Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
J Virol ; : e0124024, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087765

RESUMEN

Science is humanity's best insurance against threats from nature, but it is a fragile enterprise that must be nourished and protected. The preponderance of scientific evidence indicates a natural origin for SARS-CoV-2. Yet, the theory that SARS-CoV-2 was engineered in and escaped from a lab dominates media attention, even in the absence of strong evidence. We discuss how the resulting anti-science movement puts the research community, scientific research, and pandemic preparedness at risk.

2.
NPJ Vaccines ; 9(1): 131, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033194

RESUMEN

Uptake of the COVID-19 vaccine among pregnant persons is lower than the general population. This scoping review explored pregnant people's attitudes towards the COVID-19 vaccine, reasons for vaccine hesitancy, and whether attitudes about COVID-19 vaccines differ by country of origin. A scoping review was conducted across PubMed, Embase, CINHAL, and Scopus. Inclusion criteria were articles published in English from 2019-2022 focused on attitudes towards COVID-19 vaccination among pregnant persons. Data analysis was done via the 5Cs framework for vaccine hesitancy: Constraints, Complacency, Calculation, Confidence, and Collective Responsibility. 44 articles were extracted. A lack of confidence in vaccine safety was the most prevalent theme of hesitancy among pregnant persons. This was largely driven by a lack of access to information about the vaccine as well as mistrust of the vaccine and medical professionals. Meanwhile, vaccine acceptance was mostly driven by a desire to protect themselves and their loved ones. Overall, COVID-19 vaccine hesitancy among pregnant persons continues to be high. Vaccine hesitancy is primarily driven by fear of the unknown side effects of the vaccine on pregnant persons and their fetuses along with a lack of information and medical mistrust. Some differences can be seen between high income and low- and middle-income countries regarding vaccine hesitancy, showing that a single solution cannot be applied to all who are vaccine hesitant. General strategies, however, can be utilized to reduce vaccine hesitancy, including advocating for inclusion of pregnant persons in clinical trials and incorporating consistent COVID-19 vaccine counseling during prenatal appointments.

3.
medRxiv ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39040199

RESUMEN

Introduction: Although they face higher occupational risk of contracting viral respiratory infections, hospital healthcare worker vaccine hesitancy persists. While most studies have used survey methods to quantify the prevalence of and reasons for healthcare worker vaccine hesitancy, this study employs a qualitative approach to understand their attitudes and beliefs associated with influenza and COVID-19 vaccination. Methods: To understand frontline healthcare worker experiences and perspectives on influenza and COVID-19 vaccination, 30 semi-structured interviews were conducted in summer/fall 2022 with staff recruited from two Johns Hopkins hospitals in Maryland. An in-depth, key informant interview was conducted with an expert in public health audience engagement. Interviews were audio recorded and transcribed for thematic and Framework analysis using NVivo software (QSR International, Melbourne, Australia). Results: Healthcare workers engaged in little influenza vaccine information seeking due to their familiarity with the disease and low perceived disease severity. Approximately half (n=16) of healthcare workers reported no vaccine hesitancy towards influenza or COVID-19 vaccines. No physicians or physician assistants expressed any vaccine hesitancy, while most nurses expressed some (n=10). More than half of the women (n=14) expressed COVID-19 vaccine hesitancy compared to none of the men. Structural factors including hospital tier, unit assignment, and professional role influenced perceived risk of disease exposure and subsequent healthcare worker vaccination decisions. Institutional policies, including mandates and a pro-vaccine environment encouraged vaccination uptake. Healthcare workers reported being more receptive to vaccine messaging that focused on protection from disease, scientific and public health data and their heightened occupational exposure to pathogens. Conclusions: Despite their medical knowledge, healthcare workers are susceptible to vaccine hesitancy. Strategies to address specific concerns are needed and can be informed by our findings. A flexible and multi-pronged approach that considers individual anxieties, workplace structures, and the need for open communication with tailored messaging is necessary to promote vaccine acceptance in healthcare settings. KEY MESSAGES: What is already known on this topic: Healthcare worker vaccine hesitancy has been associated with many factors including race, gender, age and concerns about vaccine safety.What this study adds: Much of the research on healthcare worker vaccine hesitancy has used surveys and questionnaires giving a broad description of the prevalence and patterns of vaccine hesitancy in the healthcare workforce. This qualitative study examines vaccine behavior (rather than merely intent) through a cross comparison of healthcare workers' experiences and attitudes towards influenza and COVID-19 vaccination.How this study might affect research, practice or policy: Study findings can be used to help tailor vaccine messaging to hospital healthcare workers which could offset concerns regarding vaccine efficacy and risk, to promote vaccine uptake.

4.
Viruses ; 16(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39066284

RESUMEN

Respiratory syncytial virus (RSV) is a significant cause of morbidity, particularly in infants. This study describes RSV genomic diversity and disease outcomes during the 2023-2024 season in the Johns Hopkins Hospital System (JHHS). Between August and December 2023, 406 patient samples were sequenced, showing that RSV-B GB5.0.5a was the dominant genotype detected. RSV-A genotype GA2.3.5 was detected less frequently. Metadata analysis of patient data revealed that, although RSV-B was more commonly detected, patients with RSV-A infections were more frequently hospitalized. Analysis of both the G- and F-genes revealed multiple amino acid substitutions in both RSV-A and RSV-B, with some positions within the F-protein that could be associated with evasion of antibody responses. Phylogenetic analysis revealed the genetic diversity of circulating GB5.0.5a and GA2.3.5 genotypes. This study serves as an important baseline for genomic surveillance of RSV within the JHHS and will assist in characterizing the impact of the newly approved RSV vaccines on RSV genomic evolution and the emergence of escape mutations.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Viral , Genotipo , Filogenia , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Estaciones del Año , Humanos , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Virus Sincitial Respiratorio Humano/clasificación , Lactante , Femenino , Preescolar , Masculino , Niño , Genómica/métodos , Adulto , Adolescente , Persona de Mediana Edad , Sustitución de Aminoácidos , Adulto Joven , Recién Nacido , Anciano
5.
medRxiv ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39072025

RESUMEN

Background: Respiratory Syncytial Virus (RSV) is associated with significant neonatal and infant morbidity and mortality. Maternal bivalent RSVpreF RSV vaccination to protect neonates and infants was approved in September 2023 for administration between 32+0 and 36+6 weeks to protect neonates and infants. This approved timeframe is narrower than the 24-36 week window evaluated in the clinical trial, due to the possible association between preterm birth and vaccine administration. Currently, data are lacking on how maternal vaccine timing within the approved window affects the transfer of antibodies from mother to fetus, critical information that could influence clinical practice. Objectives: We sought to examine how gestational age at vaccination and time elapsed from maternal RSV vaccination to delivery impacted transfer of maternal antibodies measured in the umbilical cord at delivery and in peripheral blood of 2-month infants. We also examined differences in maternal and cord RSV antibody levels achieved by vaccination versus natural RSV infection. Study Design: A prospective cohort study was conducted at two academic medical centers between September 20, 2023 and March 21, 2024, enrolling 124 individuals who received the RSV vaccine during pregnancy. Infant capillary blood was collected at 2 months of age from 29 of the infants. Maternal and cord IgG levels achieved by RSV vaccination were compared to those associated with maternal natural RSV infection, using banked blood from 20 maternal:cord dyads collected prior to the availability of the maternal RSV vaccine. Levels of IgG against RSV strain A2 and B fusion (F) and attachment (G) proteins and against pertussis toxin (as a comparator antigen from a vaccine routinely administered earlier in pregnancy) were measured using a Binding Antibody Multiplex Assay. Differences in titers between vaccination and natural infection were examined using Wilcoxon rank sum test. Differences in cord:maternal transfer ratios and 2-month infant antibody levels by timing of maternal vaccination were evaluated by Kruskal-Wallis testing. Results: Maternal RSV vaccination resulted in significantly higher maternal and cord anti-F RSV antibody levels than natural infection (5.72 vs 4.82 log 10 MFI, p < 0.0001 maternal; 5.81 vs 5.03 log 10 MFI, p < 0.0001 cord). Maternal vaccination 2-3 weeks and 3-4 weeks prior to delivery was associated with significantly lower cord:maternal transfer ratios than were observed when vaccination occurred > 5 weeks prior to delivery (p = 0.03 for 2-3 weeks, p = 0.007 for 3-4 weeks), and significantly lower transfer ratios than observed for pertussis vaccination administered prior to 30 weeks' gestation (p = 0.008 for 2-3 weeks, p = 0.03 for 3-4 weeks, similar at > 4 weeks). Conclusions: Vaccine administration earlier in the approved 32-36 week window (at least 5 weeks prior to delivery) results in the highest transplacental transfer of maternal antibodies to the neonate. These results should inform the counseling of pregnant individuals on optimal vaccination timing.

6.
J Clin Virol ; 174: 105718, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39079210

RESUMEN

Influenza, a human disease caused by viruses in the Orthomyxoviridae family, is estimated to infect 5% -10 % of adults and 20% -30 % of children annually. Influenza A (IAV) and Influenza B (IBV) viruses accumulate amino acid substitutions (AAS) in the hemagglutinin (HA) and neuraminidase (NA) proteins seasonally. These changes, as well as the dominating viral subtypes, vary depending on geographical location, which may impact disease prevalence and the severity of the season. Genomic surveillance is crucial for capturing circulation patterns and characterizing AAS that may affect disease outcomes, vaccine efficacy, or antiviral drug activities. In this study, whole-genome sequencing of IAV and IBV was attempted on positive remnant clinical samples (587) collected from 580 patients between June 2023 and February 2024 in the Johns Hopkins Health System (JHHS). Full-length HA segments were obtained from 424 (72.2 %) samples. H1N1pdm09 (71.7 %) was the predominant IAV subtype, followed by H3N2 (16.7 %) and IBV-Victoria clade V1A.3a.2 (11.6 %). Within H1N1pdm09 HA sequences, the 6B1A.5a.2a.1 (60.5 %) clade was the most represented. Full-length NA segments were obtained from 421 (71.7 %) samples. Within H1N1pdm09 and IBV, AAS previously proposed to change susceptibility to NA inhibitors were infrequently detected. Phylogeny of HA and NA demonstrated heterogeneous HA and NA H1N1pdm09 and IBV subclades. No significant differences were observed in admission rates or use of supplemental oxygen between different subtypes or clades. Influenza virus genomic surveillance is essential for understanding the seasonal evolution of influenza viruses and their association with disease prevalence and outcomes.

7.
Biol Sex Differ ; 15(1): 50, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890702

RESUMEN

INTRODUCTION: Active and passive surveillance studies have found that a greater proportion of females report adverse events (AE) following receipt of either the COVID-19 or seasonal influenza vaccine compared to males. In a predominately young adult female population of healthcare workers, we sought to determine the intersection of biological sex and sociocultural gender differences in prospective active reporting of vaccine outcomes, which remains poorly characterized. METHODS: This cohort study enrolled Johns Hopkins Health System healthcare workers (HCWs) who were recruited from the mandatory annual fall 2019-2022 influenza vaccine and the fall 2022 COVID-19 bivalent vaccine campaigns. Vaccine recipients were enrolled the day of vaccination and AE surveys were administered two days post-vaccination for bivalent COVID-19 and influenza vaccine recipients. Data were collected regarding the presence of a series of solicited local and systemic AEs. Open-ended answers about participants' experiences with AEs also were collected for the COVID-19 vaccine recipients. RESULTS: Females were more likely to report local AEs after either influenza (OR = 2.28, p = 0.001) or COVID-19 (OR = 2.57, p = 0.008) vaccination compared to males, regardless of age or race. Males and females had comparable probabilities of reporting systemic AEs after either influenza (OR = 1.18, p = 0.552) or COVID-19 (OR = 0.96, p = 0.907) vaccination. Hormonal birth control use did not impact the rates of reported AEs following influenza vaccination among reproductive-aged female HCWs. Women reported more interruptions in their daily routine following COVID-19 vaccination than men and were more likely to seek out self-treatment. More women than men scheduled their COVID-19 vaccination before their days off in anticipation of AEs. CONCLUSIONS: Our findings highlight the need for sex- and gender-inclusive policies to inform more effective mandatory occupational health vaccination strategies. Further research is needed to evaluate the potential disruption of AEs on occupational responsibilities following mandated vaccination for healthcare workers, a predominately female population, and to more fully characterize the post-vaccination behavioral differences between men and women.


Research that addresses both the sex and gender differences of vaccine outcomes and behaviors is lacking. In this survey study of healthcare workers, comprised of mostly reproductive-aged females/women, we investigated biological sex (male/female) and gender (man/woman) differences in vaccine adverse events and outcomes following either influenza or bivalent COVID-19 vaccination.Regardless of age or race, females were more likely to report local (at injection site), but not systemic (whole body), adverse events than males, consistent across influenza and bivalent COVID-19 vaccine cohorts. Sex hormones are hypothesized to play a role in the differences in immune response following vaccination between males and females. We investigated if hormonal birth control use among females may be associated with differences in vaccine adverse events among the influenza vaccine cohort. However, there was no difference in the likelihood of reporting adverse events between birth control users and non-users. Based on open-ended responses to survey questions, women were found to report more interruptions to their daily routine than men following COVID-19 vaccination. Women were also more likely to seek out self-treatment with over-the-counter medication and intentionally schedule their vaccination around days off in anticipation of adverse events.With nearly 80% of healthcare jobs held by women, even higher for direct patient care positions like nursing, females/women may be disproportionately impacted by mandated annual vaccinations. Vaccinations are necessary for the prevention of disease transmission; however, our findings highlight a need for more equitable occupational vaccine strategies that consider both sex and gender differences.


Asunto(s)
Vacunas contra la COVID-19 , Vacunas contra la Influenza , Caracteres Sexuales , Humanos , Femenino , Masculino , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/administración & dosificación , Adulto , Vacunas contra la COVID-19/efectos adversos , Vacunas contra la COVID-19/administración & dosificación , Persona de Mediana Edad , Estudios de Cohortes , Personal de Salud , Vacunación/efectos adversos , COVID-19/prevención & control , COVID-19/epidemiología , Gripe Humana/prevención & control , Adulto Joven
8.
bioRxiv ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38798637

RESUMEN

Seasonal influenza viruses frequently acquire mutations that have the potential to alter both virus replication and antigenic profile. Recent seasonal H1N1 viruses have acquired mutations to their hemagglutinin (HA) protein receptor binding site (RBS) and antigenic sites, and have branched into the clades 5a.2a and 5a.2a.1. Both clades demonstrated improved in vitro fitness compared with the parental 5a.2 clade as measured through plaque formation, infectious virus production in human nasal epithelial cells, and receptor binding diversity. Both clades also showed reduced neutralization by serum from healthcare workers vaccinated in the 2022-23 Northern Hemisphere influenza season compared to the vaccine strain. To investigate the phenotypic impact of individual clade-defining mutations, recombinant viruses containing single HA mutations were generated on a 5a.2 genetic background. The 5a.2a mutation Q189E improved plaque formation and virus replication, but was more efficiently neutralized by serum from individuals vaccinated in 2022-23. In contrast, the 5a.2a mutation E224A and both 5a.2a.1 mutations P137S and K142R impaired aspects of in vitro fitness but contributed significantly to antigenic drift. Surprisingly, the E224A mutation and not Q189E caused broader receptor binding diversity seen in clinical isolates of 5a.2a and 5a.2a.1, suggesting that receptor binding diversity alone may not be responsible for the phenotypic effects of the Q189E mutation. These data document an evolutionary trade-off between mutations that improve viral fitness and those that allow for the evasion of existing host immunity.

9.
Lancet Microbe ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38734029

RESUMEN

BACKGROUND: During the 2017-18 influenza season in the USA, there was a high incidence of influenza illness and mortality. However, no apparent antigenic change was identified in the dominant H3N2 viruses, and the severity of the season could not be solely attributed to a vaccine mismatch. We aimed to investigate whether the altered virus properties resulting from gene reassortment were underlying causes of the increased case number and disease severity associated with the 2017-18 influenza season. METHODS: Samples included were collected from patients with influenza who were prospectively recruited during the 2016-17 and 2017-18 influenza seasons at the Johns Hopkins Hospital Emergency Departments in Baltimore, MD, USA, as well as from archived samples from Johns Hopkins Health System sites. Among 647 recruited patients with influenza A virus infection, 411 patients with whole-genome sequences were available in the Johns Hopkins Center of Excellence for Influenza Research and Surveillance network during the 2016-17 and 2017-18 seasons. Phylogenetic trees were constructed based on viral whole-genome sequences. Representative viral isolates of the two seasons were characterised in immortalised cell lines and human nasal epithelial cell cultures, and patients' demographic data and clinical outcomes were analysed. FINDINGS: Unique H3N2 reassortment events were observed, resulting in two predominant strains in the 2017-18 season: HA clade 3C.2a2 and clade 3C.3a, which had novel gene segment constellations containing gene segments from HA clade 3C.2a1 viruses. The reassortant re3C.2a2 viruses replicated with faster kinetics and to a higher peak titre compared with the parental 3C.2a2 and 3C.2a1 viruses (48 h vs 72 h). Furthermore, patients infected with reassortant 3C.2a2 viruses had higher Influenza Severity Scores than patients infected with the parental 3C.2a2 viruses (median 3·00 [IQR 1·00-4·00] vs 1·50 [1·00-2·00]; p=0·018). INTERPRETATION: Our findings suggest that the increased severity of the 2017-18 influenza season was due in part to two intrasubtypes, cocirculating H3N2 reassortant viruses with fitness advantages over the parental viruses. This information could help inform future vaccine development and public health policies. FUNDING: The Center of Excellence for Influenza Research and Response in the US, National Science and Technology Council, and Chang Gung Memorial Hospital in Taiwan.

10.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38559000

RESUMEN

The evolution of SARS-CoV-2 variants and their respective phenotypes represents an important set of tools to understand basic coronavirus biology as well as the public health implications of individual mutations in variants of concern. While mutations outside of Spike are not well studied, the entire viral genome is undergoing evolutionary selection, particularly the central disordered linker region of the nucleocapsid (N) protein. Here, we identify a mutation (G215C), characteristic of the Delta variant, that introduces a novel cysteine into this linker domain, which results in the formation of a disulfide bond and a stable N-N dimer. Using reverse genetics, we determined that this cysteine residue is necessary and sufficient for stable dimer formation in a WA1 SARS-CoV-2 background, where it results in significantly increased viral growth both in vitro and in vivo. Finally, we demonstrate that the N:G215C virus packages more nucleocapsid per virion and that individual virions are larger, with elongated morphologies.

11.
J Clin Microbiol ; 62(5): e0002824, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38639489

RESUMEN

The mpox outbreak, caused by monkeypox virus (MPXV), accelerated the development of molecular diagnostics. In this study, we detail the evaluation of the Research Use Only (RUO) NeuMoDx MPXV assay by multiple European and US sites. The assay was designed and developed by Qiagen for the NeuMoDx Molecular Systems. Primers and probes were tested for specificity and inclusivity in silico. The analytical sensitivity of the assay was determined by testing dilutions of synthetic and genomic MPXV DNA. A total of 296 clinical samples were tested by three sites; the Johns Hopkins University (US), UZ Gent (Belgium, Europe), and Hospital Universitario San Cecilio (Spain, Europe). The analytical sensitivity of the assay was 50 copies/mL for both clades I and II. The assay showed 100% in silico identity for 80 clade I and 99.98% in silico identity for 5,162 clade II genomes. Clade II primers and probes showed 100% in silico specificity; however, identity of at least one of the two sets of clade I primers and probes with variola, cowpox, camelpox, and vaccinia viruses was noticed. The clinical validation showed sensitivity of 99.21% [95% confidence interval (CI): 95.66-99.98%] and specificity of 96.64% (95% CI: 91.62-99.08%) for lesion swab samples. The NeuMoDx MPXV Test shows acceptable analytical and clinical performance. The assay improves the laboratory's workflow as it consolidates nucleic acid extraction, PCR, data analysis, and interpretation and can be interfaced. The Test Strip can differentiate clades I and II, which has important laboratory safety implications. IMPORTANCE: In this manuscript, we provide detailed in silico analysis and clinical evaluation of the assay using a large cohort of clinical samples across three academic centers in Europe and the United States. Because the assay differentiates MPXV clades I and II, this manuscript is timely due to the current need to rule out the regulated clade I by diagnostic clinical laboratories. In December 2023, and due to first report of cases of sexually transmitted clade I infections in the Democratic Republic of the Congo, when generic assays that do not differentiate the clades are used, samples are considered regulated. The assay meets the need of full automation and has a marked positive impact on the laboratory workflow.


Asunto(s)
Técnicas de Diagnóstico Molecular , Monkeypox virus , Mpox , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Humanos , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , Monkeypox virus/clasificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Mpox/diagnóstico , Mpox/virología , Técnicas de Diagnóstico Molecular/métodos , Europa (Continente) , Estados Unidos , Automatización de Laboratorios/métodos , Cartilla de ADN/genética , Bélgica
12.
Rev Med Virol ; 34(3): e2533, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38635404

RESUMEN

Influenzavirus is among the most relevant candidates for a next pandemic. We review here the phylogeny of former influenza pandemics, and discuss candidate lineages. After briefly reviewing the other existing antiviral options, we discuss in detail the evidences supporting the efficacy of passive immunotherapies against influenzavirus, with a focus on convalescent plasma.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Pandemias , Inmunoterapia
13.
J Clin Invest ; 134(8)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483537

RESUMEN

SARS-CoV-2 infection of the upper airway and the subsequent immune response are early, critical factors in COVID-19 pathogenesis. By studying infection of human biopsies in vitro and in a hamster model in vivo, we demonstrated a transition in nasal tropism from olfactory to respiratory epithelium as the virus evolved. Analyzing each variant revealed that SARS-CoV-2 WA1 or Delta infect a proportion of olfactory neurons in addition to the primary target sustentacular cells. The Delta variant possessed broader cellular invasion capacity into the submucosa, while Omicron displayed enhanced nasal respiratory infection and longer retention in the sinonasal epithelium. The olfactory neuronal infection by WA1 and the subsequent olfactory bulb transport via axon were more pronounced in younger hosts. In addition, the observed viral clearance delay and phagocytic dysfunction in aged olfactory mucosa were accompanied by a decline of phagocytosis-related genes. Further, robust basal stem cell activation contributed to neuroepithelial regeneration and restored ACE2 expression postinfection. Together, our study characterized the nasal tropism of SARS-CoV-2 strains, immune clearance, and regeneration after infection. The shifting characteristics of viral infection at the airway portal provide insight into the variability of COVID-19 clinical features, particularly long COVID, and may suggest differing strategies for early local intervention.


Asunto(s)
COVID-19 , Resfriado Común , Animales , Cricetinae , Humanos , Anciano , SARS-CoV-2/genética , Síndrome Post Agudo de COVID-19 , COVID-19/genética , Axones
14.
mSphere ; 9(3): e0081223, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38426787

RESUMEN

Pregnant patients are at greater risk of hospitalization with severe COVID-19 than non-pregnant people. This was a retrospective observational cohort study of remnant clinical specimens from patients who visited acute care hospitals within the Johns Hopkins Health System in the Baltimore, MD-Washington DC, area between October 2020 and May 2022. Participants included confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected pregnant people and matched non-pregnant people (the matching criteria included age, race/ethnicity, area deprivation index, insurance status, and vaccination status to ensure matched demographics). The primary dependent measures were clinical COVID-19 outcomes, infectious virus recovery, viral RNA levels, and mucosal anti-spike (S) IgG titers from upper respiratory tract samples. A total of 452 individuals (117 pregnant and 335 non-pregnant) were included in the study, with both vaccinated and unvaccinated individuals represented. Pregnant patients were at increased risk of hospitalization (odds ratio [OR] = 4.2; confidence interval [CI] = 2.0-8.6), intensive care unit admittance (OR = 4.5; CI = 1.2-14.2), and being placed on supplemental oxygen therapy (OR = 3.1; CI = 1.3-6.9). Individuals infected during their third trimester had higher mucosal anti-S IgG titers and lower viral RNA levels (P < 0.05) than those infected during their first or second trimesters. Pregnant individuals experiencing breakthrough infections due to the Omicron variant had reduced anti-S IgG compared to non-pregnant patients (P < 0.05). The observed increased severity of COVID-19 and reduced mucosal antibody responses particularly among pregnant participants infected with the Omicron variant suggest that maintaining high levels of SARS-CoV-2 immunity through booster vaccines may be important for the protection of this at-risk population.IMPORTANCEIn this retrospective observational cohort study, we analyzed remnant clinical samples from non-pregnant and pregnant individuals with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections who visited the Johns Hopkins Hospital System between October 2020 and May 2022. Disease severity, including intensive care unit admission, was greater among pregnant than non-pregnant patients. Vaccination reduced recovery of infectious virus and viral RNA levels in non-pregnant patients, but not in pregnant patients. In pregnant patients, increased nasopharyngeal viral RNA levels and recovery of infectious virus were associated with reduced mucosal IgG antibody responses, especially among women in their first trimester of pregnancy or experiencing breakthrough infections from Omicron variants. Taken together, this study provides insights into how pregnant patients are at greater risk of severe COVID-19. The novelty of this study is that it focuses on the relationship between the mucosal antibody response and its association with virus load and disease outcomes in pregnant people, whereas previous studies have focused on serological immunity. Vaccination status, gestational age, and SARS-CoV-2 omicron variant impact mucosal antibody responses and recovery of infectious virus from pregnant patients.


Asunto(s)
COVID-19 , Complicaciones Infecciosas del Embarazo , Embarazo , Humanos , Femenino , SARS-CoV-2 , Formación de Anticuerpos , Infección Irruptiva , Estudios de Cohortes , Estudios Retrospectivos , ARN Viral , Inmunoglobulina G
15.
J Am Coll Emerg Physicians Open ; 5(2): e13117, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38500599

RESUMEN

Objective: Millions of Americans are infected by influenza annually. A minority seek care in the emergency department (ED) and, of those, only a limited number experience severe disease or death. ED clinicians must distinguish those at risk for deterioration from those who can be safely discharged. Methods: We developed random forest machine learning (ML) models to estimate needs for critical care within 24 h and inpatient care within 72 h in ED patients with influenza. Predictor data were limited to those recorded prior to ED disposition decision: demographics, ED complaint, medical problems, vital signs, supplemental oxygen use, and laboratory results. Our study population was comprised of adults diagnosed with influenza at one of five EDs in our university health system between January 1, 2017 and May 18, 2022; visits were divided into two cohorts to facilitate model development and validation. Prediction performance was assessed by the area under the receiver operating characteristic curve (AUC) and the Brier score. Results: Among 8032 patients with laboratory-confirmed influenza, incidence of critical care needs was 6.3% and incidence of inpatient care needs was 19.6%. The most common reasons for ED visit were symptoms of respiratory tract infection, fever, and shortness of breath. Model AUCs were 0.89 (95% CI 0.86-0.93) for prediction of critical care and 0.90 (95% CI 0.88-0.93) for inpatient care needs; Brier scores were 0.026 and 0.042, respectively. Importantpredictors included shortness of breath, increasing respiratory rate, and a high number of comorbid diseases. Conclusions: ML methods can be used to accurately predict clinical deterioration in ED patients with influenza and have potential to support ED disposition decision-making.

16.
Virol J ; 21(1): 70, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38515117

RESUMEN

Since the emergence of SARS-CoV-2, different variants and subvariants successively emerged to dominate global virus circulation as a result of immune evasion, replication fitness or both. COVID-19 vaccines continue to be updated in response to the emergence of antigenically divergent viruses, the first being the bivalent RNA vaccines that encodes for both the Wuhan-like and Omicron BA.5 subvariant spike proteins. Repeated infections and vaccine breakthrough infections have led to complex immune landscapes in populations making it increasingly difficult to assess the intrinsic neutralizing antibody responses elicited by the vaccines. Hong Kong's intensive COVID-19 containment policy through 2020-2021 permitted us to identify sera from a small number of infection-naïve individuals who received 3 doses of the RNA BNT162b2 vaccine encoding the Wuhan-like spike (WT) and were boosted with a fourth dose of the WT vaccine or the bivalent WT and BA.4/5 spike (WT + BA.4/5). While neutralizing antibody to wild-type virus was comparable in both vaccine groups, BNT162b2 (WT + BA.4/BA.5) bivalent vaccine elicited significantly higher plaque neutralizing antibodies to Omicron subvariants BA.5, XBB.1.5, XBB.1.16, XBB.1.9.1, XBB.2.3.2, EG.5.1, HK.3, BA.2.86 and JN.1, compared to BNT162b2 monovalent vaccine. The single amino acid substitution that differentiates the spike of JN.1 from BA.2.86 resulted in a profound antigenic change.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Anticuerpos ampliamente neutralizantes , SARS-CoV-2/genética , Vacunas contra la COVID-19 , COVID-19/prevención & control , Anticuerpos Neutralizantes , Vacunación , Anticuerpos Antivirales
17.
Heliyon ; 10(3): e24570, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38314306

RESUMEN

RNA viruses have been shown to express various short RNAs, some of which have regulatory roles during replication, transcription, and translation of viral genomes. However, short viral RNAs generated from SARS-CoV-1 and SARS-CoV-2 genomic RNAs remained largely unexplored, possibly due limitations of the widely used library preparation methods for small RNA deep sequencing and corresponding data processing. By analyzing publicly available small RNA sequencing datasets, we observed that human Calu-3 cells infected by SARS-CoV-1 or SARS-CoV-2 accumulate multiple previously unreported short viral RNAs. In addition, we verified the presence of the five most abundant SARS-CoV-2 short viral RNAs in SARS-CoV-2-infected human lung adenocarcinoma cells by quantitative PCR. Interestingly, the copy number of the observed SARS-CoV-2 short viral RNAs dramatically exceeded the expression of previously reported viral microRNAs in the same cells. We hypothesize that the reported SARS-CoV-2 short viral RNAs could serve as biomarkers for early infection stages due to their high abundance. Furthermore, unlike SARS-CoV-1, the SARS-CoV-2 infection induced significant (Benjamini-Hochberg-corrected p-value <0.05) deregulation of Y-RNA, transfer RNA, vault RNA, as well as more than 300 endogenous short RNAs that aligned predominantly to human protein-coding and long noncoding RNA transcripts. In particular, more than 20-fold upregulation of reads derived from Y-RNA (and several transfer RNAs) have been documented in RNA-seq datasets from SARS-CoV-2 infected cells. Finally, a significant proportion of short RNAs derived from full-length viral genomes also aligned to various human genome (hg38) sequences, suggesting opportunities to investigate regulatory roles of short viral RNAs during infection. Further characterization of the small RNA landscape of both viral and host genomes is clearly warranted to improve our understanding of molecular events related to infection and to design more efficient strategies for therapeutic interventions as well as early diagnosis.

18.
medRxiv ; 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38318206

RESUMEN

Introduction: Active and passive surveillance studies have found that a greater proportion of females report adverse events (AE) following receipt of either the COVID-19 or seasonal influenza vaccine compared to males. We sought to determine the intersection of biological sex and sociocultural gender differences in prospective active reporting of vaccine outcomes, which remains poorly characterized. Methods: This cohort study enrolled Johns Hopkins Health System healthcare workers (HCWs) who were recruited from the annual fall 2019-2022 influenza vaccine and the fall 2022 COVID-19 bivalent vaccine campaigns. Vaccine recipients were enrolled the day of vaccination and AE surveys were administered two days post-vaccination (DPV) for bivalent COVID-19 and Influenza vaccine recipients. Data were collected regarding the presence of a series of solicited local and systemic AEs. Open-ended answers about participants' experiences with AEs also were collected for the COVID-19 vaccine recipients. Results: Females were more likely to report local AEs after influenza (OR=2.28, p=0.001) or COVID-19 (OR=2.57, p=0.008) vaccination compared to males, regardless of age or race. Males and females had comparable probabilities of reporting systemic AEs after influenza (OR=1.18, p=0.552) or COVID-19 (OR=0.96, p=0.907) vaccination. Exogenous hormones from birth control use did not impact the rates of reported AEs following COVID-19 vaccination among reproductive-aged female HCWs. Women reported more interruptions in their daily routine following COVID-19 vaccination than men and were more likely to seek out self-treatment. More women than men scheduled their COVID-19 vaccination before their days off in anticipation of AEs. Conclusions: Our findings highlight the need for sex- and gender-inclusive policies to inform more effective occupational health vaccination strategies. Further research is needed to evaluate the potential disruption of AEs on occupational responsibilities following mandated vaccination for healthcare workers and to more fully characterize the post-vaccination behavioral differences between men and women. KEY MESSAGE: What is already known on this topic: ⇒ Among diversely aged adults 18-64 years, females report more AEs to vaccines, including the influenza and COVID-19 vaccines, than males.⇒ Vaccine AEs play a role in shaping vaccine hesitancy and uptake.⇒ Vaccine uptake related to influenza and COVID-19 are higher among men than women.⇒ Research that addresses both the sex and gender disparities of vaccine outcomes and behaviors is lacking.What this study adds: ⇒ This prospective active reporting study uses both quantitative and qualitative survey data to examine sex and gender differences in AEs following influenza or COVID-19 vaccination among a cohort of reproductive-aged healthcare workers.How this study might affect research, practice, or policy: ⇒ Sex and gender differences in AEs and perceptions relating to vaccination should drive the development of more equitable and effective vaccine strategies and policies in occupational health settings.

19.
Front Immunol ; 15: 1292059, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370404

RESUMEN

Background: Previous studies have demonstrated enhanced efficacy of vaccine formulations that incorporate the chemokine macrophage inflammatory protein 3α (MIP-3α) to direct vaccine antigens to immature dendritic cells. To address the reduction in vaccine efficacy associated with a mutation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants, we have examined the ability of receptor-binding domain vaccines incorporating MIP-3α to sustain higher concentrations of antibody when administered intramuscularly (IM) and to more effectively elicit lung T-cell responses when administered intranasally (IN). Methods: BALB/c mice aged 6-8 weeks were immunized intramuscularly or intranasally with DNA vaccine constructs consisting of the SARS-CoV-2 receptor-binding domain alone or fused to the chemokine MIP-3α. In a small-scale (n = 3/group) experiment, mice immunized IM with electroporation were followed up for serum antibody concentrations over a period of 1 year and for bronchoalveolar antibody levels at the termination of the study. Following IN immunization with unencapsulated plasmid DNA (n = 6/group), mice were evaluated at 11 weeks for serum antibody concentrations, quantities of T cells in the lungs, and IFN-γ- and TNF-α-expressing antigen-specific T cells in the lungs and spleen. Results: At 12 months postprimary vaccination, recipients of the IM vaccine incorporating MIP-3α had significantly, approximately threefold, higher serum antibody concentrations than recipients of the vaccine not incorporating MIP-3α. The area-under-the-curve analyses of the 12-month observation interval demonstrated significantly greater antibody concentrations over time in recipients of the MIP-3α vaccine formulation. At 12 months postprimary immunization, only recipients of the fusion vaccine had concentrations of serum-neutralizing activity deemed to be effective. After intranasal immunization, only recipients of the MIP-3α vaccine formulations developed T-cell responses in the lungs significantly above those of PBS controls. Low levels of serum antibody responses were obtained following IN immunization. Conclusion: Although requiring separate IM and IN immunizations for optimal immunization, incorporating MIP-3α in a SARS-CoV-2 vaccine construct demonstrated the potential of a stable and easily produced vaccine formulation to provide the extended antibody and T-cell responses that may be required for protection in the setting of emerging SARS-CoV-2 variants. Without electroporation, simple, uncoated plasmid DNA incorporating MIP-3α administered intranasally elicited lung T-cell responses.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Animales , Ratones , Formación de Anticuerpos , Quimiocinas , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , ADN , Pulmón , SARS-CoV-2 , Linfocitos T
20.
bioRxiv ; 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38328234

RESUMEN

As the only bionormal nanovesicle, exosomes have high potential as a nanovesicle for delivering vaccines and therapeutics. We show here that the loading of type-1 membrane proteins into the exosome membrane is induced by exosome membrane anchor domains, EMADs, that maximize protein delivery to the plasma membrane, minimize protein sorting to other compartments, and direct proteins into exosome membranes. Using SARS-CoV-2 spike as an example and EMAD13 as our most effective exosome membrane anchor, we show that cells expressing a spike-EMAD13 fusion protein produced exosomes that carry dense arrays of spike trimers on 50% of all exosomes. Moreover, we find that immunization with spike-EMAD13 exosomes induced strong neutralizing antibody responses and protected hamsters against SARS-CoV-2 disease at doses of just 0.5-5 ng of spike protein, without adjuvant, demonstrating that antigen-display exosomes are particularly immunogenic, with important implications for both structural and expression-dependent vaccines.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA