Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 2473, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120625

RESUMEN

The precise construction of photocatalysts with diatomic sites that simultaneously foster light absorption and catalytic activity is a formidable challenge, as both processes follow distinct pathways. Herein, an electrostatically driven self-assembly approach is used, where phenanthroline is used to synthesize bifunctional LaNi sites within covalent organic framework. The La and Ni site acts as optically and catalytically active center for photocarriers generation and highly selective CO2-to-CO reduction, respectively. Theory calculations and in-situ characterization reveal the directional charge transfer between La-Ni double-atomic sites, leading to decreased reaction energy barriers of *COOH intermediate and enhanced CO2-to-CO conversion. As a result, without any additional photosensitizers, a 15.2 times enhancement of the CO2 reduction rate (605.8 µmol·g-1·h-1) over that of a benchmark covalent organic framework colloid (39.9 µmol·g-1·h-1) and improved CO selectivity (98.2%) are achieved. This work presents a potential strategy for integrating optically and catalytically active centers to enhance photocatalytic CO2 reduction.

2.
ChemSusChem ; 15(7): e202200184, 2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35187792

RESUMEN

Photocatalytic conversion of CO2 into value-added chemical fuels is an attractive route to mitigate global warming and the energy crisis. Reasonable design of optical properties and electronic behavior of the photocatalyst are essential to improve their catalytic activity. Herein, the 1D/2D heterojunction by direct in-situ synthesis of the covalent organic framework (COF)-5 colloid on the surface of CoAl layered double hydroxide (LDH) was used as the prospective photocatalyst for CO2 reduction. COF-5/CoAl-LDH nanocomposite achieved 265.4 µmol g-1 of CO with 94.6 % selectivity over CH4 evolution in 5 h under visible light irradiation, which was 4.8 and 2.3 times higher than those of COF-5 colloid and CoAl-LDH, respectively. The enhanced catalytic activity was derived from the increased visible-light activity and the construction of type II-2 heterojunction, which greatly optimized visible light harvesting and accelerated the efficient separation of the photoinduced holes and electrons. This work paves the way for rational design of heterojunction catalysts in photocatalytic CO2 reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...