazón
6.
bioRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37781573

RESUMEN

Introduction: TrkB and TrkC receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid-ß (Aß)-toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. Methods: PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APP L/S ) and wild-type controls (WT). Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA-sequencing. Results: Memory and LTP deficits in APP L/S mice were attenuated by treatment with BD10-2. BD10-2 prevented aberrant AKT, CaMKII, and GLUA1 phosphorylation, and enhanced activity-dependent recruitment of synaptic proteins. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. Conclusions: BD10-2 prevented APP L/S /Aß-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response.

8.
J Huntingtons Dis ; 12(3): 215-239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638447

RESUMEN

BACKGROUND: Loss of neurotrophic support in the striatum, particularly reduced brain-derived neurotrophic factor (BDNF) levels, contributes importantly to Huntington's disease (HD) pathogenesis. Another neurotrophin (NT), NT-3, is reduced in the cortex of HD patients; however, its role in HD is unknown. BDNF and NT-3 bind with high affinity to the tropomyosin receptor-kinases (Trk) B and TrkC, respectively. Targeting TrkB/TrkC may be an effective HD therapeutic strategy, as multiple links exist between their signaling pathways and HD degenerative mechanisms. We developed a small molecule ligand, LM22B-10, that activates TrkB and TrkC to promote cell survival. OBJECTIVE: This study aimed to determine if upregulating TrkB/TrkC signaling with LM22B-10 would alleviate the HD phenotype in R6/2 and Q140 mice. METHODS: LM22B-10 was delivered by concomitant intranasal-intraperitoneal routes to R6/2 and Q140 mice and then motor performance and striatal pathology were evaluated. RESULTS: NT-3 levels, TrkB/TrkC phosphorylation, and AKT signaling were reduced in the R6/2 striatum; LM22B-10 counteracted these deficits. LM22B-10 also reduced intranuclear huntingtin aggregates, dendritic spine loss, microglial activation, and degeneration of dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP-32) and parvalbumin-containing neurons in the R6/2 and/or Q140 striatum. Moreover, both HD mouse models showed improved motor performance after LM22B-10 treatment. CONCLUSIONS: These results reveal an NT-3/TrkC signaling deficiency in the striatum of R6/2 mice, support the idea that targeting TrkB/TrkC alleviates HD-related neurodegeneration and motor dysfunction, and suggest a novel, disease-modifying, multi-target strategy for treating HD.

9.
Alzheimers Dement (N Y) ; 9(2): e12394, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215505

RESUMEN

Alzheimer's disease (AD) drug discovery has focused on a set of highly studied therapeutic hypotheses, with limited success. The heterogeneous nature of AD processes suggests that a more diverse, systems-integrated strategy may identify new therapeutic hypotheses. Although many target hypotheses have arisen from systems-level modeling of human disease, in practice and for many reasons, it has proven challenging to translate them into drug discovery pipelines. First, many hypotheses implicate protein targets and/or biological mechanisms that are under-studied, meaning there is a paucity of evidence to inform experimental strategies as well as high-quality reagents to perform them. Second, systems-level targets are predicted to act in concert, requiring adaptations in how we characterize new drug targets. Here we posit that the development and open distribution of high-quality experimental reagents and informatic outputs-termed target enabling packages (TEPs)-will catalyze rapid evaluation of emerging systems-integrated targets in AD by enabling parallel, independent, and unencumbered research.

10.
J Neuroinflammation ; 20(1): 48, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829230

RESUMEN

Aging is associated with loss of circadian immune responses and circadian gene transcription in peripheral macrophages. Microglia, the resident macrophages of the brain, also show diurnal rhythmicity in regulating local immune responses and synaptic remodeling. To investigate the interaction between aging and microglial circadian rhythmicity, we examined mice deficient in the core clock transcription factor, BMAL1. Aging Cd11bcre;Bmallox/lox mice demonstrated accelerated cognitive decline in association with suppressed hippocampal long-term potentiation and increases in immature dendritic spines. C1q deposition at synapses and synaptic engulfment were significantly decreased in aging Bmal1-deficient microglia, suggesting that BMAL1 plays a role in regulating synaptic pruning in aging. In addition to accelerated age-associated hippocampal deficits, Cd11bcre;Bmallox/lox mice also showed deficits in the sleep-wake cycle with increased wakefulness across light and dark phases. These results highlight an essential role of microglial BMAL1 in maintenance of synapse homeostasis in the aging brain.


Asunto(s)
Envejecimiento Cognitivo , Microglía , Ratones , Animales , Microglía/metabolismo , Proteínas CLOCK/genética , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Plasticidad Neuronal
11.
Alzheimers Res Ther ; 14(1): 172, 2022 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-36371232

RESUMEN

BACKGROUND: The recent promise of disease-modifying therapies for Alzheimer's disease (AD) has reinforced the need for accurate biomarkers for early disease detection, diagnosis and treatment monitoring. Advances in the development of novel blood-based biomarkers for AD have revealed that plasma levels of tau phosphorylated at various residues are specific and sensitive to AD dementia. However, the currently available tests have shortcomings in access, throughput, and scalability that limit widespread implementation. METHODS: We evaluated the diagnostic and prognostic performance of a high-throughput and fully-automated Lumipulse plasma p-tau181 assay for the detection of AD. Plasma from older clinically unimpaired individuals (CU, n = 463) and patients with mild cognitive impairment (MCI, n = 107) or AD dementia (n = 78) were obtained from the longitudinal Stanford University Alzheimer's Disease Research Center (ADRC) and the Stanford Aging and Memory Study (SAMS) cohorts. We evaluated the discriminative accuracy of plasma p-tau181 for clinical AD diagnosis, association with amyloid ß peptides and p-tau181 concentrations in CSF, association with amyloid positron emission tomography (PET), and ability to predict longitudinal cognitive and functional change. RESULTS: The assay showed robust performance in differentiating AD from control participants (AUC 0.959, CI: 0.912 to 0.990), and was strongly associated with CSF p-tau181, CSF Aß42/Aß40 ratio, and amyloid-PET global SUVRs. Associations between plasma p-tau181 with CSF biomarkers were significant when examined separately in Aß+ and Aß- groups. Plasma p-tau181 significantly increased over time in CU and AD diagnostic groups. After controlling for clinical diagnosis, age, sex, and education, baseline plasma p-tau181 predicted change in MoCA overall and change in CDR Sum of Boxes in the AD group over follow-up of up to 5 years. CONCLUSIONS: This fully-automated and available blood-based biomarker assay therefore may be useful for early detection, diagnosis, prognosis, and treatment monitoring of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides , Biomarcadores , Disfunción Cognitiva/diagnóstico por imagen , Proteínas tau
12.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35165147

RESUMEN

Dravet syndrome (DS) is one of the most severe childhood epilepsies, characterized by intractable seizures and comorbidities including cognitive and social dysfunction and high premature mortality. DS is mainly caused by loss-of-function mutations in the Scn1a gene encoding Nav1.1 that is predominantly expressed in inhibitory parvalbumin-containing (PV) interneurons. Decreased Nav1.1 impairs PV cell function, contributing to DS phenotypes. Effective pharmacological therapy that targets defective PV interneurons is not available. The known role of brain-derived neurotrophic factor (BDNF) in the development and maintenance of interneurons, together with our previous results showing improved PV interneuronal function and antiepileptogenic effects of a TrkB receptor agonist in a posttraumatic epilepsy model, led to the hypothesis that early treatment with a TrkB receptor agonist might prevent or reduce seizure activity in DS mice. To test this hypothesis, we treated DS mice with LM22A-4 (LM), a partial agonist at the BDNF TrkB receptor, for 7 d starting at postnatal day 13 (P13), before the onset of spontaneous seizures. Results from immunohistochemistry, Western blot, whole-cell patch-clamp recording, and in vivo seizure monitoring showed that LM treatment increased the number of perisomatic PV interneuronal synapses around cortical pyramidal cells in layer V, upregulated Nav1.1 in PV neurons, increased inhibitory synaptic transmission, and decreased seizures and the mortality rate in DS mice. The results suggest that early treatment with a partial TrkB receptor agonist may be a promising therapeutic approach to enhance PV interneuron function and reduce epileptogenesis and premature death in DS.


Asunto(s)
Benzamidas/uso terapéutico , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/mortalidad , Receptor trkB/agonistas , Receptor trkB/metabolismo , Convulsiones/etiología , Convulsiones/genética , Animales , Epilepsias Mioclónicas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Neocórtex/citología , Células Piramidales/metabolismo , Receptor trkB/genética
13.
Acad Med ; 97(1): 69-75, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33769342

RESUMEN

The field of data science has great potential to address critical questions relevant for academic medical centers. Data science initiatives are consequently being established within academic medicine. At the cornerstone of such initiatives are scientists who practice data science. These scientists include biostatisticians, clinical informaticians, database and software developers, computational scientists, and computational biologists. Too often, however, those involved in the practice of data science are viewed by academic leadership as providing a noncomplex service to facilitate research and further the careers of other academic faculty. The authors contend that the success of data science initiatives relies heavily on the understanding that the practice of data science is a critical intellectual contribution to the overall science conducted at an academic medical center. Further, careful thought by academic leadership is needed for allocation of resources devoted to the practice of data science. At the Stanford University School of Medicine, the authors have developed an innovative model for a data science collaboratory based on 4 fundamental elements: an emphasis on collaboration over consultation, a subscription-based funding mechanism that reflects commitment by key partners, an investment in the career development of faculty who practice data science, and a strong educational component for data science members in team science and for clinical and translational investigators in data science. As data science becomes increasingly essential to learning health systems, centers that specialize in the practice of data science are a critical component of the research infrastructure and intellectual environment of academic medical centers.


Asunto(s)
Centros Médicos Académicos , Ciencia de los Datos , Docentes , Docentes Médicos , Humanos , Liderazgo , Investigadores
14.
Neurobiol Dis ; 162: 105563, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838668

RESUMEN

Degeneration of basal forebrain cholinergic neurons (BFCNs) in the nucleus basalis of Meynert (NBM) and vertical diagonal band (VDB) along with their connections is a key pathological event leading to memory impairment in Alzheimer's disease (AD). Aberrant neurotrophin signaling via Trks and the p75 neurotrophin receptor (p75NTR) contributes importantly to BFCN dystrophy. While NGF/TrkA signaling has received the most attention in this regard, TrkB and TrkC signaling also provide trophic support to BFCNs and these receptors may be well located to preserve BFCN connectivity. We previously identified a small molecule TrkB/TrkC ligand, LM22B-10, that promotes cell survival and neurite outgrowth in vitro and activates TrkB/TrkC signaling in the hippocampus of aged mice when given intranasally, but shows poor oral bioavailability. An LM22B-10 derivative, PTX-BD10-2, with improved oral bioavailability has been developed and this study examined its effects on BFCN atrophy in the hAPPLond/Swe (APPL/S) AD mouse model. Oral delivery of PTX-BD10-2 was started after appreciable amyloid and cholinergic pathology was present to parallel the clinical context, as most AD patients start treatment at advanced pathological stages. PTX-BD10-2 restored cholinergic neurite integrity in the NBM and VDB, and reduced NBM neuronal atrophy in symptomatic APPL/S mice. Dystrophy of cholinergic neurites in BF target regions, including the cortex, hippocampus, and amygdala, was also reduced with treatment. Finally, PTX-BD10-2 reduced NBM tau pathology and improved the survival of cholinergic neurons derived from human induced pluripotent stem cells (iPSCs) after amyloid-ß exposure. These data provide evidence that targeting TrkB and TrkC signaling with PTX-BD10-2 may be an effective disease-modifying strategy for combating cholinergic dysfunction in AD. The potential for clinical translation is further supported by the compound's reduction of AD-related degenerative processes that have progressed beyond early stages and its neuroprotective effects in human iPSC-derived cholinergic neurons.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/patología , Animales , Atrofia/patología , Neuronas Colinérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Ratones , Factores de Crecimiento Nervioso , Receptor trkC , Receptores de Factor de Crecimiento Nervioso
15.
J Pharmacol Exp Ther ; 380(2): 126-141, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34893553

RESUMEN

The aim of this study was to test whether poststroke oral administration of a small molecule p75 neurotrophin receptor (p75NTR) modulator (LM11A-31) can augment neuronal survival and improve recovery in a mouse model of stroke. Mice were administered LM11A-31 for up to 12 weeks, beginning 1 week after stroke. Metabolomic analysis revealed that after 2 weeks of daily treatment, mice that received LM11A-31 were distinct from vehicle-treated mice by principal component analysis and had higher levels of serotonin, acetylcholine, and dopamine in their ipsilateral hemisphere. LM11A-31 treatment also improved redox homeostasis by restoring reduced glutathione. It also offset a stroke-induced reduction in glycolysis by increasing acetyl-CoA. There was no effect on cytokine levels in the infarct. At 13 weeks after stroke, adaptive immune cell infiltration in the infarct was unchanged in LM11A-31-treated mice, indicating that LM11A-31 does not alter the chronic inflammatory response to stroke at the site of the infarct. However, LM11A-31-treated mice had less brain atrophy, neurodegeneration, tau pathology, and microglial activation in other regions of the ipsilateral hemisphere. These findings correlated with improved recovery of motor function on a ladder test, improved sensorimotor and cognitive abilities on a nest construction test, and less impulsivity in an open field test. These data support small molecule modulation of the p75NTR for preserving neuronal health and function during stroke recovery. SIGNIFICANCE STATEMENT: The findings from this study introduce the p75 neurotrophin receptor as a novel small molecule target for promotion of stroke recovery. Given that LM11A-31 is in clinical trials as a potential therapy for Alzheimer's disease, it could be considered as a candidate for assessment in stroke or vascular dementia studies.


Asunto(s)
Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Isoleucina/análogos & derivados , Morfolinas/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Glutatión/metabolismo , Glucólisis , Infarto de la Arteria Cerebral Media/metabolismo , Isoleucina/farmacología , Isoleucina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Morfolinas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Neurotransmisores/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo
16.
Am J Hum Genet ; 108(12): 2336-2353, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767756

RESUMEN

Knockoff-based methods have become increasingly popular due to their enhanced power for locus discovery and their ability to prioritize putative causal variants in a genome-wide analysis. However, because of the substantial computational cost for generating knockoffs, existing knockoff approaches cannot analyze millions of rare genetic variants in biobank-scale whole-genome sequencing and whole-genome imputed datasets. We propose a scalable knockoff-based method for the analysis of common and rare variants across the genome, KnockoffScreen-AL, that is applicable to biobank-scale studies with hundreds of thousands of samples and millions of genetic variants. The application of KnockoffScreen-AL to the analysis of Alzheimer disease (AD) in 388,051 WG-imputed samples from the UK Biobank resulted in 31 significant loci, including 14 loci that are missed by conventional association tests on these data. We perform replication studies in an independent meta-analysis of clinically diagnosed AD with 94,437 samples, and additionally leverage single-cell RNA-sequencing data with 143,793 single-nucleus transcriptomes from 17 control subjects and AD-affected individuals, and proteomics data from 735 control subjects and affected indviduals with AD and related disorders to validate the genes at these significant loci. These multi-omics analyses show that 79.1% of the proximal genes at these loci and 76.2% of the genes at loci identified only by KnockoffScreen-AL exhibit at least suggestive signal (p < 0.05) in the scRNA-seq or proteomics analyses. We highlight a potentially causal gene in AD progression, EGFR, that shows significant differences in expression and protein levels between AD-affected individuals and healthy control subjects.


Asunto(s)
Enfermedad de Alzheimer/genética , Bancos de Muestras Biológicas , Técnicas de Inactivación de Genes , Genes erbB-1 , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , RNA-Seq , Transcriptoma , Secuenciación Completa del Genoma
17.
Neurotherapeutics ; 18(2): 1039-1063, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33786806

RESUMEN

Huntington's disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.


Asunto(s)
Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/metabolismo , Isoleucina/análogos & derivados , Morfolinas/metabolismo , Morfolinas/uso terapéutico , Neuroimagen/métodos , Receptores de Factor de Crecimiento Nervioso/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/orina , Estudios Transversales , Evaluación Preclínica de Medicamentos/métodos , Femenino , Enfermedad de Huntington/tratamiento farmacológico , Isoleucina/metabolismo , Isoleucina/farmacología , Isoleucina/uso terapéutico , Masculino , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Morfolinas/farmacología
18.
Nature ; 590(7844): 122-128, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33473210

RESUMEN

Ageing is characterized by the development of persistent pro-inflammatory responses that contribute to atherosclerosis, metabolic syndrome, cancer and frailty1-3. The ageing brain is also vulnerable to inflammation, as demonstrated by the high prevalence of age-associated cognitive decline and Alzheimer's disease4-6. Systemically, circulating pro-inflammatory factors can promote cognitive decline7,8, and in the brain, microglia lose the ability to clear misfolded proteins that are associated with neurodegeneration9,10. However, the underlying mechanisms that initiate and sustain maladaptive inflammation with ageing are not well defined. Here we show that in ageing mice myeloid cell bioenergetics are suppressed in response to increased signalling by the lipid messenger prostaglandin E2 (PGE2), a major modulator of inflammation11. In ageing macrophages and microglia, PGE2 signalling through its EP2 receptor promotes the sequestration of glucose into glycogen, reducing glucose flux and mitochondrial respiration. This energy-deficient state, which drives maladaptive pro-inflammatory responses, is further augmented by a dependence of aged myeloid cells on glucose as a principal fuel source. In aged mice, inhibition of myeloid EP2 signalling rejuvenates cellular bioenergetics, systemic and brain inflammatory states, hippocampal synaptic plasticity and spatial memory. Moreover, blockade of peripheral myeloid EP2 signalling is sufficient to restore cognition in aged mice. Our study suggests that cognitive ageing is not a static or irrevocable condition but can be reversed by reprogramming myeloid glucose metabolism to restore youthful immune functions.


Asunto(s)
Envejecimiento/metabolismo , Disfunción Cognitiva/prevención & control , Células Mieloides/metabolismo , Adulto , Anciano , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Animales , Respiración de la Célula , Células Cultivadas , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/genética , Dinoprostona/metabolismo , Metabolismo Energético , Glucosa/metabolismo , Glucógeno/biosíntesis , Glucógeno/metabolismo , Humanos , Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Microglía/efectos de los fármacos , Microglía/inmunología , Microglía/metabolismo , Mitocondrias/metabolismo , Células Mieloides/inmunología , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores , Subtipo EP2 de Receptores de Prostaglandina E/deficiencia , Subtipo EP2 de Receptores de Prostaglandina E/genética , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Transducción de Señal/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
19.
Int J Mol Sci ; 22(2)2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33467640

RESUMEN

Mesenchymal stem cells (MSCs) are a promising therapy to improve vascular repair, yet their role in ischemic retinopathy is not fully understood. The aim of this study is to investigate the impact of modulating the neurotrophin receptor; p75NTR on the vascular protection of MSCs in an acute model of retinal ischemia/reperfusion (I/R). Wild type (WT) and p75NTR-/- mice were subjected to I/R injury by increasing intra-ocular pressure to 120 mmHg for 45 min, followed by perfusion. Murine GFP-labeled MSCs (100,000 cells/eye) were injected intravitreally 2 days post-I/R and vascular homing was assessed 1 week later. Acellular capillaries were counted using trypsin digest 10-days post-I/R. In vitro, MSC-p75NTR was modulated either genetically using siRNA or pharmacologically using the p75NTR modulator; LM11A-31, and conditioned media were co-cultured with human retinal endothelial cells (HREs) to examine the angiogenic response. Finally, visual function in mice undergoing retinal I/R and receiving LM11A-31 was assessed by visual-clue water-maze test. I/R significantly increased the number of acellular capillaries (3.2-Fold) in WT retinas, which was partially ameliorated in p75NTR-/- retinas. GFP-MSCs were successfully incorporated and engrafted into retinal vasculature 1 week post injection and normalized the number of acellular capillaries in p75NTR-/- retinas, yet ischemic WT retinas maintained a 2-Fold increase. Silencing p75NTR on GFP-MSCs coincided with a higher number of cells homing to the ischemic WT retinal vasculature and normalized the number of acellular capillaries when compared to ischemic WT retinas receiving scrambled-GFP-MSCs. In vitro, silencing p75NTR-MSCs enhanced their secretome, as evidenced by significant increases in SDF-1, VEGF and NGF release in MSCs conditioned medium; improved paracrine angiogenic response in HREs, where HREs showed enhanced migration (1.4-Fold) and tube formation (2-Fold) compared to controls. In parallel, modulating MSCs-p75NTR using LM11A-31 resulted in a similar improvement in MSCs secretome and the enhanced paracrine angiogenic potential of HREs. Further, intervention with LM11A-31 significantly mitigated the decline in visual acuity post retinal I/R injury. In conclusion, p75NTR modulation can potentiate the therapeutic potential of MSCs to harness vascular repair in ischemic retinopathy diseases.


Asunto(s)
Células Madre Mesenquimatosas/citología , Receptores de Factor de Crecimiento Nervioso/genética , Daño por Reperfusión/metabolismo , Vasos Retinianos/metabolismo , Animales , Capilares/metabolismo , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Medios de Cultivo Condicionados/química , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Endotelio/metabolismo , Eliminación de Gen , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica , Factor de Crecimiento Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Daño por Reperfusión/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
J Sex Med ; 18(1): 17-28, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33243690

RESUMEN

BACKGROUND: Radical prostatectomy for prostate cancer can not only induce cavernous nerve injury (CNI), but also causes cavernous hypoxia and cavernous structural changes, which lead to a poor response to phosphodiesterase 5 inhibitors. AIM: To investigate the therapeutic effect of oral administration of LM11A-31, a small molecule p75 neurotrophin receptor (p75NTR) ligand and proNGF antagonist, in a mouse model of bilateral CNI, which mimics nerve injury-induced erectile dysfunction after radical prostatectomy. METHODS: 8-week-old male C57BL/6 mice were divided into sham operation and CNI groups. Each group was divided into 2 subgroups: phosphate-buffered saline and LM11A-31 (50 mg/kg/day) being administered once daily starting 3 days before CNI via oral gavage. 2 weeks after CNI, we measured erectile function by electrical stimulation of the bilateral cavernous nerve. The penis was harvested for histologic examination and Western blot analysis. The major pelvic ganglia was harvested and cultured for assays of ex vivo neurite outgrowth. OUTCOMES: Intracavernous pressure, neurovascular regeneration in the penis, in vivo or ex vivo functional evaluation, and cell survival signaling were measured. RESULTS: Erectile function was decreased in the CNI group (44% of the sham operation group), while administration of LM11A-31 led to a significant improvement of erectile function (70% of the sham operation group) in association with increased neurovascular content, including cavernous endothelial cells, pericytes, and neuronal processes. Immunohistochemical and Western blot analyses showed significantly increased p75NTR expression in the dorsal nerve of CNI mice, which was attenuated by LM11A-31 treatment. Protein expression of active PI3K, AKT, and endothelial nitric oxide synthase was increased, and cell death and c-Jun N-terminal kinase signaling was significantly attenuated after LM11A-31 treatment. Furthermore, LM11A-31 promoted neurite sprouting in cultured major pelvic ganglia after lipopolysaccharide exposure. CLINICAL IMPLICATIONS: LM11A-31 may be used as a strategy to treat erectile dysfunction after radical prostatectomy or in men with neurovascular diseases. STRENGTHS & LIMITATIONS: Unlike biological therapeutics, such as proteins, gene therapies, or stem cells, the clinical application of LM11A-31 would likely be relatively less complex and low cost. Our study has some limitations. Future studies will assess the optimal dosing and duration of the compound. Given its plasma half-life of approximately 1 hour, it is possible that dosing more than once per day will provide added efficacy. CONCLUSION: Specific inhibition of the proNGF-p75NTR degenerative signaling via oral administration of LM11A-31 represents a novel therapeutic strategy for erectile dysfunction induced by nerve injury. Yin GN, Ock J, Limanjaya A, et al. Oral Administration of the p75 Neurotrophin Receptor Modulator, LM11A-31, Improves Erectile Function in a Mouse Model of Cavernous Nerve Injury. J Sex Med 2021;18:17-28.


Asunto(s)
Disfunción Eréctil , Administración Oral , Animales , Modelos Animales de Enfermedad , Células Endoteliales , Disfunción Eréctil/tratamiento farmacológico , Disfunción Eréctil/etiología , Humanos , Isoleucina/análogos & derivados , Masculino , Ratones , Ratones Endogámicos C57BL , Morfolinas , Erección Peniana , Pene , Receptor de Factor de Crecimiento Nervioso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...