Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 67
1.
Front Immunol ; 15: 1348229, 2024.
Article En | MEDLINE | ID: mdl-38855114

Introduction: The COVID-19 pandemic represented one of the most significant challenges to researchers and healthcare providers. Several factors determine the disease severity, whereas none alone can explain the tremendous variability. The Single nucleotide variants (SNVs) in angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease type-2 (TMPRSS2) genes affect the virus entry and are considered possible risk factors for COVID-19. Methods: We compiled a panel of gene variants from both genes and used in-silico analysis to predict their significance. We performed biological validation to assess their capacity to alter the ACE2 interaction with the virus spike protein. Subsequently, we conducted a retrospective comparative genome analysis on those variants in the Emirati patients with different disease severity (total of 96) along with 69 healthy control subjects. Results: Our results showed that the Emirati population lacks the variants that were previously reported as associated with disease severity, whereas a new variant in ACE2 "Chr X:g.15584534" was associated with disease severity specifically among female patients. In-silico analysis revealed that the new variant can determine the ACE2 gene transcription. Several cytokines (GM-CSF and IL-6) and chemokines (MCP-1/CCL2, IL-8/CXCL8, and IP-10/CXCL10) were markedly increased in COVID-19 patients with a significant correlation with disease severity. The newly reported genetic variant of ACE2 showed a positive correlation with CD40L, IL-1ß, IL-2, IL-15, and IL-17A in COVID-19 patients. Conclusion: Whereas COVID-19 represents now a past pandemic, our study underscores the importance of genetic factors specific to a population, which can influence both the susceptibility to viral infections and the level of severity; subsequently expected required preparedness in different areas of the world.


Angiotensin-Converting Enzyme 2 , COVID-19 , Cytokines , Polymorphism, Single Nucleotide , SARS-CoV-2 , Serine Endopeptidases , Humans , COVID-19/genetics , Angiotensin-Converting Enzyme 2/genetics , Female , Male , SARS-CoV-2/physiology , Cytokines/blood , Cytokines/genetics , Serine Endopeptidases/genetics , United Arab Emirates/epidemiology , Middle Aged , Adult , Retrospective Studies , Severity of Illness Index , Aged
2.
Immunotargets Ther ; 12: 105-111, 2023.
Article En | MEDLINE | ID: mdl-37928748

Globoid cell leukodystrophy or Krabbe is a disease that affects children as well as adults who have mutations in the gene encoding the enzyme galactosylceramidase/galctocerebrosidase (GALC), resulting in the deposition of the toxic lipid D-galactosyl-beta1-1' sphingosine (GalSph or psychosine). Several therapeutic modalities were used to treat patients with Krabbe disease, including hematopoietic stem cell transplantation, enzyme replacement therapy, autophagy activators, intravenous immunoglobulin, and inhibitors of the Pyroptosis process, among many other approaches. In this article, I will briefly discuss the disease in both human and animal model, describe recent clinical observations as well as methods utilizing genetic analysis for diagnosis, and finally review recent advances in treating this rare and devastating disease.

3.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article En | MEDLINE | ID: mdl-37511404

Titanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant's surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles. In this study, the peri-implant gingival tissues were collected from patients with failed implants, successful implants and no implants, and then a whole transcriptome analysis was performed. The gene set enrichment analysis confirmed that macrophage M1/M2 polarization and lymphocyte proliferation were differentially expressed between the study groups. The functional clustering and pathway analysis of the differentially expressed genes between the failed implants and successful implants versus no implants revealed that the immune response pathways were the most common in both comparisons, implying the critical role of infiltrating immune cells in the peri-implant tissues. The H&E and IHC staining confirmed the presence of titanium particles and immune cells in the tissue samples, with an increase in the infiltration of lymphocytes and macrophages in the failed implant samples. The in vitro validation showed a significant increase in the level of IL-1ß, IL-8 and IL-18 expression by macrophages. Our findings showed evidence that titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues, which can help in the understanding of the imbalance in osteoblast-osteoclast activity and failure of dental implant osseointegration.


Dental Implants , Titanium , Humans , Titanium/adverse effects , Titanium/analysis , Gingiva , Lymphocytes/chemistry , Macrophages/chemistry , Inflammation , Dental Implants/adverse effects
4.
J Clin Med ; 12(5)2023 Mar 06.
Article En | MEDLINE | ID: mdl-36902854

Liver injury occurs frequently as a consequence of SARS-CoV-2 infection. Direct infection of the liver leads to hepatic impairment with elevated transaminases. In addition, severe COVID-19 is characterized by cytokine release syndrome, which may initiate or exacerbate liver injury. In patients with cirrhosis, SARS-CoV-2 infection is associated with acute-on-chronic liver failure. The Middle East and North Africa (MENA) region is one of the world's regions characterized by a high prevalence of chronic liver diseases. Both parenchymal and vascular types of injury contribute to liver failure in COVID-19, with a myriad of pro-inflammatory cytokines playing a major role in perpetuating liver injury. Additionally, hypoxia and coagulopathy complicate such a condition. This review discusses the risk factors, and the underlying causes of impaired liver functions in COVID-19, with a focus on key players in the pathogenesis of liver injury. It also highlights the histopathological changes encountered in postmortem liver tissues as well as potential predictors and prognostic factors of such injury, in addition to the management strategies to ameliorate liver damage.

5.
Biochem Biophys Res Commun ; 644: 70-78, 2023 02 12.
Article En | MEDLINE | ID: mdl-36634584

During myocardial infarction, cellular debris is released, causing a sterile inflammation via pattern recognition receptors. These reactions amplify damage and promotes secondary heart failure. The pattern recognition receptor, Toll-like receptor 9 (TLR9) detects immunogenic fragments of endogenous DNA, inducing inflammation by NFκB. The p66ShcA adaptor protein plays an important role in both ischemic myocardial damage and immune responses. We hypothesized that p66ShcA adaptor protein promotes DNA-sensing signaling via the TLR9 pathway after myocardial infarction. TLR9 protein expression increased in cardiac tissue from patients with end-stage heart failure due to ischemic heart disease. Myocardial ischemia in mice in vivo induced gene expression of key TLR9 pathway proteins (MyD88 and Unc93b1). In this model, a functional link between TLR9 and p66ShcA was revealed as; (i) ischemia-induced upregulation of TLR9 protein was abrogated in myocardium of p66ShcA knockout mice; (ii) when p66ShcA was overexpressed in NFkB reporter cells stably expressing TLR9, NFkB-activation increased during stimulation with the TLR9 agonist CpG B; (iii) in cardiac fibroblasts, p66ShcA overexpression caused TLR9 upregulation. Co-immunoprecipitation showed that ShcA proteins and TLR9 may be found in the same protein complex, which was dissipated upon TLR9 stimulation in vivo. A proximity assay confirmed the co-localization of TLR9 and ShcA proteins. The systemic immune response after myocardial ischemia was dampened in p66ShcA knockout mice as interleukin-4, -17 and -22 expression in mononuclear cells isolated from spleens was reduced. In conclusion, p66ShcA adaptor may be an interaction partner and a regulator of the TLR9 pathway post-infarction.


Heart Failure , Myocardial Infarction , Myocardial Ischemia , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Inflammation , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/metabolism , NF-kappa B/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Toll-Like Receptor 9/metabolism
6.
Viruses ; 14(11)2022 11 03.
Article En | MEDLINE | ID: mdl-36366543

Chemokines constitute a group of small, secreted proteins that regulate leukocyte migration and contribute to their activation. Chemokines are crucial inflammatory mediators that play a key role in managing viral infections, during which the profile of chemokine expression helps shape the immune response and regulate viral clearance, improving clinical outcome. In particular, the chemokine ligand CXCL10 and its receptor CXCR3 were explored in a plethora of RNA and DNA viral infections. In this review, we highlight the expression profile and role of the CXCL10/CXCR3 axis in the host defense against a variety of RNA and DNA viral infections. We also discuss the interactions among viruses and host cells that trigger CXCL10 expression, as well as the signaling cascades induced in CXCR3 positive cells.


Chemokine CXCL10 , Virus Diseases , Humans , Chemokine CXCL10/genetics , RNA , Virus Diseases/genetics , DNA
7.
Heliyon ; 8(9): e10482, 2022 Sep.
Article En | MEDLINE | ID: mdl-36097493

Background: Breast cancer (BC) has become the most common cancer globally in 2020 as well as in the United Arab Emirates. The breast tumor microenvironment is composed of various immune cell types, including lymphocytes. Tumour-infiltrating lymphocytes (TILs) play a crucial role in tumor eradication and progression. Further, immune checkpoint markers such as programmed death receptor ligand 1 (PD-L1) and indoleamine-2,3-dioxygenase (IDO) have been associated with tumor evasion from the immune system. In this study, we aimed to explore the status of TILs, PD-L1 and IDO as well as to investigate their association with the clinicopathological parameters. Materials and methods: A total of 59 patients diagnosed with primary infiltrating BC were selected, after which tissue sections were stained to identify TILs along with immunohistochemical staining of PD-L1 and IDO. Moreover, in-silico tools were used to assess the expression of PD-L1, IDO and CD3ε in various molecular subtypes of BC. Results: It was found that the percentage of TILs correlated with estrogen receptor (ER) and progesterone receptor (PR) expression. This was supported by the finding that most of the triple-negative breast cancer (TNBC) cases belonged to the group with a high percentage of TILs (h-TILs). Similarly, the expression of PD-L1 and IDO was correlated with the ER and PR, whereas TNBC cases showed a high expression of PD-L1 and IDO. This goes in line with the in-silico findings where the TNBC group showed the highest expression of PD-L1 and IDO as well as the T cell marker CD3ε. Conclusion: This study highlighted a possible link between the immunosuppressive markers PD-L1 and IDO with TILs density in the BC microenvironment.

8.
Front Oncol ; 12: 924290, 2022.
Article En | MEDLINE | ID: mdl-35912261

Colorectal cancer (CRC) is among the topmost malignancies for both genders. Despite the high incidence rate and advances in diagnostic tools, treatment in many cases is still ineffective. Most cancerous lesions in CRC begin as benign, followed by the development of invasive forms and metastases. The development of CRC has been linked to defects in autophagy, which plays both a pro-and anti-tumor role and is mainly context-dependent. Autophagy suppression could enhance apoptosis via p53 activation, or autophagy also promotes tumor progression by maintaining tumor growth and increasing resistance to chemotherapy. Autophagy promotes the invasion and metastasis of CRC cells via increased epithelial-mesenchymal transition (EMT). Moreover, dysbiosis of gut microbiota upregulated autophagy and metastasis markers. Autophagy responses may also modulate the tumor microenvironment (TME) via regulating the differentiation process of several innate immune cells. Treatments that promote tumor cell death by stimulating or inhibiting autophagy could be beneficial if used as an adjunct treatment, but the precise role of various autophagy-modulating drugs in CRC patients is needed to be explored. In this article, we present an overview of the autophagy process and its role in the pathogenesis and therapeutic resistance of CRC. Also, we focused on the current understanding of the role of the EMT and TME, including its relation to gut microbiota and immune cells, in autophagic manipulation of CRC. We believe that there is a potential link between autophagy, TME, EMT, and drug resistance, suggesting that further studies are needed to explore this aspect.

9.
Front Immunol ; 13: 865845, 2022.
Article En | MEDLINE | ID: mdl-35529862

Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19.


COVID-19 , Cytokines , Disease Progression , Humans , Pandemics , SARS-CoV-2 , Severity of Illness Index
10.
Front Oncol ; 12: 847543, 2022.
Article En | MEDLINE | ID: mdl-35311103

Breast cancer (BC) is the most diagnosed cancer and the leading cause of global cancer incidence in 2020. It is quite known that highly invasive cancers have disrupted metabolism that leads to the creation of an acidic tumor microenvironment. Among the proton-sensing G protein-coupled receptors is GPR68. In this study, we aimed to explore the expression pattern of GPR68 in tissues from BC patients as well as different BC cell lines. METHODS: In-silico tools were used to assess the expression of GPR68 in BC patients. The expression pattern was validated in fresh and paraffin-embedded sections of BC patients using qPCR and immunohistochemistry (IHC), respectively. Also, in-silico tools investigated GPR68 expression in different BC cell lines. Validation of GPR68 expression was performed using qPCR and immunofluorescence techniques in four different BC cell lines (MCF-7, MDA-MB-231, BT-549 and SkBr3). RESULTS: GPR68 expression was found to be significantly increased in BC patients using the in-silico tools and validation using qPCR and IHC. Upon classification according to the molecular subtypes, the luminal subtype showed the highest GPR68 expression followed by triple-negative and Her2-enriched cells. However, upon validation in the recruited cohort, the triple-negative molecular subtype of BC patients showed the highest GPR68 expression. Also, in-silico and validation data revealed that the triple-negative breast cancer cell line MDA-MB-231 showed the highest expression of GPR68. CONCLUSION: Therefore, this study highlights the potential utilization of GPR68 as a possible diagnostic and/or prognostic marker in BC.

11.
Viruses ; 14(1)2022 01 17.
Article En | MEDLINE | ID: mdl-35062368

Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review discusses the role of cytokines and chemokines in SARS-CoV-2 and its predecessors SARS-CoV and MERS-CoV, with particular emphasis on the elevated levels of inflammatory mediators that are shown to be correlated with disease severity. For this purpose, we reviewed and analyzed clinical studies, research articles, and reviews published on PubMed, EMBASE, and Web of Science. This review illustrates the role of the innate and adaptive immune responses in SARS, MERS, and COVID-19 and identifies the general cytokine and chemokine profile in each of the three infections, focusing on the most prominent inflammatory mediators primarily responsible for the COVID-19 pathogenesis. The current treatment protocols or medications in clinical trials were reviewed while focusing on those targeting cytokines and chemokines. Altogether, the identified cytokines and chemokines profiles in SARS-CoV, MERS-CoV, and SARS-CoV-2 provide important information to better understand SARS-CoV-2 pathogenesis and highlight the importance of using prominent inflammatory mediators as markers for disease diagnosis and management. Our findings recommend that the use of immunosuppression cocktails provided to patients should be closely monitored and continuously assessed to maintain the desirable effects of cytokines and chemokines needed to fight the SARS, MERS, and COVID-19. The current gap in evidence is the lack of large clinical trials to determine the optimal and effective dosage and timing for a therapeutic regimen.


COVID-19/immunology , Adaptive Immunity , Chemokines/antagonists & inhibitors , Chemokines/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Cytokines/antagonists & inhibitors , Cytokines/immunology , Humans , Immunity, Innate , Inflammation , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
12.
Biomed Pharmacother ; 145: 112368, 2022 Jan.
Article En | MEDLINE | ID: mdl-34794114

Protein arginine N-methyltransferase 5 (PRMT5) enzyme is one of the eight canonical PRMTs, classified as a type II PRMT, induces arginine monomethylation and symmetric dimethylation. PRMT5 is known to be overexpressed in multiple cancer types, including colorectal cancer (CRC), where its overexpression is associated with poor survival. Recent studies have shown that upregulation of PRMT5 induces tumor growth and metastasis in CRC. Moreover, various novel PRMT5 inhibitors tested on CRC cell lines showed promising anticancer effects. Also, it was suggested that PRMT5 could be a valid biomarker for CRC diagnosis and prognosis. Hence, a deeper understanding of PRMT5-mediated CRC carcinogenesis could provide new avenues towards developing a targeted therapy. In this study, we started with in silico analysis correlating PRMT5 expression in CRC patients as a prelude to further our investigation of its role in CRC. We then carried out a comprehensive review of the scientific literature that dealt with the role(s) of PRMT5 in CRC pathogenesis, diagnosis, and prognosis. Also, we have summarized key findings from in vitro research using various therapeutic agents and strategies directly targeting PRMT5 or disrupting its function. In conclusion, PRMT5 seems to play a significant role in the pathogenesis of CRC; therefore, its prognostic and therapeutic potential merits further investigation.


Antineoplastic Agents/pharmacology , Colorectal Neoplasms/therapy , Protein-Arginine N-Methyltransferases/genetics , Animals , Biomarkers, Tumor/metabolism , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Computer Simulation , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic , Humans , Molecular Targeted Therapy , Prognosis
13.
Neoplasia ; 24(2): 76-85, 2022 02.
Article En | MEDLINE | ID: mdl-34952246

Colorectal Cancer (CRC) with Microsatellite instability (MSI) and mutLhomolog-1 (MLH1) gene deficiency are less aggressive than MLH1 proficient cancers. MLH1 is involved in several cellular processes, but its connection with the autophagy-dependent cellular response towards anticancer drugs remains unclear. In this study, we aimed to investigate the interaction between MLH1 and the autophagy marker LC3, which facilitated nucleophagy induction, and its potential role in determining sensitivity to 5-Fluorouracil (5-FU) induced cell death. To examine the role of MLH1 in DNA-damage-induced nucleophagy in CRC cells, we utilized a panel of MLH1 deficient and MLH1 proficient CRC cell lines. We included a parental HCT116 cell line (MLH1-/-) and its isogenic cell line HCT116 MLH1+/- in which a single allele of the MLH1 gene was introduced using CRISPR-Cas9 gene editing. We observed that MLH1 proficient cells were less sensitive to the 5-FU-induced cytotoxic effect. The 5-FU induced DNA damage led to LC3 up-regulation, which was dependent on MLH1 overexpression. Moreover, immunofluorescence and immunoprecipitation data showed LC3 and MLH1 were colocalized in CRC cells. Consequently, MLH1 dependent 5-FU-induced DNA damage contributed to the formation of micronuclei. These micronuclei colocalize with autolysosome, indicating a cytoprotective role of MLH1 dependent nucleophagy. Interestingly, siRNA knockdown of MLH1 in HCT116 MLH1+/- prevented LC3 upregulation and micronuclei formation. These novel data are the first to show an essential role of MLH1 in mediating the chemoresistance and survival of cancer cells by increasing the LC3 expression and inducing nucleophagy in 5-FU treated CRC cells.


Autophagy/drug effects , Autophagy/genetics , Colorectal Neoplasms/genetics , Cytoprotection/genetics , Fluorouracil/pharmacology , MutL Protein Homolog 1/genetics , Cell Death/drug effects , Cell Line, Tumor , DNA Damage/drug effects , Gene Knockdown Techniques , Humans
14.
Front Cell Infect Microbiol ; 11: 733564, 2021.
Article En | MEDLINE | ID: mdl-34804991

Infectious diseases represent one of the largest medical challenges worldwide. Bacterial infections, in particular, remain a pertinent health challenge and burden. Moreover, such infections increase over time due to the continuous use of various antibiotics without medical need, thus leading to several side effects and bacterial resistance. Our innate immune system represents our first line of defense against any foreign pathogens. This system comprises the innate lymphoid cells (ILCs), including natural killer (NK) cells that are critical players in establishing homeostasis and immunity against infections. ILCs are a group of functionally heterogenous but potent innate immune effector cells that constitute tissue-resident sentinels against intracellular and extracellular bacterial infections. Being a nascent subset of innate lymphocytes, their role in bacterial infections is not clearly understood. Furthermore, these pathogens have developed methods to evade the host immune system, and hence permit infection spread and tissue damage. In this review, we highlight the role of the different ILC populations in various bacterial infections and the possible ways of immune evasion. Additionally, potential immunotherapies to manipulate ILC responses will be briefly discussed.


Bacterial Infections , Lymphocytes , Bacterial Infections/drug therapy , Humans , Immunity, Innate , Killer Cells, Natural
15.
Biology (Basel) ; 10(9)2021 Aug 30.
Article En | MEDLINE | ID: mdl-34571724

Colorectal cancer (CRC) development is a gradual process defined by the accumulation of numerous genetic mutations and epigenetic alterations leading to the adenoma-carcinoma sequence. Despite significant advances in the diagnosis and treatment of CRC, it continues to be a leading cause of cancer-related deaths worldwide. Even in the presence of oxygen, CRC cells bypass oxidative phosphorylation to produce metabolites that enable them to proliferate and survive-a phenomenon known as the "Warburg effect". Understanding the complex glucose metabolism in CRC cells may support the development of new diagnostic and therapeutic approaches. Here we discuss the most recent findings on genetic mutations and epigenetic modulations that may positively or negatively regulate the Warburg effect in CRC cells. We focus on the non-coding RNA (ncRNA)-based epigenetics, and we present a perspective on the therapeutic relevance of critical molecules and ncRNAs mediating the Warburg effect in CRC cells. All the relevant studies were identified and assessed according to the genes and enzymes mediating the Warburg effect. The findings summarized in this review should provide a better understanding of the relevance of genetic mutations and the ncRNA-based epigenetic alterations to CRC pathogenesis to help overcome chemoresistance.

16.
J Inflamm Res ; 14: 2601-2617, 2021.
Article En | MEDLINE | ID: mdl-34168483

OBJECTIVE: Herceptin (trastuzumab) is an approved drug for treating HER2+ breast cancer patients, but its use for other diseases is not established. We sought to investigate the effects of Herceptin on ameliorating experimental autoimmune encephalomyelitis (EAE) and to examine its effects on the expression of various genes. METHODS: We used in-silico analysis of publicly available data, qRT-PCR, and immunohistochemistry (IHC) to determine the expression of HER2+ cells in the brains of EAE mice. IHC was also utilized to determine the anti-inflammatory effects of Herceptin. The ability of Herceptin to alleviate the EAE clinical score was measured in these mice. Bioinformatics analysis of publicly available data and qRT-PCR were performed to investigate the differentially expressed genes that were either up-regulated or down-regulated during the high clinical score (HCS) of the disease. RESULTS: We observed that HER2/Erbb2, the receptor for Herceptin is upregulated in the brains of EAE mice when the brains were examined at the HCS stage. Further, we demonstrated that Herceptin ameliorates the EAE disease, increasing re-myelination, reducing brain inflammation, CD3+ T cell accumulation, and HER2+ cells in the brains of these mice. Molecular analysis demonstrated the expression of different genes that were either up-regulated or down-regulated during the HCS of the disease. Our combined bioinformatics and qRT-PCR analyses show increased mRNA expression of Atp6v0d2, C3, C3ar1, Ccl3, Ccl6, Cd74, Clec7a, Cybb, H2-Aa, Hspb1, Lilr4b, Lilrb4a, Mpeg1, Ms4a4a, Ms4a6c, Saa3, Serpina3n and Timp1, at HCS. Except for the mRNA levels of Cd74 and Clec7a which were increased at HCS when Herceptin was used in both prophylactic and therapeutic regimens, the levels of other described mRNAs were reduced. CONCLUSION: These novel findings show that Herceptin ameliorates the clinical score in EAE mice and are the first to investigate in detail the differential gene expression post-treatment with the drug.

17.
Curr Med Res Opin ; 37(6): 929-938, 2021 06.
Article En | MEDLINE | ID: mdl-33754931

In March 2020, COVID-19 infection caused by SARS-CoV-2 has been declared to be a global pandemic, where its complications, severity and mortality are reported to be due to the released inflammatory cytokines or the so-called cytokine storm. This is quite similar to that observed in the autoimmune and chronic inflammatory rheumatic disease, rheumatoid arthritis (RA). It was hypothesized that RA patients are at a higher risk of acquiring COVID-19; however, recent studies reported that they are not when compared to the rest of the population. In this review, we aim to highlight the mutual pathological features, cytokine profiles and risk factors between COVID-19 and RA. Also, many researchers are currently working to explore therapeutic agents that could aid in the eradication of COVID-19 infection. Due to the similarity between the inflammation status in COVID-19 and RA, many anti-rheumatic drugs such as hydroxychloroquine, tocilizumab, baricitinib and anakinra were proposed to be therapeutic modalities for COVID-19 infection.


Arthritis, Rheumatoid , COVID-19 Drug Treatment , COVID-19 , Cytokine Release Syndrome , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , COVID-19/complications , COVID-19/immunology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/blood , Humans , Risk Factors
18.
Comput Struct Biotechnol J ; 19: 976-988, 2021.
Article En | MEDLINE | ID: mdl-33558827

Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.

19.
Infect Drug Resist ; 13: 3243-3254, 2020.
Article En | MEDLINE | ID: mdl-33061471

COVID-19 infection caused by the newly discovered coronavirus severe acute respiratory distress syndrome virus-19 (SARS-CoV-2) has become a pandemic issue across the globe. There are currently many investigations taking place to look for specific, safe and potent anti-viral agents. Upon transmission and entry into the human body, SARS-CoV-2 triggers multiple immune players to be involved in the fight against the viral infection. Amongst these immune cells are NK cells that possess robust antiviral activity, and which do not require prior sensitization. However, NK cell count and activity were found to be impaired in COVID-19 patients and hence, could become a potential therapeutic target for COVID-19. Several drugs, including glatiramer acetate (GA), vitamin D3, dimethyl fumarate (DMF), monomethyl fumarate (MMF), natalizumab, ocrelizumab, and IFN-ß, among others have been previously described to increase the biological activities of NK cells especially their cytolytic potential as reported by upregulation of CD107a, and the release of perforin and granzymes. In this review, we propose that such drugs could potentially restore NK cell activity allowing individuals to be more protective against COVID-19 infection and its complications.

20.
J Inflamm Res ; 13: 619-633, 2020.
Article En | MEDLINE | ID: mdl-33061527

Multiple sclerosis (MS) is an immune-mediated and neurodegenerative disorder that results in inflammation and demyelination of the central nervous system (CNS). MS symptoms include walking difficulties, visual weakening, as well as learning and memory impairment, thus affecting the quality of the patient's life. Chemokines and chemokine receptors are expressed on the immune cells as well as the CNS resident cells. Several sets of chemokine receptors and their ligands tend to be pathogenic players in MS, including CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11, CCL17, CCL19, CCL21, CCL22, CXCL1, CXCL8, CXCL9, CXCL10, CXCL11, and CXCL16. Furthermore, current modulatory drugs that are used in the treatment of MS and its animal model, the experimental autoimmune encephalomyelitis (EAE), affect the expression of several chemokine and chemokine receptors. In this review, we highlight the pathogenic roles of chemokines and their receptors as well as utilizing them as potential therapeutic targets through selective agents, such as specific antibodies and receptor blockers, or indirectly through MS or EAE immunomodulatory drugs.

...