Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2831: 145-177, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134849

RESUMEN

Neurons contain three compartments, the soma, long axon, and dendrites, which have distinct energetic and biochemical requirements. Mitochondria feature in all compartments and regulate neuronal activity and survival, including energy generation and calcium buffering alongside other roles including proapoptotic signaling and steroid synthesis. Their dynamicity allows them to undergo constant fusion and fission events in response to the changing energy and biochemical requirements. These events, termed mitochondrial dynamics, impact their morphology and a variety of three-dimensional (3D) morphologies exist within the neuronal mitochondrial network. Distortions in the morphological profile alongside mitochondrial dysfunction may begin in the neuronal soma in ageing and common neurodegenerative disorders. However, 3D morphology cannot be comprehensively examined in flat, two-dimensional (2D) images. This highlights a need to segment mitochondria within volume data to provide a representative snapshot of the processes underpinning mitochondrial dynamics and mitophagy within healthy and diseased neurons. The advent of automated high-resolution volumetric imaging methods such as Serial Block Face Scanning Electron Microscopy (SBF-SEM) as well as the range of image software packages allow this to be performed.We describe and evaluate a method for randomly sampling mitochondria and manually segmenting their whole morphologies within randomly generated regions of interest of the neuronal soma from SBF-SEM image stacks. These 3D reconstructions can then be used to generate quantitative data about mitochondrial and cellular morphologies. We further describe the use of a macro that automatically dissects the soma and localizes 3D mitochondria into the subregions created.


Asunto(s)
Imagenología Tridimensional , Mitocondrias , Dinámicas Mitocondriales , Neuronas , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/citología , Imagenología Tridimensional/métodos , Animales , Microscopía Electrónica de Rastreo/métodos , Programas Informáticos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica de Volumen
2.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167131, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38521420

RESUMEN

Mitochondrial DNA (mtDNA) deletions which clonally expand in skeletal muscle of patients with mtDNA maintenance disorders, impair mitochondrial oxidative phosphorylation dysfunction. Previously we have shown that these mtDNA deletions arise and accumulate in perinuclear mitochondria causing localised mitochondrial dysfunction before spreading through the muscle fibre. We believe that mito-nuclear signalling is a key contributor in the accumulation and spread of mtDNA deletions, and that knowledge of how muscle fibres respond to mitochondrial dysfunction is key to our understanding of disease mechanisms. To understand the contribution of mito-nuclear signalling to the spread of mitochondrial dysfunction, we use imaging mass cytometry. We characterise the levels of mitochondrial Oxidative Phosphorylation proteins alongside a mitochondrial mass marker, in a cohort of patients with mtDNA maintenance disorders. Our expanded panel included protein markers of key signalling pathways, allowing us to investigate cellular responses to different combinations of oxidative phosphorylation dysfunction and ragged red fibres. We find combined Complex I and IV deficiency to be most common. Interestingly, in fibres deficient for one or more complexes, the remaining complexes are often upregulated beyond the increase of mitochondrial mass typically observed in ragged red fibres. We further find that oxidative phosphorylation deficient fibres exhibit an increase in the abundance of proteins involved in proteostasis, e.g. HSP60 and LONP1, and regulation of mitochondrial metabolism (including oxidative phosphorylation and proteolysis, e.g. PHB1). Our analysis suggests that the cellular response to mitochondrial dysfunction changes depending on the combination of deficient oxidative phosphorylation complexes in each fibre.


Asunto(s)
ADN Mitocondrial , Enfermedades Mitocondriales , Fosforilación Oxidativa , Prohibitinas , Humanos , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Masculino , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/genética , Femenino , Adulto , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Complejo IV de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Transducción de Señal , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
3.
NPJ Parkinsons Dis ; 9(1): 120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553379

RESUMEN

Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.

4.
Methods Mol Biol ; 2615: 443-463, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36807808

RESUMEN

Mitochondrial DNA (mtDNA) deletions underpin mitochondrial dysfunction in human tissues in aging and disease. The multicopy nature of the mitochondrial genome means these mtDNA deletions can occur in varying mutation loads. At low levels, these deletions have no impact, but once the proportion of molecules harbouring a deletion exceeds a threshold level, then dysfunction occurs. The location of the breakpoints and the size of the deletion impact upon the mutation threshold required to cause deficiency of an oxidative phosphorylation complex, and this varies for each of the different complexes. Furthermore, mutation load and deletion species can vary between adjacent cells in a tissue, with a mosaic pattern of mitochondrial dysfunction observed. As such, it is often important for understanding human aging and disease to be able to characterise the mutation load, breakpoints and size of deletion(s) from a single human cell. Here, we detail protocols for laser micro-dissection and single cell lysis from tissues, and the subsequent analysis of deletion size, breakpoints and mutation load using long-range PCR, mtDNA sequencing and real-time PCR, respectively.


Asunto(s)
Envejecimiento , ADN Mitocondrial , Humanos , ADN Mitocondrial/genética , Envejecimiento/genética , Mitocondrias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de la Célula Individual , Eliminación de Secuencia
5.
Mov Disord ; 37(2): 302-314, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34779538

RESUMEN

BACKGROUND: Mitochondrial dysfunction within neurons, particularly those of the substantia nigra, has been well characterized in Parkinson's disease and is considered to be related to the pathogenesis of this disorder. Dysfunction within this important organelle has been suggested to impair neuronal communication and survival; however, the reliance of astrocytes on mitochondria and the impact of their dysfunction on this essential cell type are less well characterized. OBJECTIVE: This study aimed to uncover whether astrocytes harbor oxidative phosphorylation (OXPHOS) deficiencies in Parkinson's disease and whether these deficiencies are more likely to occur in astrocytes closely associated with neurons or those more distant from them. METHODS: Postmortem human brain sections from patients with Parkinson's disease were subjected to imaging mass cytometry for individual astrocyte analysis of key OXPHOS proteins across all five complexes. RESULTS: We show the variability in the astrocytic expression of mitochondrial proteins between individuals. In addition, we found that there is evidence of deficiencies in respiratory chain subunit expression within these important glia and changes, particularly in mitochondrial mass, associated with Parkinson's disease and that are not simply a consequence of advancing age. CONCLUSION: Our data show that astrocytes, like neurons, are susceptible to mitochondrial defects and that these could have an impact on their reactivity and ability to support neurons in Parkinson's disease.


Asunto(s)
Astrocitos , Enfermedad de Parkinson , Astrocitos/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo
6.
Cell Rep ; 36(6): 109509, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34380033

RESUMEN

The brain's ability to process complex information relies on the constant supply of energy through aerobic respiration by mitochondria. Neurons contain three anatomically distinct compartments-the soma, dendrites, and projecting axons-which have different energetic and biochemical requirements, as well as different mitochondrial morphologies in cultured systems. In this study, we apply quantitative three-dimensional electron microscopy to map mitochondrial network morphology and complexity in the mouse brain. We examine somatic, dendritic, and axonal mitochondria in the dentate gyrus and cornu ammonis 1 (CA1) of the mouse hippocampus, two subregions with distinct principal cell types and functions. We also establish compartment-specific differences in mitochondrial morphology across these cell types between young and old mice, highlighting differences in age-related morphological recalibrations. Overall, these data define the nature of the neuronal mitochondrial network in the mouse hippocampus, providing a foundation to examine the role of mitochondrial morpho-function in the aging brain.


Asunto(s)
Envejecimiento/fisiología , Axones/fisiología , Dendritas/fisiología , Hipocampo/fisiología , Mitocondrias/metabolismo , Neuronas/citología , Animales , Región CA1 Hipocampal/fisiología , Giro Dentado/fisiología , Femenino , Imagenología Tridimensional , Ratones Endogámicos C57BL , Fracciones Subcelulares/metabolismo
7.
NPJ Parkinsons Dis ; 7(1): 39, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33980828

RESUMEN

Here we report the application of a mass spectrometry-based technology, imaging mass cytometry, to perform in-depth proteomic profiling of mitochondrial complexes in single neurons, using metal-conjugated antibodies to label post-mortem human midbrain sections. Mitochondrial dysfunction, particularly deficiency in complex I has previously been associated with the degeneration of dopaminergic neurons in Parkinson's disease. To further our understanding of the nature of this dysfunction, and to identify Parkinson's disease specific changes, we validated a panel of antibodies targeting subunits of all five mitochondrial oxidative phosphorylation complexes in dopaminergic neurons from Parkinson's disease, mitochondrial disease, and control cases. Detailed analysis of the expression profile of these proteins, highlighted heterogeneity between individuals. There is a widespread decrease in expression of all complexes in Parkinson's neurons, although more severe in mitochondrial disease neurons, however, the combination of affected complexes varies between the two groups. We also provide evidence of a potential neuronal response to mitochondrial dysfunction through a compensatory increase in mitochondrial mass. This study highlights the use of imaging mass cytometry in the assessment and analysis of expression of oxidative phosphorylation proteins, revealing the complexity of deficiencies of these proteins within individual neurons which may contribute to and drive neurodegeneration in Parkinson's disease.

8.
Neurobiol Dis ; 149: 105226, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347975

RESUMEN

Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer's disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies, including dementia with Lewy bodies (DLB) is unclear. To assess this, we used two murine models of DLB that express either human mutant α-synuclein (α-syn) the hA30P, or human wild-type α-syn (hWT-α-syn) mice. We observed network hyperexcitability in vitro in young (2-5 months), pre-symptomatic transgenic α-syn mice. Interictal discharges (IIDs) were seen in the extracellular local field potential (LFP) in the hippocampus in hA30P and hWT-α-syn mice following kainate application, while only gamma frequency oscillations occurred in control mice. In addition, the concentration of the GABAA receptor antagonist (gabazine) needed to evoke IIDs was lower in slices from hA30P mice compared to control mice. hA30P mice also showed increased locomotor activity in the open field test compared to control mice. Intracellular recordings from CA3 pyramidal cells showed a more depolarised resting membrane potential in hA30P mice. Quadruple immunohistochemistry for human α-syn, and the mitochondrial markers, porin and the complex IV enzyme cytochrome c oxidase subunit 1 (COX1) in parvalbumin (PV+)-expressing interneurons showed that 25% of PV+ cells contained human α-syn in hA30P mice. While there was no change in PV expression, COX1 expression was significantly increased in PV+ cells in hA30P mice, perhaps reflecting a compensatory change to support PV+ interneuron activity. Our findings suggest that hippocampal network hyperexcitability may be an important early consequence of α-syn-mediated impairment of neuronal/synaptic function, which occurs without any overt loss of PV interneurons. The therapeutic benefit of targeting network excitability early in the disease stage should be explored with respect to α-synucleinopathies such as DLB.


Asunto(s)
Ritmo Gamma/fisiología , Hipocampo/metabolismo , Mutación/fisiología , Red Nerviosa/metabolismo , alfa-Sinucleína/biosíntesis , Factores de Edad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ritmo Gamma/efectos de los fármacos , Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Humanos , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , alfa-Sinucleína/genética
9.
Open Biol ; 10(5): 200061, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32428418

RESUMEN

How mitochondrial DNA mutations clonally expand in an individual cell is a question that has perplexed mitochondrial biologists for decades. A growing body of literature indicates that mitochondrial DNA mutations play a major role in ageing, metabolic diseases, neurodegenerative diseases, neuromuscular disorders and cancers. Importantly, this process of clonal expansion occurs for both inherited and somatic mitochondrial DNA mutations. To complicate matters further there are fundamental differences between mitochondrial DNA point mutations and deletions, and between mitotic and post-mitotic cells, that impact this pathogenic process. These differences, along with the challenges of investigating a longitudinal process occurring over decades in humans, have so far hindered progress towards understanding clonal expansion. Here we summarize our current understanding of the clonal expansion of mitochondrial DNA mutations in different tissues and highlight key unanswered questions. We then discuss the various existing biological models, along with their advantages and disadvantages. Finally, we explore what has been achieved with mathematical modelling so far and suggest future work to advance this important area of research.


Asunto(s)
ADN Mitocondrial/genética , Mitocondrias/genética , Mutación , Animales , Humanos , Mitosis , Modelos Teóricos
11.
Neurobiol Dis ; 134: 104631, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31689514

RESUMEN

Mitochondrial respiratory chain deficiency and mitochondrial DNA deletions are reported in substantia nigra neurons from healthy aged and Parkinson's disease cases, with extensive neuronal loss only seen in the latter. This study aimed to understand the pathological relevance of mitochondrial defects for neuronal survival. Using post-mortem human midbrain, substantia nigra neurons exposed to different types of mitochondrial defects (including mitochondrial DNA point mutations, single and multiple deletions) were compared to neurons from healthy aged and Parkinson's disease cases (either sex) at a single neuronal level. We identified mitochondrial deficiencies in all cases, though these deficiencies were more severe in the mitochondrial disease patients with multiple deletions. A significant reduction in TFAM expression was detected in Parkinson's disease compared to cases with other mitochondrial defects. Higher mitochondrial DNA copy number was detected in healthy aged neurons, despite a deletion level equivalent to Parkinson's disease. Our data support that in individuals with pathogenic mitochondrial defects, neurons respond to mitochondrial defect to survive and such an adaptation may involve TFAM.


Asunto(s)
Neuronas/patología , Biogénesis de Organelos , Enfermedad de Parkinson/patología , Sustancia Negra/patología , Anciano , Anciano de 80 o más Años , Autopsia , ADN Mitocondrial , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Factores de Transcripción/metabolismo
12.
Nucleic Acids Res ; 47(14): 7430-7443, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31147703

RESUMEN

Clonal expansion of mitochondrial DNA (mtDNA) deletions is an important pathological mechanism in adults with mtDNA maintenance disorders, leading to a mosaic mitochondrial respiratory chain deficiency in skeletal muscle. This study had two aims: (i) to determine if different Mendelian mtDNA maintenance disorders showed similar pattern of mtDNA deletions and respiratory chain deficiency and (ii) to investigate the correlation between the mitochondrial genetic defect and corresponding respiratory chain deficiency. We performed a quantitative analysis of respiratory chain deficiency, at a single cell level, in a cohort of patients with mutations in mtDNA maintenance genes. Using the same tissue section, we performed laser microdissection and single cell genetic analysis to investigate the relationship between mtDNA deletion characteristics and the respiratory chain deficiency. The pattern of respiratory chain deficiency is similar with different genetic defects. We demonstrate a clear correlation between the level of mtDNA deletion and extent of respiratory chain deficiency within a single cell. Long-range and single molecule PCR shows the presence of multiple mtDNA deletions in approximately one-third of all muscle fibres. We did not detect evidence of a replicative advantage for smaller mtDNA molecules in the majority of fibres, but further analysis is needed to provide conclusive evidence.


Asunto(s)
ADN Mitocondrial/genética , Genes Mitocondriales/genética , Mitocondrias Musculares/genética , Enfermedades Mitocondriales/genética , Fibras Musculares Esqueléticas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Eliminación de Secuencia , Análisis de la Célula Individual
13.
Biology (Basel) ; 8(2)2019 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-31083583

RESUMEN

James Parkinson first described the motor symptoms of the disease that took his name over 200 years ago. While our knowledge of many of the changes that occur in this condition has increased, it is still unknown what causes this neurodegeneration and why it only affects some individuals with advancing age. Here we review current literature to discuss whether the mitochondrial dysfunction we have detected in Parkinson's disease is a pathogenic cause of neuronal loss or whether it is itself a consequence of dysfunction in other pathways. We examine research data from cases of idiopathic Parkinson's with that from model systems and individuals with familial forms of the disease. Furthermore, we include data from healthy aged individuals to highlight that many of the changes described are also present with advancing age, though not normally in the presence of severe neurodegeneration. While a definitive answer to this question may still be just out of reach, it is clear that mitochondrial dysfunction sits prominently at the centre of the disease pathway that leads to catastrophic neuronal loss in those affected by this disease.

14.
Ann Neurol ; 84(2): 289-301, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30014514

RESUMEN

OBJECTIVE: In patients with mitochondrial DNA (mtDNA) maintenance disorders and with aging, mtDNA deletions sporadically form and clonally expand within individual muscle fibers, causing respiratory chain deficiency. This study aimed to identify the sub-cellular origin and potential mechanisms underlying this process. METHODS: Serial skeletal muscle cryosections from patients with multiple mtDNA deletions were subjected to subcellular immunofluorescent, histochemical, and genetic analysis. RESULTS: We report respiratory chain-deficient perinuclear foci containing mtDNA deletions, which show local elevations of both mitochondrial mass and mtDNA copy number. These subcellular foci of respiratory chain deficiency are associated with a local increase in mitochondrial biogenesis and unfolded protein response signaling pathways. We also find that the commonly reported segmental pattern of mitochondrial deficiency is consistent with the three-dimensional organization of the human skeletal muscle mitochondrial network. INTERPRETATION: We propose that mtDNA deletions first exceed the biochemical threshold causing biochemical deficiency in focal regions adjacent to the myonuclei, and induce mitochondrial biogenesis before spreading across the muscle fiber. These subcellular resolution data provide new insights into the possible origin of mitochondrial respiratory chain deficiency in mitochondrial myopathy. Ann Neurol 2018;84:289-301.


Asunto(s)
Envejecimiento/genética , ADN Mitocondrial/genética , ADN Mitocondrial/ultraestructura , Eliminación de Gen , Músculo Esquelético/fisiología , Músculo Esquelético/ultraestructura , Envejecimiento/patología , Humanos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético/patología , Fracciones Subcelulares/patología , Fracciones Subcelulares/ultraestructura
15.
NPJ Parkinsons Dis ; 4: 9, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872690

RESUMEN

Mitochondrial dysfunction within the cell bodies of substantia nigra neurons is prominent in both ageing and Parkinson's disease. The loss of dopaminergic substantia nigra neurons in Parkinson's disease is associated with loss of synapses within the striatum, and this may precede neuronal loss. We investigated whether mitochondrial changes previously reported within substantia nigra neurons were also seen within the synapses and axons of these neurons. Using high resolution quantitative fluorescence immunohistochemistry we determined mitochondrial density within remaining dopaminergic axons and synapses, and quantified deficiencies of mitochondrial Complex I and Complex IV in these compartments. In Parkinson's disease mitochondrial populations were increased within axons and the mitochondria expressed higher levels of key electron transport chain proteins compared to controls. Furthermore we observed synapses which were devoid of mitochondrial proteins in all groups, with a significant reduction in the number of these 'empty' synapses in Parkinson's disease. This suggests that neurons may attempt to maintain mitochondrial populations within remaining axons and synapses in Parkinson's disease to facilitate continued neural transmission in the presence of neurodegeneration, potentially increasing oxidative damage. This compensatory event may represent a novel target for future restorative therapies in Parkinson's disease.

16.
Nucleic Acids Res ; 44(11): 5313-29, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27131788

RESUMEN

Mitochondrial DNA (mtDNA) rearrangements are an important cause of mitochondrial disease and age related mitochondrial dysfunction in tissues including brain and skeletal muscle. It is known that different mtDNA deletions accumulate in single cells, but the detailed nature of these rearrangements is still unknown. To evaluate this we used a complementary set of sensitive assays to explore the mtDNA rearrangements in individual cells from patients with sporadic inclusion body myositis, a late-onset inflammatory myopathy with prominent mitochondrial changes. We identified large-scale mtDNA deletions in individual muscle fibres with 20% of cytochrome c oxidase-deficient myofibres accumulating two or more mtDNA deletions. The majority of deletions removed only the major arc but ∼10% of all deletions extended into the minor arc removing the origin of light strand replication (OL) and a variable number of genes. Some mtDNA molecules contained two deletion sites. Additionally, we found evidence of mitochondrial genome duplications allowing replication and clonal expansion of these complex rearranged molecules. The extended spectrum of mtDNA rearrangements in single cells provides insight into the process of clonal expansion which is fundamental to our understanding of the role of mtDNA mutations in ageing and disease.


Asunto(s)
ADN Mitocondrial , Reordenamiento Génico , Miositis por Cuerpos de Inclusión/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores , Biopsia , Niño , Femenino , Genoma Mitocondrial , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Miositis por Cuerpos de Inclusión/patología , Eliminación de Secuencia , Adulto Joven
17.
J Neurosci Methods ; 232: 143-9, 2014 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-24880043

RESUMEN

BACKGROUND: Respiratory chain (RC) deficiencies are found in primary mtDNA diseases. Focal RC defects are also associated with ageing and neurodegenerative disorders, e.g. in substantia nigra (SN) neurons from Parkinson's disease patients. In mitochondrial disease and ageing, mtDNA mutational loads vary considerably between neurons necessitating single cell-based assessment of RC deficiencies. Evaluating the full extent of RC deficiency within SN neurons is challenging because their size precludes investigations in serial sections. We developed an assay to measure RC abnormalities in individual SN neurons using quadruple immunofluorescence. NEW METHOD: Using antibodies against subunits of complex I (CI) and IV, porin and tyrosine hydroxylase together with IgG subtype-specific fluorescent labelled secondary antibodies, we quantified the expression of CI and CIV compared to mitochondrial mass in dopaminergic neurons. CI:porin and CIV:porin ratios were determined relative to a standard control. RESULTS: Quantification of expression of complex subunits in midbrain sections from patients with mtDNA disease and known RC deficiencies consistently showed reduced CI:porin and/or CIV:porin ratios. COMPARISON WITH EXISTING METHOD(S): The standard histochemical method to investigate mitochondrial dysfunction, the cytochrome c oxidase/succinate dehydrogenase assay, measures CIV and CII activities. To also study CI in a patient, immunohistology in additional sections, i.e. in different neurons, is required. Our method allows correlation of the expression of CI, CIV and mitochondrial mass at a single cell level. CONCLUSION: Quantitative quadruple-label immunofluorescence is a reliable tool to measure RC deficiencies in individual neurons that will enable new insights in the molecular mechanisms underlying inherited and acquired mitochondrial dysfunction.


Asunto(s)
Enfermedades Mitocondriales/patología , Neuronas/metabolismo , Sustancia Negra/patología , Adulto , Anciano , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Persona de Mediana Edad , Porinas/metabolismo , Sustancia Negra/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
18.
Mult Scler ; 19(14): 1858-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23787892

RESUMEN

BACKGROUND: Mitochondrial dysfunction is an established feature of multiple sclerosis (MS). We recently described high levels of mitochondrial DNA (mtDNA) deletions within respiratory enzyme-deficient (lacking mitochondrial respiratory chain complex IV with intact complex II) neurons and choroid plexus epithelial cells in progressive MS. OBJECTIVES: The objective of this paper is to determine whether respiratory enzyme deficiency and mtDNA deletions in MS were in excess of age-related changes within muscle, which, like neurons, are post-mitotic cells that frequently harbour mtDNA deletions with ageing and in disease. METHODS: In progressive MS cases (n=17), known to harbour an excess of mtDNA deletions in the central nervous system (CNS), and controls (n=15), we studied muscle (paraspinal) and explored mitochondria in single fibres. Histochemistry, immunohistochemistry, laser microdissection, real-time polymerase chain reaction (PCR), long-range PCR and sequencing were used to resolve the single muscle fibres. RESULTS: The percentage of respiratory enzyme-deficient muscle fibres, mtDNA deletion level and percentage of muscle fibres harbouring high levels of mtDNA deletions were not significantly different in MS compared with controls. CONCLUSION: Our findings do not provide support to the existence of a diffuse mitochondrial abnormality involving multiple systems in MS. Understanding the cause(s) of the CNS mitochondrial dysfunction in progressive MS remains a research priority.


Asunto(s)
ADN Mitocondrial/análisis , Eliminación de Gen , Mitocondrias Musculares/química , Esclerosis Múltiple Crónica Progresiva/genética , Músculo Esquelético/química , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Proteínas del Complejo de Cadena de Transporte de Electrón/análisis , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/patología , Esclerosis Múltiple Crónica Progresiva/patología , Músculo Esquelético/patología , Reacción en Cadena en Tiempo Real de la Polimerasa
19.
Brain ; 135(Pt 6): 1736-50, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22577219

RESUMEN

Neuropathological findings in mitochondrial DNA disease vary and are often dependent on the type of mitochondrial DNA defect. Many reports document neuronal cell loss, demyelination, gliosis and necrotic lesions in post-mortem material. However, previous studies highlight vascular abnormalities in patients harbouring mitochondrial DNA defects, particularly in those with the m.3243A>G mutation in whom stroke-like events are part of the mitochondrial encephalopathy lactic acidosis and stroke-like episodes syndrome. We investigated microangiopathic changes in the cerebellum of 16 genetically and clinically well-defined patients. Respiratory chain deficiency, high levels of mutated mitochondrial DNA and increased mitochondrial mass were present within the smooth muscle cells and endothelial cells comprising the vessel wall in patients. These changes were not limited to those harbouring the m.3243A>G mutation frequently associated with mitochondrial encephalopathy, lactic acidosis and stroke-like episodes, but were documented in patients harbouring m.8344A>G and autosomal recessive polymerase (DNA directed), gamma (POLG) mutations. In 8 of the 16 patients, multiple ischaemic-like lesions occurred in the cerebellar cortex suggestive of vascular smooth muscle cell dysfunction. Indeed, changes in vascular smooth muscle and endothelium distribution and cell size are indicative of vascular cell loss. We found evidence of blood-brain barrier breakdown characterized by plasma protein extravasation following fibrinogen and IgG immunohistochemistry. Reduced immunofluorescence was also observed using markers for endothelial tight junctions providing further evidence in support of blood-brain barrier breakdown. Understanding the structural and functional changes occurring in central nervous system microvessels in patients harbouring mitochondrial DNA defects will provide an important insight into mechanisms of neurodegeneration in mitochondrial DNA disease. Since therapeutic strategies targeting the central nervous system are limited, modulating vascular function presents an exciting opportunity to lessen the burden of disease in these patients.


Asunto(s)
Cerebelo/patología , Trastornos Cerebrovasculares/complicaciones , Microvasos/patología , Enfermedades Mitocondriales/complicaciones , Actinas/metabolismo , Adulto , Estudios de Casos y Controles , Cerebelo/metabolismo , Colágeno Tipo IV/metabolismo , Análisis Mutacional de ADN , ADN Polimerasa gamma , ADN Mitocondrial/genética , ADN Polimerasa Dirigida por ADN/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , NADH Deshidrogenasa/genética , Mutación Puntual/genética , Porinas/metabolismo , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Adulto Joven
20.
Arch Neurol ; 69(4): 490-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22491194

RESUMEN

OBJECTIVE: To explore myelin components and mitochondrial changes within the central nervous system in patients with well-characterized mitochondrial disorders due to nuclear DNA or mitochondrial DNA (mtDNA) mutations. DESIGN: Immunohistochemical analysis, histochemical analysis, mtDNA sequencing, and real-time and long-range polymerase chain reaction were used to determine the pathogenicity of mtDNA deletions. SETTING: Department of Clinical Pathology, Columbia University Medical Center, and Newcastle Brain Tissue Resource. PATIENTS: Seventeen patients with mitochondrial disorders and 7 controls were studied from August 1, 2009, to August 1, 2010. MAIN OUTCOME MEASURE: Regions of myelin-associated glycoprotein (MAG) loss. RESULTS: Myelin-associated glycoprotein loss in Kearns-Sayre syndrome was associated with oligodendrocyte loss and nuclear translocation of apoptosis-inducing factor, whereas inflammation, neuronal loss, and axonal injury were minimal. In a Kearns-Sayre syndrome MAG loss region, high levels of mtDNA deletions together with cytochrome- c oxidase-deficient cells and loss of mitochondrial respiratory chain subunits (more prominent in the white than gray matter and glia than axons) confirmed the pathogenicity of mtDNA deletions. CONCLUSION: Primary mitochondrial respiratory chain defects affecting the white matter, and unrelated to inflammation, are associated with MAG loss and central nervous system demyelination.


Asunto(s)
Síndrome de Kearns-Sayre/metabolismo , Síndrome de Kearns-Sayre/patología , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Autopsia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Estudios de Casos y Controles , Análisis Mutacional de ADN , ADN Mitocondrial/análisis , ADN Mitocondrial/genética , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Eliminación de Gen , Regulación de la Expresión Génica/genética , Humanos , Síndrome de Kearns-Sayre/complicaciones , Síndrome de Kearns-Sayre/genética , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Proteína Básica de Mielina/metabolismo , Glicoproteína Asociada a Mielina/genética , Degeneración Nerviosa/etiología , Degeneración Nerviosa/genética , Proteínas del Tejido Nervioso/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos , Estudios Retrospectivos , Succinato Deshidrogenasa/metabolismo , Sinaptofisina/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA