Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes (Basel) ; 15(6)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38927730

RESUMEN

Pre-harvest sprouting (PHS) resistance is a complex trait, and many genes influencing the germination process of winter wheat have already been described. In the light of interannual climate variation, breeding for PHS resistance will remain mandatory for wheat breeders. Several tests and traits are used to assess PHS resistance, i.e., sprouting scores, germination index, and falling number (FN), but the variation of these traits is highly dependent on the weather conditions during field trials. Here, we present a method to assess falling number stability (FNS) employing an after-ripening period and the wetting of the kernels to improve trait variation and thus trait heritability. Different genome-based prediction scenarios within and across two subsequent seasons based on overall 400 breeding lines were applied to assess the predictive abilities of the different traits. Based on FNS, the genome-based prediction of the breeding values of wheat breeding material showed higher correlations across seasons (r=0.505-0.548) compared to those obtained for other traits for PHS assessment (r=0.216-0.501). By weighting PHS-associated quantitative trait loci (QTL) in the prediction model, the average predictive abilities for FNS increased from 0.585 to 0.648 within the season 2014/2015 and from 0.649 to 0.714 within the season 2015/2016. We found that markers in the Phs-A1 region on chromosome 4A had the highest effect on the predictive abilities for FNS, confirming the influence of this QTL in wheat breeding material, whereas the dwarfing genes Rht-B1 and Rht-D1 and the wheat-rye translocated chromosome T1RS.1BL exhibited effects, which are well-known, on FN per se exclusively.


Asunto(s)
Germinación , Fitomejoramiento , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Sitios de Carácter Cuantitativo/genética , Fitomejoramiento/métodos , Germinación/genética , Estaciones del Año , Genoma de Planta/genética , Fenotipo , Genómica/métodos
2.
Toxins (Basel) ; 12(11)2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114663

RESUMEN

Ergot caused by Claviceps purpurea is a problem for food and feed security in rye due to the occurrence of toxic ergot alkaloids (EAs). For grain elevators and breeders, a quick, easy-to-handle, and cheap screening assay would have a high economic impact. The study was performed to reveal (1) the covariation of ergot severity (= percentage of sclerotia in harvested grain) and the content of 12 EAs determined by high performance liquid chromatography (HPLC) and (2) the covariation between these traits and results of one commercial enzyme linked immunosorbent assays (ELISA). In total, 372 winter rye samples consisting of a diverse set of genotypes, locations from Germany, Austria, and Poland over two years, and three isolates were analyzed. Ergocornine and α-ergocryptine were detected as major EAs. Ergocristinine occurred as a minor component. Claviceps isolates from different countries showed a similar EA spectrum, but different quantities of individual EAs. A moderate, positive covariation between ergot severity and EA content determined by HPLC was observed across two years (r = 0.53, p < 0.01), but large deviation from the regression was detected. ELISA values did neither correlate with the HPLC results nor with ergot severity. In conclusion, a reliable prediction of the EA content based on ergot severity is, at present, not possible.


Asunto(s)
Claviceps/aislamiento & purificación , Grano Comestible/microbiología , Alcaloides de Claviceps/análisis , Contaminación de Alimentos/análisis , Secale/microbiología , Austria , Cromatografía Líquida de Alta Presión , Claviceps/genética , Ensayo de Inmunoadsorción Enzimática , Genotipo , Alemania , Polonia
3.
J Appl Genet ; 59(1): 35-42, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29238920

RESUMEN

Pre-harvest sprouting (PHS) and seed longevity (SL) are complex biological processes of major importance for agricultural production. In the present study, a recombinant inbred line (RIL) population derived from a cross between the German winter wheat (Triticum aestivum L.) cultivars History and Rubens was used to identify genetic factors controlling these two physiological seed traits. A falling number (FN) test was employed to evaluate PHS, while SL was measured using a germination test (and the speed of germination) after controlled deterioration. FN of the population was assessed in four environments; SL traits were measured in one environment. Four major quantitative trait loci (QTL) for FN were detected on chromosomes 4D, 5A, 5D, and 7B, whereas for SL traits, a major QTL was found on chromosome 1A. The FN QTL on chromosome 4D that coincided with the position of the dwarfing gene Rht-D1b only had effects in environments that were free of PHS. The remaining three QTL for FN were mostly pronounced under conditions conducive to PHS. The QTL on the long arm of chromosome 7B corresponded to the major gene locus controlling late maturity α-amylase (LMA) in wheat. The severity of the LMA phenotype became truly apparent under sprouting conditions. The position on the long arm of chromosome 1A of the QTL for SL points to a new QTL for this important regenerative seed trait.


Asunto(s)
Germinación , Sitios de Carácter Cuantitativo , Semillas/genética , Triticum/genética , Mapeo Cromosómico , Ligamiento Genético , Fenotipo , Semillas/fisiología
4.
J Appl Genet ; 56(3): 277-85, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25924791

RESUMEN

Global wheat production will benefit from cultivars showing genetic resistance to preharvest sprouting (PHS). Working on PHS resistance is still challenging due to the lack of simple protocols for the provocation of symptoms for appropriate trait differentiation under highly variable environmental conditions. Therefore, the availability of molecular markers for enhancing PHS resistance in breeding lines is of utmost importance. Genome-wide association mapping was performed to unravel the genetics of PHS resistance in a diversity panel of 124 winter wheat genotypes using both random and targeted marker locus approaches. Data for grain germination tests, spike wetting treatments, and field sprouting damage measurements of grains were collected in 11, 12, and four environments, respectively. Twenty-two quantitative trait loci (QTL) linked with 40 markers were detected for the three traits commonly used for assessing the PHS resistance of cultivars. All but five QTL on chromosomes 1B, 1D (two QTL), 3D, and 5D showed locations similar to previous studies, including prominent QTL on chromosomes 2BS, 3AS, and 4AL. The highest retrieval rate across environments was found for QTL on chromosomes 1D, 2BS, 3D, 4AL, and 7B. The study identified genomic signatures useful for marker-assisted improvement of PHS resistance not only in European breeding programs, but of global significance.


Asunto(s)
Mapeo Cromosómico , Germinación/genética , Sitios de Carácter Cuantitativo , Triticum/genética , Estudios de Asociación Genética , Marcadores Genéticos , Genotipo , Fenotipo , Análisis de Secuencia de ADN
5.
Environ Geochem Health ; 31(5): 549-60, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19280354

RESUMEN

Eighteen representative sites for the Austrian grain-growing and eight for the potato-growing zones (soils and crops) were investigated. On each site, total element contents (B, Ba, Ca, Cd, Co, Cu, Fe, K, Li, Mg, Mn, Mo, Na, P, Sr and Zn) were determined in 4-12 varieties of winter wheat (n = 136), 6 varieties of spring durum wheat (n = 30), 5 varieties of winter durum wheat (n = 15), 7 varieties of rye (n = 49), 5 varieties of spring barley (n = 30) and 5 varieties of potatoes (n = 40). Element accumulations in grain species and potato tubers varied significantly with site conditions, with the main exceptions for B in potatoes and wheat as well as for Zn, Cu and Co in durum wheat. On average, across all investigated sites, differences in varieties occurred concerning the elements Ca, Cd, Ba, Sr and Zn (except Zn in potatoes and winter durum). A rough estimation revealed that an average Austrian consumer of wheat, rye and potatoes meets more than 50% of the needs of daily element intake for K, P and Mg, between 36 and 72% for Fe, Zn and Cu, and more than 100% for Co, Mo and Mn. In particular, the elements Ca and Na have to be added from other sources.


Asunto(s)
Productos Agrícolas/química , Suelo/análisis , Oligoelementos/química , Animales , Austria , Grano Comestible/química , Monitoreo del Ambiente , Humanos , Necesidades Nutricionales , Solanum tuberosum/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...