Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 104
1.
Acad Radiol ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38849259

RATIONALE AND OBJECTIVES: Gastric cancer (GC) is highly heterogeneous, and accurate preoperative assessment of lymph node status remains challenging. We aimed to develop a multiparametric MRI-based model for predicting lymph node metastasis (LNM) in GC and to explore its prognostic implications. MATERIALS AND METHODS: In this dual-center retrospective study, 479 GC patients undergoing preoperative multiparametric MRI before radical gastrectomy were enrolled. 1595 imaging features were extracted from T2-weighted imaging, apparent diffusion coefficient maps, and contrast-enhanced T1-weighted imaging (cT1WI), respectively. Feature selection steps, including the Boruta and Simulated Annealing algorithms, were conducted to identify key features. Different radiomics models (RMs) based on the single- and multiple-sequence were constructed. The performance of various RMs in predicting LNM was assessed in terms of discrimination, calibration, and clinical usefulness. Additionally, Kaplan-Meier survival curves were employed to estimate differences in disease-free survival (DFS) and overall survival (OS). RESULTS: The multi-sequence radiomics model (MRM) achieved area under the curves (AUCs) of 0.774 [95 % confidence interval (CI), 0.703-0.845], 0.721 (95 % CI, 0.593-0.850), and 0.720 (95 % CI, 0.639-0.801) in the training and two validation cohorts, respectively, outperforming the single-sequence RMs. Notably, the RM derived from cT1WI demonstrated superior performance compared to the other two single-sequence models. Furthermore, the proposed MRM exhibited a significant association with DFS and OS in GC patients (both P < 0.05). CONCLUSION: The multiparametric MRI-based radiomics model, derived from primary lesions, demonstrated moderate performance in predicting LNM and survival outcomes in patients with GC, which could provide valuable insights for personalized treatment strategies.

2.
Heliyon ; 10(11): e31510, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38841458

Background: Acute exacerbation of idiopathic inflammatory myopathies-associated interstitial lung disease (AE-IIM-ILD) is a significant event associated with increased morbidity and mortality. However, few studies investigated the potential prognostic factors contributing to mortality in patients who experience AE-IIM-ILD. Objectives: The purpose of our study was to comprehensively investigate whether high-resolution computed tomography (HRCT) findings predict the 1-year mortality in patients who experience AE-IIM-ILD. Methods: A cohort of 69 patients with AE-IIM-ILD was retrospectively created. The cohort was 79.7 % female, with a mean age of 50.7. Several HRCT features, including total interstitial lung disease extent (TIDE), distribution patterns, and radiologic ILD patterns, were assessed. A directed acyclic graph (DAG) was used to evaluate the statistical relationship between variables. The Cox regression method was performed to identify potential prognostic factors associated with mortality. Results: The HRCT findings significantly associated with AE-IIM-ILD mortality include TIDE (HR per 10%-increase, 1.64; 95%CI, 1.29-2.1, p < 0.001; model 1: C-index, 0.785), diffuse distribution pattern (HR, 3.75, 95%CI, 1.5-9.38, p = 0.005; model 2: C-index, 0.737), and radiologic diffuse alveolar damage (DAD) pattern (HR, 6.37, 95 % CI, 0.81-50.21, p = 0.079; model 3: C-index, 0.735). TIDE greater than 58.33 %, diffuse distribution pattern, and radiologic DAD pattern correlate with poor prognosis. The 90-day, 180-day, and 1-year survival rates of patients who experience AE-IIM-ILD were 75.3 %, 66.3 %, and 63.3 %, respectively. Conclusion: HRCT findings, including TIDE, distribution pattern, and radiological pattern, are predictive of 1-year mortality in patients who experience AE-IIM-ILD.

3.
Respir Res ; 25(1): 226, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811960

BACKGROUND: This study aimed to explore the incidence of occult lymph node metastasis (OLM) in clinical T1 - 2N0M0 (cT1 - 2N0M0) small cell lung cancer (SCLC) patients and develop machine learning prediction models using preoperative intratumoral and peritumoral contrast-enhanced CT-based radiomic data. METHODS: By conducting a retrospective analysis involving 242 eligible patients from 4 centeres, we determined the incidence of OLM in cT1 - 2N0M0 SCLC patients. For each lesion, two ROIs were defined using the gross tumour volume (GTV) and peritumoral volume 15 mm around the tumour (PTV). By extracting a comprehensive set of 1595 enhanced CT-based radiomic features individually from the GTV and PTV, five models were constucted and we rigorously evaluated the model performance using various metrics, including the area under the curve (AUC), accuracy, sensitivity, specificity, calibration curve, and decision curve analysis (DCA). For enhanced clinical applicability, we formulated a nomogram that integrates clinical parameters and the rad_score (GTV and PTV). RESULTS: The initial investigation revealed a 33.9% OLM positivity rate in cT1 - 2N0M0 SCLC patients. Our combined model, which incorporates three radiomic features from the GTV and PTV, along with two clinical parameters (smoking status and shape), exhibited robust predictive capabilities. With a peak AUC value of 0.772 in the external validation cohort, the model outperformed the alternative models. The nomogram significantly enhanced diagnostic precision for radiologists and added substantial value to the clinical decision-making process for cT1 - 2N0M0 SCLC patients. CONCLUSIONS: The incidence of OLM in SCLC patients surpassed that in non-small cell lung cancer patients. The combined model demonstrated a notable generalization effect, effectively distinguishing between positive and negative OLMs in a noninvasive manner, thereby guiding individualized clinical decisions for patients with cT1 - 2N0M0 SCLC.


Lung Neoplasms , Lymphatic Metastasis , Small Cell Lung Carcinoma , Tomography, X-Ray Computed , Humans , Lung Neoplasms/epidemiology , Lung Neoplasms/pathology , Lung Neoplasms/diagnostic imaging , Small Cell Lung Carcinoma/diagnostic imaging , Small Cell Lung Carcinoma/epidemiology , Small Cell Lung Carcinoma/pathology , Male , Female , Middle Aged , Retrospective Studies , Aged , Lymphatic Metastasis/diagnostic imaging , Incidence , Tomography, X-Ray Computed/methods , Predictive Value of Tests , Contrast Media , Neoplasm Staging/methods , Adult , Lymph Nodes/pathology , Lymph Nodes/diagnostic imaging , Aged, 80 and over , Radiomics
4.
Quant Imaging Med Surg ; 14(4): 3131-3145, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38617169

Background: The MYCN copy number category is closely related to the prognosis of neuroblastoma (NB). Therefore, this study aimed to assess the predictive ability of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) radiomic features for MYCN copy number in NB. Methods: A retrospective analysis was performed on 104 pediatric patients with NB that had been confirmed by pathology. To develop the Bio-omics model (B-model), which incorporated clinical and biological aspects, PET/CT radiographic features, PET quantitative parameters, and significant features with multivariable stepwise logistic regression were preserved. Important radiomics features were identified through least absolute shrinkage and selection operator (LASSO) and univariable analysis. On the basis of radiomics features obtained from PET and CT scans, the radiomics model (R-model) was developed. The significant bio-omics and radiomics features were combined to establish a Multi-omics model (M-model). The above 3 models were established to differentiate MYCN wild from MYCN gain and MYCN amplification (MNA). The calibration curve and receiver operating characteristic (ROC) curve analyses were performed to verify the prediction performance. Post hoc analysis was conducted to compare whether the constructed M-model can distinguish MYCN gain from MNA. Results: The M-model showed excellent predictive performance in differentiating MYCN wild from MYCN gain and MNA, which was better than that of the B-model and R-model [area under the curve (AUC) 0.83, 95% confidence interval (CI): 0.74-0.92 vs. 0.81, 95% CI: 0.72-0.90 and 0.79, 95% CI: 0.69-0.89]. The calibration curve showed that the M-model had the highest reliability. Post hoc analysis revealed the great potential of the M-model in differentiating MYCN gain from MNA (AUC 0.95, 95% CI: 0.89-1). Conclusions: The M-model model based on bio-omics and radiomics features is an effective tool to distinguish MYCN copy number category in pediatric patients with NB.

5.
BMC Cardiovasc Disord ; 24(1): 223, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38658849

BACKGROUND: Long-term exposure to a high altitude environment with low pressure and low oxygen could cause abnormalities in the structure and function of the heart. Myocardial strain is a sensitive indicator for assessing myocardial dysfunction, monitoring myocardial strain is of great significance for the early diagnosis and treatment of high altitude heart-related diseases. This study applies cardiac magnetic resonance tissue tracking technology (CMR-TT) to evaluate the changes in left ventricular myocardial function and structure in rats in high altitude environment. METHODS: 6-week-old male rats were randomized into plateau hypoxia rats (plateau group, n = 21) as the experimental group and plain rats (plain group, n = 10) as the control group. plateau group rats were transported from Chengdu (altitude: 360 m), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (altitude: 3850 m), Yushu, China, and then fed for 12 weeks there, while plain group rats were fed in Chengdu(altitude: 360 m), China. Using 7.0 T cardiac magnetic resonance (CMR) to evaluate the left ventricular ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV), as well as myocardial strain parameters including the peak global longitudinal (GLS), radial (GRS), and circumferential strain (GCS). The rats were euthanized and a myocardial biopsy was obtained after the magnetic resonance imaging scan. RESULTS: The plateau rats showed more lower left ventricular GLS and GRS (P < 0.05) than the plain rats. However, there was no statistically significant difference in left ventricular EDV, ESV, SV, EF and GCS compared to the plain rats (P > 0.05). CONCLUSIONS: After 12 weeks of exposure to high altitude low-pressure hypoxia environment, the left ventricular global strain was partially decreased and myocardium is damaged, while the whole heart ejection fraction was still preserved, the myocardial strain was more sensitive than the ejection fraction in monitoring cardiac function.


Altitude , Stroke Volume , Ventricular Function, Left , Animals , Male , Rats, Sprague-Dawley , Altitude Sickness/physiopathology , Altitude Sickness/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine , Magnetic Resonance Imaging , Time Factors , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Rats , Hypoxia/physiopathology
6.
J Imaging Inform Med ; 37(3): 1054-1066, 2024 Jun.
Article En | MEDLINE | ID: mdl-38351221

The aim of this study was to use multimodal imaging (contrast-enhanced T1-weighted (T1C), T2-weighted (T2), and diffusion-weighted imaging (DWI)) to develop a radiomics model for preoperatively predicting venous sinus invasion in meningiomas. This prediction would assist in selecting the appropriate surgical approach and forecasting the prognosis of meningiomas. A retrospective analysis was conducted on 331 participants who had been pathologically diagnosed with meningiomas. For each participant, 3948 radiomics features were acquired from the T1C, T2, and DWI images. Minimum redundancy maximum correlation, rank sum test, and multi-factor recursive elimination were used to extract the most significant features of different models. Then, multivariate logistic regression was used to build classification models to predict meningioma venous sinus invasion. The diagnostic capabilities were assessed using receiver operating characteristic (ROC) analysis. In addition, a nomogram was constructed by incorporating clinical and radiological characteristics and a radiomics signature. To assess the clinical usefulness of the nomogram, a decision curve analysis (DCA) was performed. Tumor shape, boundary, and enhancement features were independent predictors of meningioma venous sinus invasion (p = 0.013, p = 0.013, p = 0.005, respectively). Eleven (T2:1, T1C:4, DWI:6) of the 3948 radiomics features were screened for strong association with meningioma sinus invasion. The areas under the ROC curves for the training and external test sets were 0.946 and 0.874, respectively. The clinicoradiomic model showed excellent predictive performance for invasive meningioma, which may help to guide surgical approaches and predict prognosis.


Diffusion Magnetic Resonance Imaging , Meningeal Neoplasms , Meningioma , Neoplasm Invasiveness , Humans , Meningioma/diagnostic imaging , Meningioma/surgery , Meningioma/pathology , Female , Diffusion Magnetic Resonance Imaging/methods , Male , Middle Aged , Retrospective Studies , Meningeal Neoplasms/diagnostic imaging , Meningeal Neoplasms/surgery , Meningeal Neoplasms/pathology , Magnetic Resonance Imaging/methods , Adult , Aged , ROC Curve , Nomograms , Radiomics
7.
Front Oncol ; 14: 1333020, 2024.
Article En | MEDLINE | ID: mdl-38347846

Objective: To develop and validate a multiparametric MRI-based radiomics model for prediction of microsatellite instability (MSI) status in patients with endometrial cancer (EC). Methods: A total of 225 patients from Center I including 158 in the training cohort and 67 in the internal testing cohort, and 132 patients from Center II were included as an external validation cohort. All the patients were pathologically confirmed EC who underwent pelvic MRI before treatment. The MSI status was confirmed by immunohistochemistry (IHC) staining. A total of 4245 features were extracted from T2-weighted imaging (T2WI), contrast enhanced T1-weighted imaging (CE-T1WI) and apparent diffusion coefficient (ADC) maps for each patient. Four feature selection steps were used, and then five machine learning models, including Logistic Regression (LR), k-Nearest Neighbors (KNN), Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF), were built for MSI status prediction in the training cohort. Receiver operating characteristics (ROC) curve and decision curve analysis (DCA) were used to evaluate the performance of these models. Results: The SVM model showed the best performance with an AUC of 0.905 (95%CI, 0.848-0.961) in the training cohort, and was subsequently validated in the internal testing cohort and external validation cohort, with the corresponding AUCs of 0.875 (95%CI, 0.762-0.988) and 0.862 (95%CI, 0.781-0.942), respectively. The DCA curve demonstrated favorable clinical utility. Conclusion: We developed and validated a multiparametric MRI-based radiomics model with gratifying performance in predicting MSI status, and could potentially be used to facilitate the decision-making on clinical treatment options in patients with EC.

8.
Acad Radiol ; 2024 Jan 29.
Article En | MEDLINE | ID: mdl-38290884

RATIONALE AND OBJECTIVES: This study aimed to non-invasively predict epidermal growth factor receptor (EGFR) mutation status in patients with lung adenocarcinoma using multi-phase computed tomography (CT) radiomics features. MATERIALS AND METHODS: A total of 424 patients with lung adenocarcinoma were recruited from two hospitals who underwent preoperative non-enhanced CT (NE-CT) and enhanced CT (including arterial phase CT [AP-CT], and venous phase CT [VP-CT]). Patients were divided into training (n = 297) and external validation (n = 127) cohorts according to hospital. Radiomics features were extracted from the NE-CT, AP-CT, and VP-CT images, respectively. The Wilcoxon test, correlation analysis, and simulated annealing were used for feature screening. A clinical model and eight radiomics models were established. Furthermore, a clinical-radiomics model was constructed by incorporating multi-phase CT features and clinical risk factors. Receiver operating characteristic curves were used to evaluate the predictive performance of the models. RESULTS: The predictive performance of multi-phase CT radiomics model (AUC of 0.925 [95% CI, 0.879-0.971] in the validation cohort) was higher than that of NE-CT, AP-CT, VP-CT, and clinical models (AUCs of 0.860 [95% CI,0.794-0.927], 0.792 [95% CI, 0.713-0.871], 0.753 [95% CI, 0.669-0.838], and 0.706 [95% CI, 0.620-0.791] in the validation cohort, respectively) (all P < 0.05). The predictive performance of the clinical-radiomics model (AUC of 0.927 [95% CI, 0.882-0.971] in the validation cohort) was comparable to that of multi-phase CT radiomics model (P > 0.05). CONCLUSION: Our multi-phase CT radiomics model showed good performance in identifying the EGFR mutation status in patients with lung adenocarcinoma, which may assist personalized treatment decisions.

9.
Abdom Radiol (NY) ; 49(1): 288-300, 2024 Jan.
Article En | MEDLINE | ID: mdl-37843576

BACKGROUND: To evaluate two-dimensional (2D) and three-dimensional (3D) computed tomography (CT) radiomics analysis for the T stage of esophageal squamous cell carcinoma (ESCC). METHODS: 398 patients with pathologically confirmed ESCC were divided into training and testing sets. All patients underwent chest CT scans preoperatively. For each tumor, based on CT images, a 2D region of interest (ROI) was outlined on the largest cross-sectional area, and a 3D ROI was outlined layer by layer on each section of the tumor. The radiomics platform was used for feature extraction. For feature selection, stepwise logistic regression was used. The receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of the 2D radiomics model versus the 3D radiomics model. The differences were compared using the DeLong test. The value of the clinical utility of the two radiomics models was evaluated. RESULTS: 1595 radiomics features were extracted. After screening, two radiomics models were constructed. In the training set, the difference between the area under the curve (AUC) of the 2D radiomics model (AUC = 0.831) and the 3D radiomics model (AUC = 0.830) was not statistically significant (p = 0.973). In the testing set, the difference between the AUC of the 2D radiomics model (AUC = 0.807) and the 3D radiomics model (AUC = 0.797) was also not statistically significant (p = 0.748). A 2D model was equally useful as a 3D model in clinical situations. CONCLUSION: The performance of 2D radiomics model is comparable to that of 3D radiomics model in distinguishing between the T1-2 and T3-4 stages of ESCC. In addition, 2D radiomics model may be a more feasible option due to the shorter time required for segmenting the ROI.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Esophageal Neoplasms/diagnostic imaging , Radiomics , Tomography, X-Ray Computed , Retrospective Studies
10.
Dig Dis Sci ; 68(12): 4521-4535, 2023 12.
Article En | MEDLINE | ID: mdl-37794295

BACKGROUND: Microvascular invasion (MVI) is a predictor of recurrence and overall survival in hepatocellular carcinoma (HCC), the preoperative diagnosis of MVI through noninvasive methods play an important role in clinical treatment. AIMS: To investigate the effectiveness of radiomics features in evaluating MVI in HCC before surgery. METHODS: We included 190 patients who had undergone contrast-enhanced MRI and curative resection for HCC between September 2015 and November 2021 from two independent institutions. In the training cohort of 117 patients, MVI-related radiomics models based on multiple sequences and multiple regions from MRI were constructed. An independent cohort of 73 patients was used to validate the proposed models. A final Clinical-Imaging-Radiomics nomogram for preoperatively predicting MVI in HCC patients was generated. Recurrence-free survival was analyzed using the log-rank test. RESULTS: For tumor-extracted features, the performance of signatures in fat-suppressed T1-weighted images and hepatobiliary phase was superior to that of other sequences in a single-sequence model. The radiomics signatures demonstrated better discriminatory ability than that of the Clinical-Imaging model for MVI. The nomogram incorporating clinical, imaging and radiomics signature showed excellent predictive ability and achieved well-fitted calibration curves, outperforming both the Radiomics and Clinical-Radiomics models in the training and validation cohorts. CONCLUSIONS: The Clinical-Imaging-Radiomics nomogram model of multiple regions and multiple sequences based on serum alpha-fetoprotein, three MRI characteristics, and 12 radiomics signatures achieved good performance for predicting MVI in HCC patients, which may help clinicians select optimal treatment strategies to improve subsequent clinical outcomes.


Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Nomograms , Retrospective Studies , Neoplasm Invasiveness/pathology , Prognosis , Magnetic Resonance Imaging/methods
11.
Br J Radiol ; 96(1151): 20230026, 2023 Nov.
Article En | MEDLINE | ID: mdl-37751166

OBJECTIVE: To develop and validate an MR-based radiomics nomogram combining different imaging sequences (ADC mapping and T2 weighted imaging (T2WI)), different tumor regions (combined intra- and peritumoral regions), and different parameters (clinical features, tumor morphological features, and radiomics features) while considering different MR field strengths in predicting deep myometrial invasion (MI) in Stage I endometrioid adenocarcinoma (EEA). METHODS: A total of 202 patients were retrospectively analyzed and divided into two cohorts (training cohort, 1.5 T MR, n = 131; validation cohort, 3.0 T MR, n = 71). Axial ADC mapping and T2WI were conducted. Radiomics features were extracted from intra- and peritumoral regions. Least absolute shrinkage and selection operator regression, univariate analysis, and multivariate logistic regression were used to select radiomics features and tumor morphological and clinical parameters. The area under the receiver operator characteristic curve (AUC) was calculated to evaluate the performance of the prediction model and radiomics nomogram. RESULTS: Ten radiomics features, 4 morphological parameters and 1 clinical characteristic were selected. The radiomics nomogram achieved good discrimination between the superficial and deep MI cohorts. The AUC was 0.927 (95% confidence interval [CI]: 0.865, 0.967) in the training cohort and 0.921 (95% CI: 0.872, 0.948) in the validation cohort. The specificity and sensitivity were 92.0 and 78.9% in the training cohort and 83.0 and 77.8% in the validation cohort, respectively. CONCLUSION: The radiomics nomogram showed good performance in predicting the depth of MI in Stage I EEA before surgery and might be useful for surgical patient management. ADVANCES IN KNOWLEDGE: An MR-based radiomics nomogram was useful for predicting deep MI in Stage I EEA patients (AUCtrain = 0.927, AUCvalidation = 0.921). The intra- and peritumoral radiomics features complemented each other. The nomogram was developed and validated with different MR field strengths, suggesting that the model demonstrates good generalizability.


Carcinoma, Endometrioid , Humans , Female , Carcinoma, Endometrioid/diagnostic imaging , Nomograms , Retrospective Studies , Research Design
12.
Front Oncol ; 13: 1212608, 2023.
Article En | MEDLINE | ID: mdl-37601669

Background: In this study, we developed and validated machine learning (ML) models by combining radiomic features extracted from magnetic resonance imaging (MRI) with clinicopathological factors to assess pulmonary nodule classification for benign malignant diagnosis. Methods: A total of 333 consecutive patients with pulmonary nodules (233 in the training cohort and 100 in the validation cohort) were enrolled. A total of 2,824 radiomic features were extracted from the MRI images (CE T1w and T2w). Logistic regression (LR), Naïve Bayes (NB), support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost) classifiers were used to build the predictive models, and a radiomics score (Rad-score) was obtained for each patient after applying the best prediction model. Clinical factors and Rad-scores were used jointly to build a nomogram model based on multivariate logistic regression analysis, and the diagnostic performance of the five prediction models was evaluated using the area under the receiver operating characteristic curve (AUC). Results: A total of 161 women (48.35%) and 172 men (51.65%) with pulmonary nodules were enrolled. Six important features were selected from the 2,145 radiomic features extracted from CE T1w and T2w images. The XGBoost classifier model achieved the highest discrimination performance with AUCs of 0.901, 0.906, and 0.851 in the training, validation, and test cohorts, respectively. The nomogram model improved the performance with AUC values of 0.918, 0.912, and 0.877 in the training, validation, and test cohorts, respectively. Conclusion: MRI radiomic ML models demonstrated good nodule classification performance with XGBoost, which was superior to that of the other four models. The nomogram model achieved higher performance with the addition of clinical information.

13.
J Cancer Res Clin Oncol ; 149(13): 11635-11645, 2023 Oct.
Article En | MEDLINE | ID: mdl-37405478

BACKGROUND: Accurate prediction of the grade of invasive ductal carcinoma (IDC) before treatment is vital for individualized therapy and improving patient outcomes. This study aimed to develop and validate a mammography-based radiomics nomogram that would incorporate the radiomics signature and clinical risk factors in the preoperative prediction of the histological grade of IDC. METHODS: The data of 534 patients from our hospital with pathologically confirmed IDC (374 in the training cohort and 160 in the validation cohort) were retrospectively analyzed. A total of 792 radiomics features were extracted from the patients' craniocaudal and mediolateral oblique view images. A radiomics signature was generated using the least absolute shrinkage and selection operator method. Multivariate logistic regression was adopted to establish a radiomics nomogram, the utility of which was evaluated using a receiver-operating characteristic curve, calibration curve, and decision curve analysis (DCA). RESULTS: The radiomics signature was found to have a significant correlation with histological grade (P < 0.01), but the efficacy of the model is limited. The radiomics nomogram, which incorporated the radiomics signature and spicule sign into mammography, showed good consistency and discrimination in both the training cohort [area under the curve (AUC) = 0.75] and the validation cohort (AUC = 0.75). The calibration curves and DCA demonstrated the clinical usefulness of the proposed radiomics nomogram model. CONCLUSIONS: A radiomics nomogram based on the radiomics signature and spicule sign can be used to predict the histological grade of IDC and assist in clinical decision-making for patients with IDC.


Carcinoma, Ductal , Nomograms , Humans , Retrospective Studies , Logistic Models , Mammography
14.
Sci Rep ; 13(1): 9253, 2023 06 07.
Article En | MEDLINE | ID: mdl-37286581

The purpose of this study was to differentiate the retroperitoneal paragangliomas and schwannomas using computed tomography (CT) radiomics. This study included 112 patients from two centers who pathologically confirmed retroperitoneal pheochromocytomas and schwannomas and underwent preoperative CT examinations. Radiomics features of the entire primary tumor were extracted from non-contrast enhancement (NC), arterial phase (AP) and venous phase (VP) CT images. The least absolute shrinkage and selection operator method was used to screen out key radiomics signatures. Radiomics, clinical and clinical-radiomics combined models were built to differentiate the retroperitoneal paragangliomas and schwannomas. Model performance and clinical usefulness were evaluated by receiver operating characteristic curve, calibration curve and decision curve. In addition, we compared the diagnostic accuracy of radiomics, clinical and clinical-radiomics combined models with radiologists for pheochromocytomas and schwannomas in the same set of data. Three NC, 4 AP, and 3 VP radiomics features were retained as the final radiomics signatures for differentiating the paragangliomas and schwannomas. The CT characteristics CT attenuation value of NC and the enhancement magnitude at AP and VP were found to be significantly different statistically (P < 0.05). The NC, AP, VP, Radiomics and clinical models had encouraging discriminative performance. The clinical-radiomics combined model that combined radiomics signatures and clinical characteristics showed excellent performance, with an area under curve (AUC) values were 0.984 (95% CI 0.952-1.000) in the training cohort, 0.955 (95% CI 0.864-1.000) in the internal validation cohort and 0.871 (95% CI 0.710-1.000) in the external validation cohort. The accuracy, sensitivity and specificity were 0.984, 0.970 and 1.000 in the training cohort, 0.960, 1.000 and 0.917 in the internal validation cohort and 0.917, 0.923 and 0.818 in the external validation cohort, respectively. Additionally, AP, VP, Radiomics, clinical and clinical-radiomics combined models had a higher diagnostic accuracy for pheochromocytomas and schwannomas than the two radiologists. Our study demonstrated the CT-based radiomics models has promising performance in differentiating the paragangliomas and schwannomas.


Adrenal Gland Neoplasms , Neurilemmoma , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/diagnostic imaging , Paraganglioma/diagnostic imaging , Adrenal Gland Neoplasms/diagnostic imaging , Neurilemmoma/diagnostic imaging , Tomography, X-Ray Computed , Retrospective Studies
15.
Cancer Imaging ; 23(1): 59, 2023 Jun 12.
Article En | MEDLINE | ID: mdl-37308941

BACKGROUND: The prognosis prediction of locally advanced rectal cancer (LARC) was important to individualized treatment, we aimed to investigate the performance of ultra-high b-value DWI (UHBV-DWI) in progression risk prediction of LARC and compare with routine DWI. METHODS: This retrospective study collected patients with rectal cancer from 2016 to 2019. Routine DWI (b = 0, 1000 s/mm2) and UHBV-DWI (b = 0, 1700 ~ 3500 s/mm2) were processed with mono-exponential model to generate ADC and ADCuh, respectively. The performance of the ADCuh was compared with ADC in 3-year progression free survival (PFS) assessment using time-dependent ROC and Kaplan-Meier curve. Prognosis model was constructed with ADCuh, ADC and clinicopathologic factors using multivariate COX proportional hazard regression analysis. The prognosis model was assessed with time-dependent ROC, decision curve analysis (DCA) and calibration curve. RESULTS: A total of 112 patients with LARC (TNM-stage II-III) were evaluated. ADCuh performed better than ADC for 3-year PFS assessment (AUC = 0.754 and 0.586, respectively). Multivariate COX analysis showed that ADCuh and ADC were independent factors for 3-year PFS (P < 0.05). Prognostic model 3 (TNM-stage + extramural venous invasion (EMVI) + ADCuh) was superior than model 2 (TNM-stage + EMVI + ADC) and model 1 (TNM-stage + EMVI) for 3-year PFS prediction (AUC = 0.805, 0.719 and 0.688, respectively). DCA showed that model 3 had higher net benefit than model 2 and model 1. Calibration curve demonstrated better agreement of model 1 than model 2 and model 1. CONCLUSIONS: ADCuh from UHBV-DWI performed better than ADC from routine DWI in predicting prognosis of LARC. The model based on combination of ADCuh, TNM-stage and EMVI could help to indicate progression risk before treatment.


Diffusion Magnetic Resonance Imaging , Rectal Neoplasms , Humans , Retrospective Studies , Multivariate Analysis
16.
Jpn J Radiol ; 41(11): 1236-1246, 2023 Nov.
Article En | MEDLINE | ID: mdl-37311935

BACKGROUND: In this study, we used computed tomography (CT)-based radiomics signatures to predict the mutation status of KRAS in patients with colorectal cancer (CRC) and to identify the phase of radiomics signature with the most robust and high performance from triphasic enhanced CT. METHODS: This study involved 447 patients who underwent KRAS mutation testing and preoperative triphasic enhanced CT. They were categorized into training (n = 313) and validation cohorts (n = 134) in a 7:3 ratio. Radiomics features were extracted using triphasic enhanced CT imaging. The Boruta algorithm was used to retain the features closely associated with KRAS mutations. The Random Forest (RF) algorithm was used to develop radiomics, clinical, and combined clinical-radiomics models for KRAS mutations. The receiver operating characteristic curve, calibration curve, and decision curve were used to evaluate the predictive performance and clinical usefulness of each model. RESULTS: Age, CEA level, and clinical T stage were independent predictors of KRAS mutation status. After rigorous feature screening, four arterial phase (AP), three venous phase (VP), and seven delayed phase (DP) radiomics features were retained as the final signatures for predicting KRAS mutations. The DP models showed superior predictive performance compared to AP or VP models. The clinical-radiomics fusion model showed excellent performance, with an AUC, sensitivity, and specificity of 0.772, 0.792, and 0.646 in the training cohort, and 0.755, 0.724, and 0.684 in the validation cohort, respectively. The decision curve showed that the clinical-radiomics fusion model had more clinical practicality than the single clinical or radiomics model in predicting KRAS mutation status. CONCLUSION: The clinical-radiomics fusion model, which combines the clinical and DP radiomics model, has the best predictive performance for predicting the mutation status of KRAS in CRC, and the constructed model has been effectively verified by an internal validation cohort.


Colorectal Neoplasms , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Tomography, X-Ray Computed/methods , ROC Curve , Mutation , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/genetics , Retrospective Studies
17.
J Cardiovasc Pharmacol ; 82(2): 148-156, 2023 08 01.
Article En | MEDLINE | ID: mdl-37295072

PURPOSE: This study evaluated the association among the plasma concentration of ticagrelor, ARC124910XX, aspirin, and salicylic acid with the risk of recent bleeding in patients with the acute coronary syndrome. To this end, we developed an accurate model to predict bleeding. METHODS: A total of 84 patients included in this study cohort between May 2021 and November 2021. The risk factors were identified by univariate and multivariate analyses, and statistically significant risk factors identified in the multivariate analysis were included in the nomogram. We used the calibration curve and the receiver operating characteristic curve to verify the accuracy of the prediction model. RESULTS: Multivariable logistic analysis showed that ticagrelor concentration (odds ratio [OR]: 2.47, 95% confidence interval [CI], 1.51-4.75, P = 0.002), ST-segment elevation acute myocardial infarction (OR: 32.2, 95% CI, 2.37-780, P = 0.016), and lipid-lowering drugs (OR: 11.52, 95% CI, 1.91-110, P = 0.015) were positively correlated with bleeding. However, angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker (OR: 0.04, 95% CI, 0.004-0.213, P < 0.001) was negatively correlated with bleeding. The receiver operating characteristic curve analysis showed that ticagrelor concentration and these factors together predict the occurrence of bleeding (area under receiver operating characteristic curve = 0.945, 95% CI, 0.896-0.994) and that ticagrelor concentration >694.90 ng/mL is the threshold of bleeding concentration (area under receiver operating characteristic curve = 0.696, 95% CI, 0.558-0.834). CONCLUSION: In patients with acute coronary syndrome treated with dual antiplatelet therapy, ticagrelor concentration >694.90 ng/mL was an independent risk factor for bleeding (OR: 2.47, 95% CI, 1.51-4.75, P = 0.002), but ARC124910XX and salicylic acid concentration did not affect bleeding risk ( P > 0.05).


Acute Coronary Syndrome , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Humans , Ticagrelor/adverse effects , Aspirin , Platelet Aggregation Inhibitors , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/drug therapy , East Asian People , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Hemorrhage/drug therapy , ST Elevation Myocardial Infarction/drug therapy , Salicylic Acid/therapeutic use , Percutaneous Coronary Intervention/adverse effects , Treatment Outcome
18.
Eur Radiol ; 33(10): 7250-7259, 2023 Oct.
Article En | MEDLINE | ID: mdl-37178204

OBJECTIVES: To predict preoperative acute ischemic stroke (AIS) in acute type A aortic dissection (ATAAD). METHODS: In this multi-center retrospective study, 508 consecutive patients diagnosed as ATAAD between April 2020 and March 2021 were considered for inclusion. The patients were divided into a development cohort and two validation cohorts based on time periods and centers. Clinical data and imaging findings obtained were analyzed. Univariable and multivariable logistic regression analyses were performed to identify predictors associated with preoperative AIS. The performance of resulting nomogram was evaluated in discrimination and calibration on all cohorts. RESULTS: A total of 224 patients were in the development cohort, 94 in the temporal validation cohort, and 118 in the geographical validation cohort. Six predictors were identified: age, syncope, D-dimer, moderate to severe aortic valve insufficiency, diameter ratio of true lumen in ascending aorta < 0.33, and common carotid artery dissection. The nomogram established showed good discrimination (area under the receiver operating characteristic curve [AUC], 0.803; 95% CI: 0.742, 0.864) and calibration (Hosmer-Lemeshow test p = 0.300) in the development cohort. External validation showed good discrimination and calibration abilities in both temporal (AUC, 0.778; 95% CI: 0.671, 0.885; Hosmer-Lemeshow test p = 0.161) and geographical cohort (AUC, 0.806; 95% CI: 0.717, 0.895; Hosmer-Lemeshow test p = 0.100). CONCLUSIONS: A nomogram, based on simple imaging and clinical variables collected on admission, showed good discrimination and calibration abilities in predicting preoperative AIS for ATAAD patients. KEY POINTS: • A nomogram based on simple imaging and clinical findings may predict preoperative acute ischemic stroke in patients with acute type A aortic dissection in emergencies. • The nomogram showed good discrimination and calibration abilities in validation cohorts.


Aortic Dissection , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/complications , Stroke/diagnosis , Retrospective Studies , Nomograms , Aortic Dissection/diagnostic imaging
19.
Diagn Interv Imaging ; 104(9): 391-400, 2023 Sep.
Article En | MEDLINE | ID: mdl-37179244

PURPOSE: The purpose of this study was to identify possible association between noncontrast computed tomography (NCCT)-based radiomics features of perihematomal edema (PHE) and poor functional outcome at 90 days after intracerebral hemorrhage (ICH) and to develop a NCCT-based radiomics-clinical nomogram to predict 90-day functional outcomes in patients with ICH. MATERIALS AND METHODS: In this multicenter retrospective study, 107 radiomics features were extracted from 1098 NCCT examinations obtained in 1098 patients with ICH. There were 652 men and 446 women with a mean age of 60 ± 12 (SD) years (range: 23-95 years). After harmonized and univariable and multivariable screening, seven of these radiomics features were closely associated with the 90-day functional outcome of patients with ICH. The radiomics score (Rad-score) was calculated based on the seven radiomics features. A clinical-radiomics nomogram was developed and validated in three cohorts. The model performance was evaluated using area under the curve analysis and decision and calibration curves. RESULTS: Of the 1098 patients with ICH, 395 had a good outcome at 90 days. Hematoma hypodensity sign and intraventricular and subarachnoid hemorrhages were identified as risk factors for poor outcomes (P < 0.001). Age, Glasgow coma scale score, and Rad-score were independently associated with outcome. The clinical-radiomics nomogram showed good predictive performance with AUCs of 0.882 (95% CI: 0.859-0.905), 0.834 (95% CI: 0.776-0.891) and 0.905 (95% CI: 0.839-0.970) in the three cohorts and clinical applicability. CONCLUSION: NCCT-based radiomics features from PHE are highly correlated with outcome. When combined with Rad-score, radiomics features from PHE can improve the predictive performance for 90-day poor outcome in patients with ICH.


Cerebral Hemorrhage , Tomography, X-Ray Computed , Male , Humans , Female , Middle Aged , Aged , Retrospective Studies , Cerebral Hemorrhage/diagnostic imaging , Tomography, X-Ray Computed/methods , Hematoma/diagnostic imaging , Hematoma/etiology , Edema
20.
Eur J Radiol ; 163: 110789, 2023 Jun.
Article En | MEDLINE | ID: mdl-37068415

PURPOSE: To develop and validate a nomogram based on MRI morphological parameters to preoperatively discriminate between low-risk and non-low-risk patients with endometrioid endometrial carcinoma (EEC). METHODS: Two hundred eighty-one women with histologically confirmed EEC were divided into training (1.5-T MRI, n = 182) and validation cohorts (3.0-T MRI, n = 99). According to the European Society of Medical Oncology guidelines, the patients were divided into four risk groups: low, intermediate, high-intermediate, and high. Binary classification models were developed (low-risk vs. non-low-risk). Univariate logistic regression (LR) analyses were used to determine which variables to select to build the predictive models. Five classification models were constructed, and the best model was selected. The area under the receiver operating characteristic curve (AUC) was calculated to evaluate the performance of the prediction model and nomogram. P < 0.05 indicated a statistically significant difference. RESULTS: Age and four morphological parameters (tumor size, tumor volume, maximum anteroposterior tumor diameter on sagittal T2-weighted images (APsag), and tumor area ratio (TAR)) were selected, and the LR model was used to construct an MRI morphological nomogram. The AUCs for the nomogram in predicting a non-low-risk of EEC among patients in the training and validation cohorts were 0.856 (sensitivity = 75.0%, specificity = 83.1%) and 0.849 (sensitivity = 74.6%, specificity = 85.0%), respectively. CONCLUSION: An MRI morphological nomogram was developed and achieved high diagnostic performance for classifying low-risk and non-low-risk EEC preoperatively, which could provide support for therapeutic decision-making. Furthermore, our findings indicate that this nomogram is robust in the clinical application of various field strength data.


Endometrial Neoplasms , Nomograms , Humans , Female , Area Under Curve , Magnetic Resonance Imaging , Endometrial Neoplasms/diagnostic imaging , Endometrial Neoplasms/surgery , Risk Assessment , Retrospective Studies
...