Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(6): 110131, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38957789

RESUMEN

HIV-1 hijacks host proteins involved in membrane trafficking, endocytosis, and autophagy that are critical for virus replication. Molecular details are lacking but are essential to inform on the development of alternative antiviral strategies. Despite their potential as clinical targets, only a few membrane trafficking proteins have been functionally characterized in HIV-1 replication. To further elucidate roles in HIV-1 replication, we performed a CRISPR-Cas9 screen on 140 membrane trafficking proteins. We identified phosphatidylinositol-binding clathrin assembly protein (PICALM) that influences not only infection dynamics but also CD4+ SupT1 biology. The knockout (KO) of PICALM inhibited viral entry. In CD4+ SupT1 T cells, KO cells exhibited defects in intracellular trafficking and increased abundance of intracellular Gag and significant alterations in autophagy, immune checkpoint PD-1 levels, and differentiation markers. Thus, PICALM modulates a variety of pathways that ultimately affect HIV-1 replication, underscoring the potential of PICALM as a future target to control HIV-1.

2.
Nucleic Acids Res ; 52(5): 2625-2647, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38165048

RESUMEN

Translation initiation of the human immunodeficiency virus-type 1 (HIV-1) genomic mRNA (vRNA) is cap-dependent or mediated by an internal ribosome entry site (IRES). The HIV-1 IRES requires IRES-transacting factors (ITAFs) for function. In this study, we evaluated the role of the heterogeneous nuclear ribonucleoprotein K (hnRNPK) as a potential ITAF for the HIV-1 IRES. In HIV-1-expressing cells, the depletion of hnRNPK reduced HIV-1 vRNA translation. Furthermore, both the depletion and overexpression of hnRNPK modulated HIV-1 IRES activity. Phosphorylations and protein arginine methyltransferase 1 (PRMT1)-induced asymmetrical dimethylation (aDMA) of hnRNPK strongly impacted the protein's ability to promote the activity of the HIV-1 IRES. We also show that hnRNPK acts as an ITAF for the human T cell lymphotropic virus-type 1 (HTLV-1) IRES, present in the 5'UTR of the viral sense mRNA, but not for the IRES present in the antisense spliced transcript encoding the HTLV-1 basic leucine zipper protein (sHBZ). This study provides evidence for a novel role of the host hnRNPK as an ITAF that stimulates IRES-mediated translation initiation for the retroviruses HIV-1 and HTLV-1.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K , Retroviridae , Humanos , Regiones no Traducidas 5' , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Sitios Internos de Entrada al Ribosoma/genética , Fosforilación , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Retroviridae/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
J Mol Biol ; 435(16): 168190, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37385580

RESUMEN

Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that the pan-retroviral nucleocapsid (NC) and HIV-1 pr55Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yields self-assembling BMCs that have HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs, and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4+ T cell nuclear lysates led to the formation of larger BMCs compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggest that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.


Asunto(s)
Condensados Biomoleculares , VIH-1 , Interacciones Huésped-Patógeno , ARN Viral , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/virología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , VIH-1/genética , VIH-1/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Genoma Viral , Humanos
4.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865181

RESUMEN

Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) and the HIV-1 pr55 Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yield self-assembling BMCs having HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4 + T cell nuclear lysates led to the formation of larger BMCs as compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggests that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.

5.
Cell Rep ; 40(8): 111251, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001979

RESUMEN

Membraneless biomolecular condensates (BMCs) contribute to the replication of a growing number of viruses but remain to be functionally characterized. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) proteins phase separated into condensates regulating virus assembly. Here we discover that intrinsically disordered human immunodeficiency virus-type 1 (HIV-1) core proteins condense with the viral genomic RNA (vRNA) to assemble as BMCs attaining a geometry characteristic of viral reverse transcription complexes. We explore the predisposition, mechanisms, and pharmacologic sensitivity of HIV-1 core BMCs in living cells. HIV-1 vRNA-interacting NC condensates were found to be scaffolds onto which client capsid, reverse transcriptase, and integrase condensates assemble. HIV-1 core BMCs exhibit fundamental characteristics of BMCs and are drug-sensitive. Lastly, protease-mediated maturation of Gag and Gag-Pol precursor proteins yield abundant and visible BMCs in cells. This study redefines HIV-1 core components as fluid BMCs and advances our understanding of the nature of viral cores during ingress.


Asunto(s)
VIH-1 , Condensados Biomoleculares , VIH-1/genética , Humanos , Nucleocápside/metabolismo , Proteínas de la Nucleocápside , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología
6.
Nucleic Acids Res ; 50(1): 411-429, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34893869

RESUMEN

Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5'untranslated region (5'UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , VIH-1/genética , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Células HCT116 , Células HEK293 , Humanos
8.
Cell Rep ; 31(3): 107520, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320662

RESUMEN

The duality of liquid-liquid phase separation (LLPS) of cellular components into membraneless organelles defines the nucleation of both normal and disease processes including stress granule (SG) assembly. From mounting evidence of LLPS utility by viruses, we discover that HIV-1 nucleocapsid (NC) protein condenses into zinc-finger (ZnF)-dependent LLPSs that are dynamically influenced by cytosolic factors. ZnF-dependent and Zinc (Zn2+)-chelation-sensitive NC-LLPS are formed in live cells. NC-Zn2+ ejection reverses the HIV-1 blockade on SG assembly, inhibits NC-SG assembly, disrupts NC/Gag-genomic RNA (vRNA) ribonucleoprotein complexes, and causes nuclear sequestration of NC and the vRNA, inhibiting Gag expression and virus release. NC ZnF mutagenesis eliminates the HIV-1 blockade of SG assembly and repositions vRNA to SGs. We find that NC-mediated, Zn2+-coordinated phase separation is conserved among diverse retrovirus subfamilies, illustrating that this exquisitely evolved Zn2+-dependent feature of virus replication represents a critical target for pan-antiretroviral therapies.


Asunto(s)
Genómica/métodos , Nucleocápside/metabolismo , Transporte de Proteínas/genética , ARN Viral/genética , Humanos
9.
Bioconjug Chem ; 31(5): 1537-1544, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32259429

RESUMEN

Nucleoside analogs have proven effective for the inhibition of viral polymerases and are the foundation of many antiviral therapies. In this work, the antiretroviral potential of 6-azauracil analogs was assessed using activity-based protein profiling techniques and functional assays. Probes based on the 6-azauracil scaffold were examined and found to bind to HCV polymerase and HIV-1 reverse transcriptase through covalent modification of residues near the active site. The modified sites on the HIV-1 RT were examined using a mass spectrometry approach, and it was discovered that the azauracil moieties modified the enzyme in proximity to its active site. However, these scaffolds gave little or no inhibition of enzyme activity. Instead, a bifunctional inhibitor was prepared using click chemistry to link the 6-azauracil moiety to azidothymidine (AzT) and the corresponding triphosphate (AzTTP). These bifunctional inhibitors were found to have potent inhibitory function through a mode of action that includes both alkylation and chain termination. An in vitro assay demonstrated that the bifunctional inhibitor was 23-fold more effective in inhibiting HIV-1 RT activity than the parent AzTTP. The bifunctional inhibitor was also tested in HIV-1 permissive T cells where it decreased Gag expression similarly to the front-line drug Efavirenz with no evidence of cytotoxicity. This new bifunctional scaffold represents an interesting tool for inhibiting HIV-1 by covalently anchoring a chain-terminating nucleoside analog in the active site of the reverse transcriptase, preventing its removal and abolishing enzymatic activity, and represents a novel mode of action for inhibiting polymerases including reverse transcriptases.


Asunto(s)
Transcriptasa Inversa del VIH/antagonistas & inhibidores , Nucleósidos/química , Nucleósidos/farmacología , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Dominio Catalítico , Química Clic , Diseño de Fármacos , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/metabolismo , Modelos Moleculares
10.
Retrovirology ; 16(1): 3, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30732620

RESUMEN

BACKGROUND: Mammalian cells harbour RNA quality control and degradative machineries such as nonsense-mediated mRNA decay that target cellular mRNAs for clearance from the cell to avoid aberrant gene expression. The role of the host mRNA decay pathways in macrophages in the context of human immunodeficiency virus type 1 (HIV-1) infection is yet to be elucidated. Macrophages are directly infected by HIV-1, mediate the dissemination of the virus and contribute to the chronic activation of the inflammatory response observed in infected individuals. Therefore, we characterized the effects of four host mRNA decay proteins, i.e., UPF1, UPF2, SMG6 and Staufen1, on viral replication in HIV-1-infected primary monocyte-derived macrophages (MDMs). RESULTS: Steady-state expression levels of these host mRNA decay proteins were significantly downregulated in HIV-1-infected MDMs. Moreover, UPF2 and SMG6 inhibited HIV-1 gene expression in macrophages to a similar level achieved by SAMHD1, by directly influencing viral genomic RNA levels. Staufen1, a host protein also involved in UPF1-dependent mRNA decay and that acts at several HIV-1 replication steps, enhanced HIV-1 gene expression in MDMs. CONCLUSIONS: These results provide new evidence for roles of host mRNA decay proteins in regulating HIV-1 replication in infected macrophages and can serve as potential targets for broad-spectrum antiviral therapeutics.


Asunto(s)
VIH-1/fisiología , Interacciones Huésped-Patógeno , Macrófagos/virología , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Replicación Viral , Células Cultivadas , Regulación de la Expresión Génica , Humanos
11.
Retrovirology ; 15(1): 42, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29954456

RESUMEN

BACKGROUND: The ability of human immunodeficiency virus type 1 (HIV-1) to form a stable viral reservoir is the major obstacle to an HIV-1 cure and post-transcriptional events contribute to the maintenance of viral latency. RNA surveillance proteins such as UPF1, UPF2 and SMG6 affect RNA stability and metabolism. In our previous work, we demonstrated that UPF1 stabilises HIV-1 genomic RNA (vRNA) and enhances its translatability in the cytoplasm. Thus, in this work we evaluated the influence of RNA surveillance proteins on vRNA expression and, as a consequence, viral reactivation in cells of the lymphoid lineage. METHODS: Quantitative fluorescence in situ hybridisation-flow cytometry (FISH-flow), si/shRNA-mediated depletions and Western blotting were used to characterise the roles of RNA surveillance proteins on HIV-1 reactivation in a latently infected model T cell line and primary CD4+ T cells. RESULTS: UPF1 was found to be a positive regulator of viral reactivation, with a depletion of UPF1 resulting in impaired vRNA expression and viral reactivation. UPF1 overexpression also modestly enhanced vRNA expression and its ATPase activity and N-terminal domain were necessary for this effect. UPF2 and SMG6 were found to negatively influence viral reactivation, both via an interaction with UPF1. UPF1 knockdown also resulted in reduced vRNA levels and viral gene expression in HIV-1-infected primary CD4+ T cells. CONCLUSION: Overall, these data suggest that RNA surveillance proteins affect HIV-1 gene expression at a post-transcriptional level. An elucidation of the role of vRNA metabolism on the maintenance of HIV-1 persistence can lead to the development of novel curative strategies.


Asunto(s)
Regulación Viral de la Expresión Génica , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , ARN Helicasas/metabolismo , Telomerasa/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Activación Viral , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Línea Celular , Citometría de Flujo , Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma Viral , Interacciones Huésped-Patógeno , Humanos , Unión Proteica , Provirus/genética , ARN Helicasas/genética , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Viral , Proteínas de Unión al ARN , Telomerasa/genética , Transactivadores/genética , Factores de Transcripción/genética , Latencia del Virus
12.
PLoS One ; 11(4): e0154044, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27101286

RESUMEN

In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5' leader and 3' trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5' leader and long 3' trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Precursores del ARN/metabolismo , ARN de Transferencia de Isoleucina/metabolismo , Transporte Biológico , Genes Virales , VIH-1/genética , Humanos , Intrones , Procesamiento Postranscripcional del ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virión/genética
13.
Sci Rep ; 5: 14724, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26423533

RESUMEN

Human Immunodeficiency Virus type 1 (HIV-1) major structure protein Gag is synthesized in the cytoplasm, assembles on the plasma membrane, subsequently buds and releases. HIV-1 viral particles incorporate a number of host proteins to facilitate or inhibit HIV-1 replication. Here we identify a new host protein, coiled-coil domain containing protein 8 (CCDC8), in HIV-1 particles. Incorporation of CCDC8 into virions is dependent on the interaction between CCDC8 and Gag matrix region. Exogenous overexpression of CCDC8 can strongly inhibit HIV-1 production, up to ~30 fold. CCDC8 is a membrane-associated protein. The interaction between exogenously expressed CCDC8 and Gag on the plasma membrane changes the assembly of Gag, and redirects it into intracellular sites, or causes Gag endocytosis. CCDC8, along with cytoskeleton protein obscuring-like1 (Obsl1) and E3 ligase Cul7, induces Gag polyubiquitination and degradation. Thus we identify a new host protein and a new pathway for HIV-1 Gag polyubiquitination and degradation. This pathway presents potential therapeutic strategies against HIV infection.


Asunto(s)
Proteínas Portadoras/metabolismo , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Ensamble de Virus , Proteínas Portadoras/genética , Línea Celular , Membrana Celular/metabolismo , Citoplasma , Endocitosis , Expresión Génica , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis , Ubiquitinación , Replicación Viral , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
14.
Retrovirology ; 12: 40, 2015 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-25981241

RESUMEN

BACKGROUND: tRNA(Lys3) annealing to the viral RNA of human immunodeficiency virus type-1 (HIV-1) is an essential step in the virus life cycle, because this tRNA serves as the primer for initiating reverse transcription. tRNA(Lys3) annealing to viral RNA occurs in two steps. First, Gag promotes annealing of tRNA(Lys3) to the viral RNA during cytoplasmic HIV-1 assembly. Second, mature nucleocapsid (NCp7), produced from the processing of Gag by viral protease during viral budding from the cell, remodels the annealed complex to form a more stable interaction between the viral RNA and tRNA(Lys3), resulting in a more tightly bound and efficient primer for reverse transcription. RESULTS: In this report, we have used in virio SHAPE analysis of both the 5´-untranslated region in HIV-1 RNA and the annealed tRNA(Lys3) to determine structural differences of the annealed complex that occur between protease-negative (Pr-) and wild type viruses. Our results indicate that the weaker binding of tRNA(Lys3) annealed by Gag in Pr- virions reflects both missing interactions of tRNA(Lys3) with viral RNA regions in the upper PBS stem, and a weaker interaction with the internal stem-loop found within the unannealed primer binding site in viral RNA. CONCLUSIONS: We propose secondary structure models for the tRNA(Lys3)/viral RNA annealed complexes in PR- and wild type viruses that support the two-step annealing model by showing that Gag promotes a partial annealing of tRNA(Lys3) to HIV-1 viral RNA, followed by a more complete annealing by NCp7.


Asunto(s)
Proteasa del VIH/deficiencia , VIH-1/enzimología , VIH-1/fisiología , ARN de Transferencia de Lisina/metabolismo , ARN Viral/metabolismo , Regiones no Traducidas 5' , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia de Lisina/química , ARN de Transferencia de Lisina/genética , ARN Viral/química , ARN Viral/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
15.
Biochim Biophys Acta ; 1839(11): 1069-78, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25149208

RESUMEN

RNA helicase A (RHA), a DExD/H protein, contains a stretch of repeated arginine and glycine-glycine (RGG) residues and an oligonucleotide/oligosaccharide-binding fold (OB-fold) at the C-terminus. RHA has been reported to function as a transcriptional cofactor. This study shows the role of RGG and OB-fold domains of RHA in the activation of transcription and splicing of HIV-1 RNA. RHA stimulates HIV-1 transcription by enhancing the occupancy of RNA polymerase II on the proviral DNA. Deletion of RGG or both RGG and OB-fold does not change the transcriptional activity of RHA, nor does the stability of viral RNA. However, deletion of both RGG and OB-fold rather than deletion of RGG only results in less production of multiply spliced 6D RNAs. The results suggest that the OB-fold is involved in modulating HIV-1 RNA splicing in the context of some HIV-1 strains while it is dispensable for the activation of HIV-1 transcription.


Asunto(s)
ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , VIH-1/genética , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Oligonucleótidos/metabolismo , Oligosacáridos/metabolismo , ARN Viral/biosíntesis , Sitios de Unión , Regulación Viral de la Expresión Génica , Células HEK293 , Humanos , Pliegue de Proteína , Estructura Terciaria de Proteína/fisiología , Empalme del ARN
16.
Biochim Biophys Acta ; 1844(10): 1757-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25062910

RESUMEN

RNA helicase A (RHA), a DExD/H box protein, plays critical roles in a wide variety of cellular or viral functions. RHA contains a conserved core helicase domain that is flanked by five other domains. Two double-stranded RNA binding domains (dsRBD1 and dsRBD2) are at the N-terminus, whereas HA2 (helicase associated 2), OB-fold (oligonucleotide- or oligosaccharide-binding fold), and RGG (repeats of arginine and glycine-glycine residues) domains are at the C-terminus. The role of these domains in the helicase activity of RHA is still elusive due to the difficulty of obtaining enzymatically active mutant RHA. Here, we purified a series of mutant RHAs containing deletions in either N-terminus or C-terminus. Analysis of these mutant RHAs reveals that the dsRBDs are not required for RNA unwinding, but can enhance the helicase activity by promoting the binding of RHA to substrate RNA. In contrast, deletion of C-terminal domains including RGG, OB-fold, and HA2 does not significantly affect the binding of RHA to substrate RNA. However, HA2 is essential for the RNA unwinding by RHA whereas the RGG and OB-fold are dispensable. The results indicate that the core helicase domain alone is not enough for RHA to execute the unwinding activity.

17.
Biochim Biophys Acta ; 1840(7): 2234-43, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24726449

RESUMEN

BACKGROUND: RNA helicase A regulates a variety of RNA metabolism processes including HIV-1 replication and contains two double-stranded RNA binding domains (dsRBD1 and dsRBD2) at the N-terminus. Each dsRBD contains two invariant lysine residues critical for the binding of isolated dsRBDs to RNA. However, the role of these conserved lysine residues was not tested in the context of enzymatically active full-length RNA helicase A either in vitro or in the cells. METHODS: The conserved lysine residues in each or both of dsRBDs were substituted by alanine in the context of full-length RNA helicase A. The mutant RNA helicase A was purified from mammalian cells. The effects of these mutations were assessed either in vitro upon RNA binding and unwinding or in the cell during HIV-1 production upon RNA helicase A-RNA interaction and RNA helicase A-stimulated viral RNA processes. RESULTS: Unexpectedly, the substitution of the lysine residues by alanine in either or both of dsRBDs does not prevent purified full-length RNA helicase A from binding and unwinding duplex RNA in vitro. However, these mutations efficiently inhibit RNA helicase A-stimulated HIV-1 RNA metabolism including the accumulation of viral mRNA and tRNA(Lys3) annealing to viral RNA. Furthermore, these mutations do not prevent RNA helicase A from binding to HIV-1 RNA in vitro as well, but dramatically reduce RNA helicase A-HIV-1 RNA interaction in the cells. CONCLUSIONS: The conserved lysine residues of dsRBDs play critical roles in the promotion of HIV-1 production by RNA helicase A. GENERAL SIGNIFICANCE: The conserved lysine residues of dsRBDs are key to the interaction of RNA helicase A with substrate RNA in the cell, but not in vitro.


Asunto(s)
ARN Helicasas DEAD-box/genética , VIH-1/genética , Proteínas de Neoplasias/genética , Proteínas de Unión al ARN/genética , Replicación Viral/genética , Alanina , Secuencia de Aminoácidos , Sustitución de Aminoácidos , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Células HEK293 , Humanos , Lisina , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Conformación Proteica , Estructura Terciaria de Proteína , ARN Bicatenario/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo
18.
PLoS One ; 8(11): e78596, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223160

RESUMEN

RNA helicase A (RHA) promotes multiple steps in HIV-1 production including transcription and translation of viral RNA, annealing of primer tRNA(Lys3) to viral RNA, and elevating the ratio of unspliced to spliced viral RNA. At its amino terminus are two double-stranded RNA binding domains (dsRBDs) that are essential for RHA-viral RNA interaction. Linking the dsRBDs to the core helicase domain is a linker region containing 6 predicted helices. Working in vitro with purified mutant RHAs containing deletions of individual helices reveals that this region may regulate the enzyme's helicase activity, since deletion of helix 2 or 3 reduces the rate of unwinding RNA by RHA. The biological significance of this finding was then examined during HIV-1 production. Deletions in the linker region do not significantly affect either RHA-HIV-1 RNA interaction in vivo or the incorporation of mutant RHAs into progeny virions. While the partial reduction in helicase activity of mutant RHA containing a deletion of helices 2 or 3 does not reduce the ability of RHA to stimulate viral RNA synthesis, the promotion of tRNA(Lys3) annealing to viral RNA is blocked. In contrast, deletion of helices 4 or 5 does not affect the ability of RHA to promote tRNA(Lys3) annealing, but reduces its ability to stimulate viral RNA synthesis. Additionally, RHA stimulation of viral RNA synthesis results in an increased ratio of unspliced to spliced viral RNA, and this increase is not inhibited by deletions in the linker region, nor is the pattern of splicing changed within the ∼ 4.0 kb or ∼ 1.8 kb HIV-1 RNA classes, suggesting that RHA's effect on suppressing splicing is confined mainly to the first 5'-splice donor site. Overall, the differential responses to the mutations in the linker region of RHA reveal that RHA participates in HIV-1 RNA metabolism by multiple distinct mechanisms.


Asunto(s)
VIH-1/metabolismo , ARN Helicasas/química , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Proteínas Virales/química , Virión/metabolismo , Secuencia de Aminoácidos , Expresión Génica , Células HEK293 , VIH-1/genética , Humanos , Datos de Secuencia Molecular , Mutación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN Helicasas/genética , ARN Helicasas/metabolismo , Empalme del ARN , ARN Bicatenario/química , ARN Viral/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión/genética
19.
RNA ; 19(10): 1384-93, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23960173

RESUMEN

The 5' untranslated region (5' UTR) of HIV-1 genomic RNA (gRNA) includes structural elements that regulate reverse transcription, transcription, translation, tRNA(Lys3) annealing to the gRNA, and gRNA dimerization and packaging into viruses. It has been reported that gRNA dimerization and packaging are regulated by changes in the conformation of the 5'-UTR RNA. In this study, we show that annealing of tRNA(Lys3) or a DNA oligomer complementary to sequences within the primer binding site (PBS) loop of the 5' UTR enhances its dimerization in vitro. Structural analysis of the 5'-UTR RNA using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) shows that the annealing promotes a conformational change of the 5' UTR that has been previously reported to favor gRNA dimerization and packaging into virus. The model predicted by SHAPE analysis is supported by antisense experiments designed to test which annealed sequences will promote or inhibit gRNA dimerization. Based on reports showing that the gRNA dimerization favors its incorporation into viruses, we tested the ability of a mutant gRNA unable to anneal to tRNA(Lys3) to be incorporated into virions. We found a ∼60% decrease in mutant gRNA packaging compared with wild-type gRNA. Together, these data further support a model for viral assembly in which the initial annealing of tRNA(Lys3) to gRNA is cytoplasmic, which in turn aids in the promotion of gRNA dimerization and its incorporation into virions.


Asunto(s)
Genoma Viral , VIH-1/metabolismo , Conformación de Ácido Nucleico , ARN de Transferencia de Lisina/metabolismo , ARN Viral/metabolismo , Virión/fisiología , Regiones no Traducidas 5'/genética , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Dimerización , VIH-1/genética , Humanos , Datos de Secuencia Molecular , ARN de Transferencia de Lisina/genética , ARN Viral/química , ARN Viral/genética , Ensamble de Virus
20.
J Virol ; 86(24): 13272-80, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23015696

RESUMEN

RNA helicase A (RHA) promotes multiple steps of HIV-1 RNA metabolism during viral replication, including transcription, translation, and the annealing of primer tRNA(3)(Lys) to the viral RNA. RHA is a member of the DExH subclass of RNA helicases that uniquely contains two double-stranded RNA binding domains (dsRBDs) at its N terminus. Here, we performed a genome-wide analysis of the interaction of RHA with HIV-1 RNA both in vitro, using fluorescence polarization, and during viral replication, using an RNA-protein coprecipitation assay. In vitro, RHA binds to all the isolated regions of the HIV-1 RNA genome tested, with K(d) (equilibrium dissociation constant) values ranging from 44 to 178 nM. In contrast, during viral replication, RNA-protein coprecipitation assays detected only a major interaction of RHA with the 5'-untranslated region (5'-UTR) and a minor interaction with the Rev response element (RRE) of HIV-1 RNA. Since RHA does not associate well with all the highly structured regions of HIV-1 RNA tested in vivo, the results suggest that other viral or cellular factors not present in vitro may modulate the direct interaction of RHA with HIV-1 RNA during virus replication. Nevertheless, a role for duplex RNA as a target for RHA binding in vivo is suggested by the fact that the deletion of either one or both dsRBDs eliminates the in vivo interaction of RHA with HIV-1 RNA. Furthermore, these mutant RHAs do not promote the in vivo annealing of tRNA(3)(Lys) to viral RNA, nor are they packaged into virions, demonstrating that the dsRBDs are essential for the role of RHA in HIV-1 replication.


Asunto(s)
VIH-1/genética , ARN Helicasas/metabolismo , ARN Viral/metabolismo , Secuencia de Bases , Cartilla de ADN , Polarización de Fluorescencia , Células HEK293 , VIH-1/fisiología , Humanos , Técnicas In Vitro , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA