Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Oncoimmunology ; 13(1): 2362454, 2024.
Article En | MEDLINE | ID: mdl-38846084

Rituximab (RTX) plus chemotherapy (R-CHOP) applied as a first-line therapy for lymphoma leads to a relapse in approximately 40% of the patients. Therefore, novel approaches to treat aggressive lymphomas are being intensively investigated. Several RTX-resistant (RR) cell lines have been established as surrogate models to study resistance to R-CHOP. Our study reveals that RR cells are characterized by a major downregulation of CD37, a molecule currently explored as a target for immunotherapy. Using CD20 knockout (KO) cell lines, we demonstrate that CD20 and CD37 form a complex, and hypothesize that the presence of CD20 stabilizes CD37 in the cell membrane. Consequently, we observe a diminished cytotoxicity of anti-CD37 monoclonal antibody (mAb) in complement-dependent cytotoxicity in both RR and CD20 KO cells that can be partially restored upon lysosome inhibition. On the other hand, the internalization rate of anti-CD37 mAb in CD20 KO cells is increased when compared to controls, suggesting unhampered efficacy of antibody drug conjugates (ADCs). Importantly, even a major downregulation in CD37 levels does not hamper the efficacy of CD37-directed chimeric antigen receptor (CAR) T cells. In summary, we present here a novel mechanism of CD37 regulation with further implications for the use of anti-CD37 immunotherapies.


Antigens, CD20 , Immunotherapy , Lymphoma, B-Cell , Rituximab , Tetraspanins , Humans , Antigens, CD20/immunology , Antigens, CD20/metabolism , Antigens, CD20/genetics , Rituximab/pharmacology , Rituximab/therapeutic use , Tetraspanins/genetics , Tetraspanins/metabolism , Cell Line, Tumor , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/therapy , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/drug therapy , Immunotherapy/methods , Antigens, Neoplasm/immunology , Antigens, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Cyclophosphamide/pharmacology , Cyclophosphamide/therapeutic use , Vincristine/pharmacology , Vincristine/therapeutic use , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Gene Expression Regulation, Neoplastic
2.
Cells ; 11(11)2022 05 31.
Article En | MEDLINE | ID: mdl-35681499

Chimeric antigen receptor (CAR)-T cell therapy is undeniably a promising tool in combating various types of hematological malignancies. However, it is not yet optimal and a significant number of patients experience a lack of response or relapse after the treatment. Therapy improvement requires careful analysis of the occurring problems and a deeper understanding of the reasons that stand behind them. In this review, we summarize the recent knowledge about CAR-T products' clinical performance and discuss diversified approaches taken to improve the major shortcomings of this therapy. Especially, we prioritize the challenges faced by CD19 CAR-T cell-based treatment of B cell-derived malignancies and revise the latest insights about mechanisms mediating therapy resistance. Since the loss of CD19 is one of the major obstacles to the success of CAR-T cell therapy, we present antigens that could be alternatively used for the treatment of various types of B cell-derived cancers.


Immunotherapy, Adoptive , Leukemia, B-Cell , Lymphoma, B-Cell , Receptors, Antigen, T-Cell , Receptors, Chimeric Antigen , Antigens, CD19 , Cell- and Tissue-Based Therapy , Humans , Leukemia, B-Cell/therapy , Lymphoma, B-Cell/therapy , Neoplasm Recurrence, Local , T-Lymphocytes
3.
J Immunother Cancer ; 10(1)2022 01.
Article En | MEDLINE | ID: mdl-35078921

BACKGROUND: Immune checkpoint inhibitors and chimeric antigen receptor (CAR)-based therapies have transformed cancer treatment. Recently, combining these approaches into a strategy of PD-L1-targeted CAR has been proposed to target PD-L1high tumors. Our study provides new information on the efficacy of such an approach against PD-L1low targets. METHODS: New atezolizumab-based PD-L1-targeted CAR was generated and introduced into T, NK, or NK-92 cells. Breast cancer MDA-MB-231 and MCF-7 cell lines or non-malignant cells (HEK293T, HMEC, MCF-10A, or BM-MSC) were used as targets to assess the reactivity or cytotoxic activity of the PD-L1-CAR-bearing immune effector cells. Stimulation with IFNγ or with supernatants from activated CAR T cells were used to induce upregulation of PD-L1 molecule expression on the target cells. HER2-CAR T cells were used for combination with PD-L1-CAR T cells against MCF-7 cells. RESULTS: PD-L1-CAR effector cells responded vigorously with degranulation and cytokine production to PD-L1high MDA-MB-231 cells, but not to PD-L1low MCF-7 cells. However, in long-term killing assays, both MDA-MB-231 and MCF-7 cells were eliminated by the PD-L1-CAR cells, although with a delay in the case of PD-L1low MCF-7 cells. Notably, the coculture of MCF-7 cells with activated PD-L1-CAR cells led to bystander induction of PD-L1 expression on MCF-7 cells and to the unique self-amplifying effect of the PD-L1-CAR cells. Accordingly, PD-L1-CAR T cells were active not only against MDA-MD-231 and MCF-7-PD-L1 but also against MCF-7-pLVX cells in tumor xenograft models. Importantly, we have also observed potent cytotoxic effects of PD-L1-CAR cells against non-malignant MCF-10A, HMEC, and BM-MSC cells, but not against HEK293T cells that initially did not express PD-L1 and were unresponsive to the stimulation . Finally, we have observed that HER-2-CAR T cells stimulate PD-L1 expression on MCF-7 cells and therefore accelerate the functionality of PD-L1-CAR T cells when used in combination. CONCLUSIONS: In summary, our studies show that CAR-effector cells trigger the expression of PD-L1 on target cells, which in case of PD-L1-CAR results in the unique self-amplification phenomenon. This self-amplifying effect could be responsible for the enhanced cytotoxicity of PD-L1-CAR T cells against both malignant and non-malignant cells and implies extensive caution in introducing PD-L1-CAR strategy into clinical studies.


Breast Neoplasms/therapy , Cytotoxicity, Immunologic , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Animals , B7-H1 Antigen/analysis , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Female , HEK293 Cells , Humans , Mice , Receptor, ErbB-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
4.
Cancer Immunol Res ; 10(2): 228-244, 2022 02.
Article En | MEDLINE | ID: mdl-34853030

Oxidative stress, caused by the imbalance between reactive species generation and the dysfunctional capacity of antioxidant defenses, is one of the characteristic features of cancer. Here, we quantified hydrogen peroxide in the tumor microenvironment (TME) and demonstrated that hydrogen peroxide concentrations are elevated in tumor interstitial fluid isolated from murine breast cancers in vivo, when compared with blood or normal subcutaneous fluid. Therefore, we investigated the effects of increased hydrogen peroxide concentration on immune cell functions. NK cells were more susceptible to hydrogen peroxide than T cells or B cells, and by comparing T, B, and NK cells' sensitivities to redox stress and their antioxidant capacities, we identified peroxiredoxin-1 (PRDX1) as a lacking element of NK cells' antioxidative defense. We observed that priming with IL15 protected NK cells' functions in the presence of high hydrogen peroxide and simultaneously upregulated PRDX1 expression. However, the effect of IL15 on PRDX1 expression was transient and strictly dependent on the presence of the cytokine. Therefore, we genetically modified NK cells to stably overexpress PRDX1, which led to increased survival and NK cell activity in redox stress conditions. Finally, we generated PD-L1-CAR NK cells overexpressing PRDX1 that displayed potent antitumor activity against breast cancer cells under oxidative stress. These results demonstrate that hydrogen peroxide, at concentrations detected in the TME, suppresses NK cell function and that genetic modification strategies can improve CAR NK cells' resistance and potency against solid tumors.


Antioxidants , Breast Neoplasms , Animals , Antioxidants/metabolism , Cell Line, Tumor , Female , Hydrogen Peroxide/pharmacology , Interleukin-15/metabolism , Killer Cells, Natural , Mice , Oxidative Stress , Peroxiredoxins/genetics , Peroxiredoxins/metabolism , Tumor Microenvironment
5.
Oncol Lett ; 20(1): 533-540, 2020 Jul.
Article En | MEDLINE | ID: mdl-32565979

Histone deacetylase (HDAC) inhibitors, approved for the treatment of cutaneous T-cell lymphoma (CTCL), are non-selective agents associated with an unsatisfactory response and considerable side-effects. Targeting single HDAC isoforms is considered to provide novel therapeutic options. HDAC6 is overexpressed in primary samples from patients with CTCL and preclinical studies using transgenic mice that spontaneously develop a CTCL-like disease, have suggested that combinations including HDAC6 inhibitors may be successful in the treatment of CTCL. PI3K inhibition is currently being tested in clinical trials for CTCL with promising results. Since HDAC6 is known to diminish the activity of Akt via its deacetylation, the aim of the present study was to evaluate the therapeutic potential of selective HDAC6 inhibitors in combination with PI3K inhibitors in CTCL. Through the genetic and pharmacological inhibition of HDAC6, it was demonstrated that combining HDAC6 with PI3K inhibition may be an attractive therapeutic option for patients with CTCL.

6.
Antioxidants (Basel) ; 9(4)2020 Apr 16.
Article En | MEDLINE | ID: mdl-32316111

Triple-negative breast cancer (TNBC) is an aggressive form of mammary malignancy currently without satisfactory systemic treatment options. Agents generating reactive oxygen species (ROS), such as ascorbate (Asc) and menadione (Men), especially applied in combination, have been proposed as an alternative anticancer modality. However, their effectiveness can be hampered by the cytoprotective effects of elevated antioxidant enzymes (e.g., peroxiredoxins, PRDX) in cancer. In this study, PRDX1 mRNA and protein expression were assessed in TNBC tissues by analysis of the online RNA-seq datasets and immunohistochemical staining of tissue microarray, respectively. We demonstrated that PRDX1 mRNA expression was markedly elevated in primary TNBC tumors as compared to non-malignant controls, with PRDX1 protein staining intensity correlating with favorable survival parameters. Subsequently, PRDX1 functionality in TNBC cell lines or non-malignant mammary cells was targeted by genetic silencing or chemically by auranofin (AUR). The PRDX1-knockdown or AUR treatment resulted in inhibition of the growth of TNBC cells in vitro. These cytotoxic effects were further synergistically potentiated by the incubation with a combination of the prooxidant agents, Asc and Men. In conclusion, we report that the PRDX1-related antioxidant system is essential for maintaining redox homeostasis in TNBC cells and can be an attractive therapeutic target in combination with ROS-generating agents.

7.
Cancers (Basel) ; 11(11)2019 Nov 08.
Article En | MEDLINE | ID: mdl-31717326

The immune checkpoints are regulatory molecules that maintain immune homeostasis in physiological conditions. By sending T cells a series of co-stimulatory or co-inhibitory signals via receptors, immune checkpoints can both protect healthy tissues from adaptive immune response and activate lymphocytes to remove pathogens effectively. However, due to their mode of action, suppressive immune checkpoints may serve as unwanted protection for cancer cells. To restore the functioning of the immune system and make the patient's immune cells able to recognize and destroy tumors, monoclonal antibodies are broadly used in cancer immunotherapy to block the suppressive or to stimulate the positive immune checkpoints. In this review, we aim to present the current state of application of monoclonal antibodies in clinics, used either as single agents or in a combined treatment. We discuss the limitations of these therapies and possible problem-solving with combined treatment approaches involving both non-biological and biological agents. We also highlight the most promising strategies based on the use of monoclonal or bispecific antibodies targeted on immune checkpoints other than currently implemented in clinics.

...