Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.610
Filtrar
1.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003068

RESUMEN

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Asunto(s)
Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Catálisis , Hierro/química
2.
Artículo en Inglés | MEDLINE | ID: mdl-39093713

RESUMEN

The aqueous zinc-ion batteries (ZIBs) have gained increasing attention because of their high specific capacity, low cost, and good safety. However, side reactions, hydrogen evolution reaction, and uncontrolled zinc dendrites accompanying the Zn metal anodes have impeded the applications of ZIBs in grid-scale energy storage. Herein, the poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires as an interfacial layer on the Zn anode (Zn-PEDOT) are reported to address the above issues. Our experimental results and density functional theory simulation reveal that the interactions between the Zn2+ and S atoms in thiophene rings of PEDOT not only facilitate the desolvation of hydrated Zn2+ but also can regulate the diffusion of Zn2+ along the thiophene molecular chains and induce the dendrite-free deposition of Zn along the (002) surface. Consequently, the Zn||Cu-PEDOT half-cell exhibits highly reversible plating/stripping behavior with an average Coulombic efficiency of 99.7% over 2500 cycles at 1 mA cm-2 and a capacity of 0.5 mAh cm-2. A symmetric Zn-PEDOT cell can steadily operate over 1100 h at 1 mA cm-2 (1 mAh cm-2) and 470 h at 10 mA cm-2 (2 mAh cm-2), outperforming the counterpart bare Zn anodes. Besides, a Zn-PEDOT||V2O5 full cell could deliver a specific capacity of 280 mAh g-1 at 1 A g-1 and exhibits a decent cycling stability, which are much superior to the bare Zn||V2O5 cell. Our results demonstrate that PEDOT nanowires are one of the promising interfacial layers for dendrite-free aqueous ZIBs.

3.
Br J Cancer ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095528

RESUMEN

BACKGROUND: Ovarian cancer (OV) is a heterogeneous disease but has traditionally been treated as an immunologically cold malignancy. The relationship between the immune-active cancer phenotype typified by a T helper 1 (Th-1) immune response and clinical outcome in OV remains uncertain. METHODS: A cohort-scale compendium of transcriptomic data from 2850 OV samples from 19 individual datasets was compiled for integrative immuno-transcriptomic analysis. The immunological constant of rejection was used as a metric to assess the Th-1/cytotoxic response orientation and investigate the clinical-biological significance of immune polarization towards a Th-1 immune response. Single-cell RNA sequencing data from 39 OV samples were analyzed to elucidate the variability of the immune microenvironment, and immunohistochemical validation was performed on 39 samples from the Harbin Medical University Cancer Hospital. RESULTS: Our results demonstrated the prognostic significance of a Th-1/cytotoxic immune profile within the tumor microenvironment (TME) using the immunological constant of rejection classification to OV samples. Specifically, patients with tumors expressing high levels of ICR markers showed significantly improved survival. A gene panel consisting of four chemokines (CXCL9, CXCL10, CXCL11 and CXCL13) was identified as critical players in mediating the establishment of an active T-cell-inflamed antitumor phenotype. This 4-chemokine signature, which was extensively validated in external multicenter cohorts through transcriptomic profiling and in an independent in-house cohort through immunohistochemistry, introduced a novel immune classification in OV and identified a chemokine-dominated subtype associated with an active antitumor immune phenotype and favorable prognosis. Single-cell transcriptomic analysis revealed that chemokine-dominated tumors increase CXCR3 + NK and T cell recruitment to the TME primarily through the overexpression of macrophage-derived CXCL9/10/11. CONCLUSIONS: This study provides new insights into understanding immune heterogeneity within the TME and paves the way for tailoring appropriate therapeutic interventions for patients with differing immune profiles.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39051127

RESUMEN

BACKGROUND: Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS: Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS: Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS: Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.

5.
Ann Am Thorac Soc ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051991

RESUMEN

Continued improvements in the treatment of pulmonary infections have paradoxically resulted in a growing challenge of individuals with post-infectious pulmonary complications (PIPCs). PIPCs have been long recognized after tuberculosis but recent experiences, such as the SARS-CoV-2 pandemic, have underscored the importance of PIPCs following other lower respiratory tract infections. Independent of the causative pathogen, most available studies of pulmonary infections focus on short-term outcomes rather than long-term morbidity among survivors. In this document, we establish a conceptual scope for PIPCs with discussion of globally significant pulmonary pathogens and an examination of how these pathogens can damage different components of the lung, resulting in a spectrum of PIPCs. We also review potential mechanisms for the transition from acute infection to PIPC, including the interplay between pathogen-mediated injury and aberrant host responses, which together result in PIPCs. Finally, we identify cross-cutting research priorities for the field to facilitate future studies to establish the incidence of PIPCs, define common mechanisms, identify therapeutic strategies, and ultimately reduce the burden of morbidity in survivors of pulmonary infections.

6.
Nano Lett ; 24(29): 8826-8833, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38996000

RESUMEN

Li-rich Mn-based cathode material (LRM), as a promising cathode for high energy density lithium batteries, suffers from severe side reactions in conventional lithium hexafluorophosphate (LiPF6)-based carbonate electrolytes, leading to unstable interfaces and poor rate performances. Herein, a boron-based additives-driven self-optimized interface strategy is presented to dissolve low ionic conductivity LiF nanoparticles at the outer cathode electrolyte interface, leading to the optimized interfacial components, as well as the enhanced Li ion migration rate in electrolytes. Being attributed to these superiorities, the LRM||Li battery delivers a high-capacity retention of 92.19% at 1C after 200 cycles and a low voltage decay of 1.08 mV/cycle. This work provides a new perspective on the rational selection of functional additives with an interfacial self-optimized characteristic to achieve a long lifespan LRM with exceptional rate performances.

7.
Trends Neurosci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043489

RESUMEN

Synucleinopathies, including Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB), are characterized by neuronal loss accompanied by α-synuclein (α-syn) accumulation in the brain. While research conventionally focused on brain pathology, there is growing interest in peripheral alterations. Erythrocytes, which are rich in α-syn, have emerged as a compelling site for synucleinopathies-related alterations. Erythrocyte-derived extracellular vesicles (EVs), containing pathological α-syn species, can traverse the blood-brain barrier (BBB) under certain conditions and the gastrointestinal tract, where α-syn and gut microbiota interact extensively. This review explores the accumulating evidence of erythrocyte involvement in synucleinopathies, as well as their potential in disease pathogenesis and diagnosis. Given their unique properties, erythrocytes and erythrocyte-derived EVs may also serve as an ideal therapeutic platform for treating synucleinopathies and beyond.

8.
Sci Rep ; 14(1): 16970, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043800

RESUMEN

B cells and the antibodies they produce are critical in host defense against pathogens and contribute to various immune-mediated diseases. B cells responding to activating signals in vitro release extracellular vesicles (EV) that carry surface antibodies, yet B cell production of EVs that express antibodies and their function in vivo is incompletely understood. Using transgenic mice expressing the Cre recombinase in B cells switching to IgG1 to induce expression of fusion proteins between emerald green fluorescent protein (emGFP) and the EV tetraspanin CD63 as a model, we identify emGFP expression in B cells responding to foreign antigen in vivo and characterize the emGFP+ EVs they release. Our data suggests that emGFP+ germinal center B cells undergoing immunoglobulin class switching to express IgG and their progeny memory B cells and plasma cells, also emGFP+, are sources of circulating antigen-specific IgG+ EVs. Furthermore, using a mouse model of influenza virus infection, we find that IgG+ EVs specific for the influenza hemagglutinin antigen protect against virus infection. In addition, crossing the B cell Cre driver EV reporter mice onto the Nba2 lupus-prone strain revealed increased circulating emGFP+ EVs that expressed surface IgG against nuclear antigens linked to autoimmunity. These data identify EVs loaded with antibodies as a novel route for antibody secretion in B cells that contribute to adaptive immune responses, with important implications for different functions of IgG+ EVs in infection and autoimmunity.


Asunto(s)
Linfocitos B , Vesículas Extracelulares , Inmunoglobulina G , Ratones Transgénicos , Animales , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Infecciones por Orthomyxoviridae/inmunología , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Antígenos/inmunología , Cambio de Clase de Inmunoglobulina , Ratones Endogámicos C57BL , Centro Germinal/inmunología , Centro Germinal/metabolismo
9.
Leukemia ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054337

RESUMEN

N6-methyladenosine (m6A) is the most prevalent epitranscriptomic modification in mammalian mRNA. Recent studies have revealed m6A is involved in the pathogenesis of various malignant tumors including hematologic neoplasms. Nevertheless, the specific roles of m6A modification and m6A regulators in myelodysplastic neoplasms (MDS) remain poorly understood. Herein, we demonstrated that m6A level and the expression of m6A methyltransferase METTL14 were elevated in MDS patients with bone marrow blasts ≥5%. Additionally, m6A level and METTL14 expression were upregulated as the disease risk increased and significantly associated with adverse clinical outcomes. Knockdown of METTL14 inhibited cell proliferation and colony formation ability of MDS cells. Moreover, in vivo experiments showed METTL14 knockdown remarkably reduced tumor burden and prolonged the survival of mice. Mechanistically, METTL14 facilitated the m6A modification of SETBP1 mRNA by formation of METTL3-METTL14 complex, leading to increased stabilization of SETBP1 mRNA and subsequent activation of the PI3K-AKT signaling pathway. Overall, this study elucidated the involvement of the METTL14/m6A/SETBP1/PI3K-AKT signaling axis in MDS, highlighting the therapeutic potential of targeting METTL3-METTL14 complex-mediated m6A modification for MDS therapy.

10.
Zhongguo Zhong Yao Za Zhi ; 49(13): 3505-3514, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39041122

RESUMEN

The synergistic effect and compatibility structure of active anti-inflammatory ingredients(iridoid glycosides: shanzhiside methylester and 8-O-acetylshanzhiside methyl ester, flavonoid glycoside: luteoloside, and phenylethanoid glycoside: forsythoside B) from Lamiophlomis rotata were explored based on network pharmacology and component structure theory. In network pharmacology, CTD, SwisseTargetPrediction, and PharmMapper databases were used to collect and screen the targets of all active ingredients. The inflammation-related targets were obtained from CTD and GeneCards databases. The core targets were obtained by Venny 2.1.0, STRING, and Cytoscape 3.9.1. Core targets were annotated by the GO function and enriched by the KEGG pathway based on the DAVID database. In terms of component structure, based on a uniform design method and xylene-induced ear swelling model in mice, tumor necrosis factor-α and interleukin-6 were taken as the dependent variables, and the compatibility relationship among anti-inflammatory ingredients from L. rotata was explored through the quadratic polynomial stepwise regression. In addition, in vivo pharmacological experiments were conducted to verify the results. A network pharmacology study showed that compared with a single ingredient, the combined action of the three ingredients can synergistically exert anti-inflammatory effects through more biological processes, pathways, and targets. Component structure study showed that the optimal structural ratio of shanzhiside methylester and 8-O-acetylshanzhiside methyl ester in the iridoid glycoside ingredient was 1.21∶1. The optimal structural ratio among the three types of ingredients(iridoid glycosides∶phenylethanol glycoside∶flavonoid glycoside) was 4.8∶1.6∶1. In conclusion, each anti-inflammatory ingredient from L. rotata can work synergistically, and there is an optimal compatibility ratio relationship among these ingredients. This work provides a new experimental basis for the intrinsic quality control of L. rotata.


Asunto(s)
Antiinflamatorios , Medicamentos Herbarios Chinos , Farmacología en Red , Antiinflamatorios/química , Antiinflamatorios/farmacología , Animales , Ratones , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Masculino , Lamiaceae/química , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Sinergismo Farmacológico , Interleucina-6/inmunología , Interleucina-6/metabolismo , Interleucina-6/genética
11.
Elife ; 132024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976315

RESUMEN

Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.


Asunto(s)
Evolución Biológica , Fósiles , Filogenia , Fósiles/anatomía & histología , Animales , China , Invertebrados/anatomía & histología , Invertebrados/clasificación , Invertebrados/genética
12.
Sleep Med ; 121: 251-257, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39024779

RESUMEN

Poor sleep quality is a widespread concern. While the influence of particle exposure on sleep disturbances has received considerable attention, research exploring other dimensions of sleep quality and the chemical components of the particles remains limited. We employed a marginal structural model to explore the association of long-term exposure to PM2.5 and its chemical components with poor sleep quality. The odds ratio (95 % CI) for poor sleep quality was 1.335 (1.292-1.378), 1.097 (1.080-1.113), 1.137 (1.100-1.174), 1.197 (1.156-1.240), and 1.124 (1.107-1.140) per IQR increase in the concentration of PM2.5, SO42-, NO3-, NH4+, and BC, respectively. The score (and 95 % CI) of sleep latency, use of sleep medication, habitual sleep efficiency, subjective sleep quality, and daytime dysfunction were affected by PM2.5, with an increase of 0.059 (0.050-0.069), 0.054 (0.049-0.059), 0.011 (0.008-0.014), 0.011 (0.005-0.018), and 0.026 (0.018-0.034) per IQR increase in PM2.5 concentrations, respectively. This study supports the association of long-term exposure to PM2.5 and its chemical components with poor sleep quality.

13.
Nature ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987599

RESUMEN

Tumours can obtain nutrients and oxygen required to progress and metastasize through the blood supply1. Inducing angiogenesis involves the sprouting of established vessel beds and their maturation into an organized network2,3. Here we generate a comprehensive atlas of tumour vasculature at single-cell resolution, encompassing approximately 200,000 cells from 372 donors representing 31 cancer types. Trajectory inference suggested that tumour angiogenesis was initiated from venous endothelial cells and extended towards arterial endothelial cells. As neovascularization elongates (through angiogenic stages SI, SII and SIII), APLN+ tip cells at the SI stage (APLN+ TipSI) advanced to TipSIII cells with increased Notch signalling. Meanwhile, stalk cells, following tip cells, transitioned from high chemokine expression to elevated TEK (also known as Tie2) expression. Moreover, APLN+ TipSI cells not only were associated with disease progression and poor prognosis but also hold promise for predicting response to anti-VEGF therapy. Lymphatic endothelial cells demonstrated two distinct differentiation lineages: one responsible for lymphangiogenesis and the other involved in antigen presentation. In pericytes, endoplasmic reticulum stress was associated with the proangiogenic BASP1+ matrix-producing pericytes. Furthermore, intercellular communication analysis showed that neovascular endothelial cells could shape an immunosuppressive microenvironment conducive to angiogenesis. This study depicts the complexity of tumour vasculature and has potential clinical significance for anti-angiogenic therapy.

14.
PLoS Negl Trop Dis ; 18(7): e0012008, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38949988

RESUMEN

BACKGROUND: Hand, foot, and mouth disease (HFMD) is a major public health issue in China while temperature and humidity are well-documented predictors. However, evidence on the combined effect of temperature and humidity is still limited. It also remains unclear whether such an effect could be modified by the enterovirus 71 (EV71) vaccination. METHODS: Based on 320,042 reported HFMD cases during the summer months between 2012 and 2019, we conducted a study utilizing Distributed Lag Non-Linear Models (DLNM) and time-varying DLNM to examine how China's HFMD EV71 vaccine strategy would affect the correlation between meteorological conditions and HFMD risk. RESULTS: The incidence of HFMD changed with the Discomfort Index in an arm-shaped form. The 14-day cumulative risk of HFMD exhibited a statistically significant increase during the period of 2017-2019 (following the implementation of the EV71 vaccine policy) compared to 2012-2016 (prior to the vaccine implementation). For the total population, the range of relative risk (RR) values for HFMD at the 75th, 90th, and 99th percentiles increased from 1.082-1.303 in 2012-2016 to 1.836-2.022 in 2017-2019. In the stratified analyses, Han Chinese areas show stronger relative growth, with RR values at the 75th, 90th, and 99th percentiles increased by 14.3%, 39.1%, and 134.4% post-vaccination, compared to increases of 22.7%, 41.6%, and 38.8% in minority areas. Similarly, boys showed greater increases (24.4%, 47.7%, 121.5%) compared to girls (8.1%, 28.1%, 58.3%). Additionally, the central Guizhou urban agglomeration displayed a tendency for stronger relative growth compared to other counties. CONCLUSIONS: Although the EV71 vaccine policy has been implemented, it hasn't effectively controlled the overall risk of HFMD. There's been a shift in the main viral subtypes, potentially altering population susceptibility and influencing HFMD occurrences. The modulating effects of vaccine intervention may also be influenced by factors such as race, sex, and economic level.


Asunto(s)
Enterovirus Humano A , Enfermedad de Boca, Mano y Pie , Vacunación , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , China/epidemiología , Masculino , Femenino , Vacunación/estadística & datos numéricos , Lactante , Preescolar , Enterovirus Humano A/inmunología , Incidencia , Vacunas Virales/administración & dosificación , Humedad , Temperatura , Niño
15.
Nat Commun ; 15(1): 6173, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039041

RESUMEN

Hydrogen production by seawater electrolysis is significantly hindered by high energy costs and undesirable detrimental chlorine chemistry in seawater. In this work, energy-saving hydrogen production is reported by chlorine-free seawater splitting coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation reaction. We present a bifunctional needle-like Co3S4 catalyst grown on nickel foam with a unique tip structure that enhances the kinetic rate by improving the current density in the tip region. The assembled hybrid seawater electrolyzer combines thermodynamically favorable sulfion oxidation and cathodic seawater reduction can enable sustainable hydrogen production at a current density of 100 mA cm-2 for up to 504 h. The hybrid seawater electrolyzer has the potential for scale-up industrial implementation of hydrogen production by seawater electrolysis, which is promising to achieve high economic efficiency and environmental remediation.

16.
Sci Rep ; 14(1): 15331, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961200

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target to reduce lipids. In 2020, we reported a chimeric camelid-human heavy chain antibody VHH-B11-Fc targeting PCSK9. Recently, it was verified that VHH-B11 binds one linear epitope in the PCSK9 hinge region. To enhance its druggability, we have developed a novel biparatopic B11-H2-Fc Ab herein. Thereinto, surface plasmon resonance (SPR) confirmed the epitope differences in binding-PCSK9 among VHH-B11, VHH-H2 and the approved Repatha. Additionally, SPR revealed the B11-H2-Fc exhibits an avidity of approximately 0.036 nM for PCSK9, representing a considerable increase compared to VHH-B11-Fc (~ 0.69 nM). Moreover, we found the Repatha and B11-H2-Fc exhibited > 95% PCSK9 inhibition efficiency compared to approximately 48% for the VHH-Fc at 7.4 nM (P < 0.0005). Further, we verified its biological activity using the human hepatoma cells G2 model, where the B11-H2-Fc exhibited almost 100% efficiency in PCSK9 inhibition at only 0.75 µM. The immunoblotting results of low-density lipoprotein cholesterol (LDL-c) uptake assay also demonstrated the excellent performance of B11-H2-Fc on recovering the LDL-c receptor (LDLR), as strong as the Repatha (P > 0.05). These findings provide the first evidence of the efficacy of a novel Ab targeting PCSK9 in the field of lipid-lowering drugs.


Asunto(s)
Proproteína Convertasa 9 , Humanos , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/inmunología , Células Hep G2 , Inhibidores de PCSK9 , Resonancia por Plasmón de Superficie , Receptores de LDL/metabolismo , Epítopos/inmunología , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/inmunología
17.
Pediatr Surg Int ; 40(1): 203, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030361

RESUMEN

OBJECTIVE: To develop a machine learning diagnostic model based on MMP7 and other serological testing indicators for early and efficient diagnosis of biliary atresia (BA). METHODS: A retrospective analysis was conducted on patient information from those hospitalized for pathological jaundice at Beijing Children's Hospital between January 1, 2019, and December 31, 2023. Patients with serum MMP7, liver stiffness measurements, and other routine serological tests were included in the study. Six machine learning models were constructed, including logistic regression (LR), random forest (RF), decision tree (DET), support vector machine classifier (SVC), neural network (MLP), and extreme gradient boosting (XGBoost), to diagnose BA. The area under the receiver operating characteristic curve was used to evaluate the diagnostic efficacy of the various models. RESULTS: A total of 98 patients were included in the study, comprising 64 BA patients and 34 patients with other cholestatic liver diseases. Among the six machine learning models, the XGBoost algorithm model and RF algorithm model achieved the best predictive performance, with an AUROC of nearly 100% in both the training and validation sets. In the training set, these two algorithm models achieved an accuracy, precision, recall, F1 score, and AUROC of 1. Through model interpretation analysis, serum MMP7 levels, serum GGT levels, and acholic stools were identified as the most important indicators for diagnosing BA. The nomogram constructed based on the XGBoost algorithm model also demonstrated convenient and efficient diagnostic efficacy. CONCLUSION: Machine learning models, especially the XGBoost algorithm and RF algorithm models, constructed based on preoperative serum MMP7 and serological tests can diagnose BA more efficiently and accurately. The most important influencing factors for diagnosis are serum MMP7, serum GGT, and acholic stools.


Asunto(s)
Atresia Biliar , Aprendizaje Automático , Metaloproteinasa 7 de la Matriz , Humanos , Atresia Biliar/diagnóstico , Atresia Biliar/sangre , Estudios Retrospectivos , Masculino , Femenino , Lactante , Metaloproteinasa 7 de la Matriz/sangre , Pruebas Serológicas/métodos , Curva ROC , Biomarcadores/sangre , Preescolar
18.
J Hazard Mater ; 477: 135317, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39059298

RESUMEN

The presence and distribution of toxic organic compounds in soil pose significant challenges. Whether their distributional characteristics are more complex, especially in arid and semi-arid regions with harsh climatic conditions? This study analyzed the composition, classification, spatial distribution, and sources of 123 toxic organic compounds in 56 soil samples of coal-electricity production base. Those compounds were classified into 11 categories, mainly pesticides (41 compounds), organic synthesis intermediates (31 compounds), and drugs (23 compounds). Seventeen of those compounds were detected over the rate of 30 %, with 13 of them being under the Toxic Substances Control Act (TSCA) inventory. The primary sources of toxic organic compounds were determined using Principal Component Analysis (PCA) and Positive Matrix Factorization (PMF), including the degradation of pesticide residues (22.03 %), emissions of plastic pellets (16.64 %), industrial waste emissions (12.80 %), emissions from livestock (12.74 %), plastic films (11.22 %) and coal-to-liquid projects (10.78 %). This research underscores the widespread presence of toxic organic compounds in soil, highlighting their origins and distribution patterns, which are essential for developing targeted environmental management strategies in arid and semi-arid regions.

19.
Exp Neurol ; : 114900, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059736

RESUMEN

AIMS: Adipose-derived stem cell (ADSC)-derived exosomes have been recognized for their neuroprotective effects in various neurological diseases. This study investigates the potential neuroprotective effects of ADSC-derived exosomes in sepsis-associated encephalopathy (SAE). METHODS: Behavioral cognitive functions were evaluated using the open field test, Y-maze test, and novel object recognition test. Brain activity was assessed through functional magnetic resonance imaging (fMRI). Pyroptosis was measured using immunofluorescence staining and western blotting. RESULTS: Our findings indicate that ADSC-derived exosomes mitigate cognitive impairment, improve survival rates, and prevent weight loss in SAE mice. Additionally, exosomes protect hippocampal function in SAE mice, as demonstrated by fMRI evaluations. Furthermore, SAE mice exhibit neuronal damage and infiltration of inflammatory cells in the hippocampus, conditions which are reversed by exosome treatment. Moreover, our study highlights the downstream regulatory role of the NLRP3/caspase-1/GSDMD signaling pathway as a crucial mechanism in alleviating hippocampal inflammation. CONCLUSION: ADSC-derived exosomes confer neuroprotection in SAE models by mediating the NLRP3/caspase-1/GSDMD pathway, thereby ameliorating cognitive impairment.

20.
Exp Neurol ; 379: 114883, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38992825

RESUMEN

Cardiac arrest is a global health issue causing more deaths than many other diseases. Hypothermia therapy is commonly used to treat secondary brain injury resulting from cardiac arrest. Previous studies have shown that CIRP is induced in specific brain regions during hypothermia and inhibits mitochondrial apoptotic factors. However, the specific mechanisms by which hypothermia-induced CIRP exerts its anti-apoptotic effect are still unknown. This study aims to investigate the role of Cold-inducible RNA-binding protein (CIRP) in mitochondrial-associated endoplasmic reticulum membrane (MAM)-mediated Ca2+ transport during hypothermic brain resuscitation.We constructed a rat model of cardiac arrest and resuscitation and hippocampal neuron oxygen-glucose deprivation/reoxygenation model. We utilized shRNA transfection to interfere the expression of CIRP and observe the effect of CIRP on the structure and function of MAM.Hypothermia induced CIRP can reduce the apoptosis of hippocampal neurons, and improve the survival rate of rats. Hypothermia induced CIRP can reduce the expressions of calcium transporters IP3R and VDAC1 in MAM, reduce the concentration of calcium in mitochondria, decrease the expression of ROS, and stabilize the mitochondrial membrane potential. Immunofluorescence and immunocoprecipitation showed that CIRP could directly interact with IP3R-VDAC1 complex, thereby changing the structure of MAM, inhibiting calcium transportation and improving mitochondrial function in vivo and vitro.Both in vivo and in vitro experiments have confirmed that hypothermia induced CIRP can act on the calcium channel IP3R-VDAC1 in MAM, reduce the calcium overload in mitochondria, improve the energy metabolism of mitochondria, and thus play a role in neuron resuscitation. This study contributes to understanding hypothermia therapy and identifies potential targets for brain injury treatment.


Asunto(s)
Calcio , Retículo Endoplásmico , Hipotermia Inducida , Mitocondrias , Proteínas de Unión al ARN , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Hipotermia Inducida/métodos , Proteínas de Unión al ARN/metabolismo , Mitocondrias/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Paro Cardíaco/terapia , Paro Cardíaco/metabolismo , Membranas Asociadas a Mitocondrias , Proteínas y Péptidos de Choque por Frío
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA