Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Nat Genet ; 56(7): 1397-1411, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951643

RESUMEN

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.


Asunto(s)
Frecuencia de los Genes , Menarquia , Pubertad , Humanos , Femenino , Menarquia/genética , Pubertad/genética , Animales , Herencia Multifactorial/genética , Ratones , Estudio de Asociación del Genoma Completo , Adolescente , Pubertad Precoz/genética , Polimorfismo de Nucleótido Simple , Receptores Acoplados a Proteínas G/genética , Pubertad Tardía/genética , Niño
3.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38233393

RESUMEN

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Asunto(s)
Andrógenos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Femenino , Andrógenos/genética , Riñón , Cromosomas Humanos X/genética , Elementos de Respuesta , Polimorfismo de Nucleótido Simple , Predisposición Genética a la Enfermedad , Tetraspaninas/genética
4.
medRxiv ; 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37503126

RESUMEN

Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.

5.
Commun Biol ; 5(1): 580, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697829

RESUMEN

Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Creatinina , Nefropatías Diabéticas/genética , Estudio de Asociación del Genoma Completo , Tasa de Filtración Glomerular/genética , Humanos , Riñón
6.
Sci Rep ; 11(1): 16821, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34413389

RESUMEN

Placental growth factor (PlGF) is a member of the vascular endothelial growth factor family and is involved in bone marrow-derived cell activation, endothelial stimulation and pathological angiogenesis. High levels of PlGF have been observed in several pathological conditions especially in cancer, cardiovascular, autoimmune and inflammatory diseases. Little is known about the genetics of circulating PlGF levels. Indeed, although the heritability of circulating PlGF levels is around 40%, no studies have assessed the relation between PlGF plasma levels and genetic variants at a genome-wide level. In the current study, PlGF plasma levels were measured in a population-based sample of 2085 adult individuals from three isolated populations of South Italy. A GWAS was performed in a discovery cohort (N = 1600), followed by a de novo replication (N = 468) from the same populations. The meta-analysis of the discovery and replication samples revealed one signal significantly associated with PlGF circulating levels. This signal was mapped to the PlGF co-receptor coding gene NRP1, indicating its important role in modulating the PlGF plasma levels. Two additional signals, at the PlGF receptor coding gene FLT1 and RAPGEF5 gene, were identified at a suggestive level. Pathway and TWAS analyses highlighted genes known to be involved in angiogenesis and immune response, supporting the link between these processes and PlGF regulation. Overall, these data improve our understanding of the genetic variation underlying circulating PlGF levels. This in turn could lead to new preventive and therapeutic strategies for a wide variety of PlGF-related pathologies.


Asunto(s)
Inmunidad , Neovascularización Fisiológica , Factor de Crecimiento Placentario/sangre , Adulto , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad/genética , Masculino , Metaanálisis como Asunto , Persona de Mediana Edad , Neovascularización Fisiológica/genética , Reproducibilidad de los Resultados , Transducción de Señal/genética , Transcripción Genética
7.
Mol Neurodegener ; 16(1): 35, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34148545

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. METHODS: The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). RESULTS: Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10- 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. CONCLUSIONS: Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
8.
Kidney Int ; 99(4): 926-939, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33137338

RESUMEN

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.


Asunto(s)
Estudio de Asociación del Genoma Completo , Riñón , Proteínas Quinasas Activadas por AMP , Creatinina , Tasa de Filtración Glomerular/genética , Humanos , Proteína Disulfuro Isomerasas , Reino Unido
9.
Nat Genet ; 51(10): 1459-1474, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578528

RESUMEN

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Marcadores Genéticos , Gota/sangre , Enfermedades Metabólicas/sangre , Polimorfismo de Nucleótido Simple , Transducción de Señal , Ácido Úrico/sangre , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Estudios de Cohortes , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Gota/epidemiología , Gota/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/genética , Humanos , Riñón/metabolismo , Riñón/patología , Hígado/metabolismo , Hígado/patología , Enfermedades Metabólicas/epidemiología , Enfermedades Metabólicas/genética , Proteínas de Neoplasias/genética , Especificidad de Órganos
10.
Nat Commun ; 10(1): 4130, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511532

RESUMEN

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.


Asunto(s)
Albuminuria/genética , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Metaanálisis como Asunto , Animales , Creatinina/orina , Diabetes Mellitus/genética , Diabetes Mellitus/orina , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Sitios Genéticos , Predisposición Genética a la Enfermedad , Humanos , Fenómica , Factores de Riesgo
11.
Nat Genet ; 51(6): 957-972, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31152163

RESUMEN

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.


Asunto(s)
Estudios de Asociación Genética/métodos , Predisposición Genética a la Enfermedad , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/fisiopatología , Mapeo Cromosómico , Estudio de Asociación del Genoma Completo , Tasa de Filtración Glomerular , Humanos , Patrón de Herencia , Pruebas de Función Renal , Fenotipo , Polimorfismo de Nucleótido Simple , Insuficiencia Renal Crónica/orina , Uromodulina/orina , Población Blanca
12.
Front Neurol ; 10: 1362, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998221

RESUMEN

Parkinson Disease (PD) is a complex neurodegenerative disorder characterized by large genetic heterogeneity and missing heritability. Since the genetic background of PD can partly vary among ethnicities and neurological scales have been scarcely investigated in a PD setting, we performed an exploratory Whole Exome Sequencing (WES) analysis of 123 PD patients from mainland Italy, investigating scales assessing motor (UPDRS), cognitive (MoCA), and other non-motor symptoms (NMS). We performed variant prioritization, followed by targeted association testing of prioritized variants in 446 PD cases and 211 controls. Then we ran Exome-Wide Association Scans (EWAS) within sequenced PD cases (N = 113), testing both motor and non-motor PD endophenotypes, as well as their associations with Polygenic Risk Scores (PRS) influencing brain subcortical volumes. We identified a variant associated with PD, rs201330591 in GTF2H2 (5q13; alternative T allele: OR [CI] = 8.16[1.08; 61.52], FDR = 0.048), which was not replicated in an independent cohort of European ancestry (1,148 PD cases, 503 controls). In the EWAS, polygenic analyses revealed statistically significant multivariable associations of amygdala- [ß(SE) = -0.039(0.013); FDR = 0.039] and caudate-PRS [0.043(0.013); 0.028] with motor symptoms. All subcortical PRSs in a multivariable model notably increased the variance explained in motor (adjusted-R2 = 38.6%), cognitive (32.2%) and other non-motor symptoms (28.9%), compared to baseline models (~20%). Although, the small sample size warrants further replications, these findings suggest shared genetic architecture between PD symptoms and subcortical structures, and provide interesting clues on PD genetic and neuroimaging features.

13.
Sci Rep ; 8(1): 18048, 2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30575761

RESUMEN

Inconsistencies between published estimates of dominance heritability between studies of human genetic isolates and human outbred populations incite investigation into whether such differences result from particular trait architectures or specific population structures. We analyse simulated datasets, characteristic of genetic isolates and of unrelated individuals, before analysing the isolate of Cilento for various commonly studied traits. We show the strengths of using genetic relationship matrices for variance decomposition over identity-by-descent based methods in a population isolate and that heritability estimates in isolates will avoid the downward biases that may occur in studies of samples of unrelated individuals; irrespective of the simulated distribution of causal variants. Yet, we also show that precise estimates of dominance in isolates are demonstrably problematic in the presence of shared environmental effects and such effects should be accounted for. Nevertheless, we demonstrate how studying isolates can help determine the existence or non-existence of dominance for complex traits, and we find strong indications of non-zero dominance for low-density lipoprotein level in Cilento. Finally, we recommend future study designs to analyse trait variance decomposition from ensemble data across multiple population isolates.


Asunto(s)
Herencia Multifactorial/genética , Carácter Cuantitativo Heredable , Aislamiento Reproductivo , Genes Dominantes/fisiología , Variación Genética , Humanos , Modelos Genéticos , Modelos Teóricos , Fenotipo , Dinámica Poblacional , Reproducción/fisiología
14.
Am J Hum Genet ; 103(5): 691-706, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30388399

RESUMEN

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation and is associated with multiple complex diseases. The genetic determinants of chronic inflammation remain largely unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-wide association studies (GWASs), on HapMap and 1000 Genomes imputed data, of circulating amounts of CRP by using data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS meta-analyses of CRP revealed 58 distinct genetic loci (p < 5 × 10-8). After adjustment for body mass index in the regression analysis, the associations at all except three loci remained. The lead variants at the distinct loci explained up to 7.0% of the variance in circulating amounts of CRP. We identified 66 gene sets that were organized in two substantially correlated clusters, one mainly composed of immune pathways and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses revealed a causal protective effect of CRP on schizophrenia and a risk-increasing effect on bipolar disorder. Our findings provide further insights into the biology of inflammation and could lead to interventions for treating inflammation and its clinical consequences.


Asunto(s)
Sitios Genéticos/genética , Inflamación/genética , Redes y Vías Metabólicas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Trastorno Bipolar/genética , Trastorno Bipolar/metabolismo , Índice de Masa Corporal , Proteína C-Reactiva/genética , Niño , Femenino , Estudio de Asociación del Genoma Completo/métodos , Humanos , Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Análisis de la Aleatorización Mendeliana/métodos , Persona de Mediana Edad , Esquizofrenia/genética , Esquizofrenia/metabolismo , Adulto Joven
15.
Nat Commun ; 9(1): 4228, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-30315176

RESUMEN

Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10-56) and SLC2A9 (p = 4.5 × 10-7). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10-3). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout.


Asunto(s)
Exoma/genética , Ácido Úrico/sangre , Predisposición Genética a la Enfermedad , Proteínas Facilitadoras del Transporte de la Glucosa/química , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Pruebas de Función Renal , Metaanálisis como Asunto , Transportadores de Anión Orgánico/química , Transportadores de Anión Orgánico/genética , Transportadores de Anión Orgánico/metabolismo , Proteínas de Transporte de Catión Orgánico/química , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Estructura Secundaria de Proteína
16.
Genet Epidemiol ; 42(2): 201-213, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29319195

RESUMEN

In the search for genetic associations with complex traits, population isolates offer the advantage of reduced genetic and environmental heterogeneity. In addition, cost-efficient next-generation association approaches have been proposed in these populations where only a subsample of representative individuals is sequenced and then genotypes are imputed into the rest of the population. Gene mapping in such populations thus requires high-quality genetic imputation and preliminary phasing. To identify an effective study design, we compare by simulation a range of phasing and imputation software and strategies. We simulated 1,115,604 variants on chromosome 10 for 477 members of the large complex pedigree of Campora, a village within the established isolate of Cilento in southern Italy. We assessed the phasing performance of identical by descent based software ALPHAPHASE and SLRP, LD-based software SHAPEIT2, SHAPEIT3, and BEAGLE, and new software EAGLE that combines both methodologies. For imputation we compared IMPUTE2, IMPUTE4, MINIMAC3, BEAGLE, and new software PBWT. Genotyping errors and missing genotypes were simulated to observe their effects on the performance of each software. Highly accurate phased data were achieved by all software with SHAPEIT2, SHAPEIT3, and EAGLE2 providing the most accurate results. MINIMAC3, IMPUTE4, and IMPUTE2 all performed strongly as imputation software and our study highlights the considerable gain in imputation accuracy provided by a genome sequenced reference panel specific to the population isolate.


Asunto(s)
Efecto Fundador , Genética de Población , Haplotipos/genética , Proyectos de Investigación , Programas Informáticos , Algoritmos , Cromosomas Humanos Par 10/genética , Femenino , Genoma Humano/genética , Humanos , Italia , Desequilibrio de Ligamiento/genética , Masculino , Modelos Genéticos , Linaje , Fenotipo
17.
Nat Commun ; 8(1): 910, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030599

RESUMEN

Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE, CHRNA3/5, CDKN2A/B, SH2B3 and FOXO3A influence longevity. Next we show that giving up smoking, educational attainment, openness to new experience and high-density lipoprotein (HDL) cholesterol levels are most positively genetically correlated with lifespan while susceptibility to coronary artery disease (CAD), cigarettes smoked per day, lung cancer, insulin resistance and body fat are most negatively correlated. We suggest that the effect of education on lifespan is principally mediated through smoking while the effect of obesity appears to act via CAD. Using instrumental variables, we suggest that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic variants that increase educational attainment have a positive effect on lifespan whereas increasing BMI negatively affects lifespan.


Asunto(s)
Cadenas alfa de HLA-DQ/genética , Cadenas HLA-DRB1/genética , Estilo de Vida , Lipoproteína(a)/genética , Longevidad/genética , Alelos , Índice de Masa Corporal , Enfermedad Coronaria/sangre , Enfermedad Coronaria/etiología , Educación , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Resistencia a la Insulina/genética , Lipoproteínas HDL/sangre , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/genética , Obesidad/complicaciones , Obesidad/genética , Polimorfismo de Nucleótido Simple , Fumar/efectos adversos , Factores Socioeconómicos
18.
Nat Genet ; 49(6): 834-841, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28436984

RESUMEN

The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Using 1000 Genomes Project-imputed genotype data in up to ∼370,000 women, we identify 389 independent signals (P < 5 × 10-8) for age at menarche, a milestone in female pubertal development. In Icelandic data, these signals explain ∼7.4% of the population variance in age at menarche, corresponding to ∼25% of the estimated heritability. We implicate ∼250 genes via coding variation or associated expression, demonstrating significant enrichment in neural tissues. Rare variants near the imprinted genes MKRN3 and DLK1 were identified, exhibiting large effects when paternally inherited. Mendelian randomization analyses suggest causal inverse associations, independent of body mass index (BMI), between puberty timing and risks for breast and endometrial cancers in women and prostate cancer in men. In aggregate, our findings highlight the complexity of the genetic regulation of puberty timing and support causal links with cancer susceptibility.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Menarquia/genética , Neoplasias/genética , Pubertad/genética , Ribonucleoproteínas/genética , Adolescente , Factores de Edad , Índice de Masa Corporal , Proteínas de Unión al Calcio , Bases de Datos Genéticas , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Impresión Genómica , Humanos , Masculino , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Factores de Riesgo , Ubiquitina-Proteína Ligasas
19.
J Am Soc Nephrol ; 28(3): 981-994, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27920155

RESUMEN

Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10-7), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10-8 by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.


Asunto(s)
Exoma/genética , Tasa de Filtración Glomerular/genética , Riñón/embriología , Proteínas Tirosina Fosfatasas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Son Of Sevenless/genética , Animales , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Pez Cebra
20.
PLoS Genet ; 12(2): e1005874, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26910538

RESUMEN

Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79 x 10(-13)), rs74506613 (JMJD1C, P = 1.17 x 10(-19)), rs4782371 (ZFPM1, P = 1.59 x 10(-9)) and rs2639990 (ZADH2, P = 1.72 x 10(-8)), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52 x 10(-18); rs7043199, VLDLR-AS1, P = 5.12 x 10(-14)) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39 x 10(-1467); rs1740073, C6orf223, P = 2.34 x 10(-17); rs6993770, ZFPM2, P = 2.44 x 10(-60); rs2375981, KCNV2, P = 1.48 x 10(-100)). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases.


Asunto(s)
Sitios Genéticos , Factor A de Crecimiento Endotelial Vascular/sangre , Factor A de Crecimiento Endotelial Vascular/genética , Cromosomas Humanos , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Factor A de Crecimiento Endotelial Vascular/metabolismo , Población Blanca/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA