Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theor Appl Genet ; 137(7): 157, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861001

RESUMEN

KEY MESSAGE: Through the histological, physiological, and transcriptome-level identification of the abscission zone of Pennisetum alopecuroides 'Liqiu', we explored the structure and the genes related to seed shattering, ultimately revealing the regulatory network of seed shattering in P. alopecuroides. Pennisetum alopecuroides is one of the most representative ornamental grass species of Pennisetum genus. It has unique inflorescence, elegant appearance, and strong stress tolerance. However, the shattering of seeds not only reduces the ornamental effect, but also hinders the seed production. In order to understand the potential mechanisms of seed shattering in P. alopecuroides, we conducted morphological, histological, physiological, and transcriptomic analyses on P. alopecuroides cv. 'Liqiu'. According to histological findings, the seed shattering of 'Liqiu' was determined by the abscission zone at the base of the pedicel. Correlation analysis showed that seed shattering was significantly correlated with cellulase, lignin, auxin, gibberellin, cytokinin and jasmonic acid. Through a combination of histological and physiological analyses, we observed the accumulation of cellulase and lignin during 'Liqiu' seed abscission. We used PacBio full-length transcriptome sequencing (SMRT) combined with next-generation sequencing (NGS) transcriptome technology to improve the transcriptome data of 'Liqiu'. Transcriptomics further identified many differential genes involved in cellulase, lignin and plant hormone-related pathways. This study will provide new insights into the research on the shattering mechanism of P. alopecuroides.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pennisetum , Reguladores del Crecimiento de las Plantas , Semillas , Transcriptoma , Pennisetum/genética , Pennisetum/fisiología , Pennisetum/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Lignina/metabolismo
2.
Plants (Basel) ; 13(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38794454

RESUMEN

Polyploid plants often exhibit enhanced stress tolerance. Switchgrass is a perennial rhizomatous bunchgrass that is considered ideal for cultivation in marginal lands, including sites with saline soil. In this study, we investigated the physiological responses and transcriptome changes in the octoploid and tetraploid of switchgrass (Panicum virgatum L. 'Alamo') under salt stress. We found that autoploid 8× switchgrass had enhanced salt tolerance compared with the amphidiploid 4× precursor, as indicated by physiological and phenotypic traits. Octoploids had increased salt tolerance by significant changes to the osmoregulatory and antioxidant systems. The salt-treated 8× Alamo plants showed greater potassium (K+) accumulation and an increase in the K+/Na+ ratio. Root transcriptome analysis for octoploid and tetraploid plants with or without salt stress revealed that 302 upregulated and 546 downregulated differentially expressed genes were enriched in genes involved in plant hormone signal transduction pathways and were specifically associated with the auxin, cytokinin, abscisic acid, and ethylene pathways. Weighted gene co-expression network analysis (WGCNA) detected four significant salt stress-related modules. This study explored the changes in the osmoregulatory system, inorganic ions, antioxidant enzyme system, and the root transcriptome in response to salt stress in 8× and 4× Alamo switchgrass. The results enhance knowledge of the salt tolerance of artificially induced homologous polyploid plants and provide experimental and sequencing data to aid research on the short-term adaptability and breeding of salt-tolerant biofuel plants.

3.
Front Plant Sci ; 14: 1195479, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680353

RESUMEN

Pennisetum alopecuroides is an important forage grass resource, which plays a vital role in ecological environment improvement. Therefore, the acquisition of P. alopecuroides genome resources is conducive to the study of the adaptability of Pennisetum species in ecological remediation and forage breeding development. Here we assembled a P. alopecuroides cv. 'Liqiu' genome at the chromosome level with a size of approximately 845.71 Mb, contig N50 of 84.83Mb, and genome integrity of 99.13% as assessed by CEGMA. A total of 833.41-Mb sequences were mounted on nine chromosomes by Hi-C technology. In total, 60.66% of the repetitive sequences and 34,312 genes were predicted. The genomic evolution analysis showed that P. alopecuroides cv. 'Liqiu' was isolated from Setaria 7.53-13.80 million years ago and from Cenchrus 5.33-8.99 million years ago, respectively. The whole-genome event analysis showed that P. alopecuroides cv. 'Liqiu' underwent two whole-genome duplication (WGD) events in the evolution process, and the duplication events occurred at a similar time to that of Oryza sativa and Setaria viridis. The completion of the genome sequencing of P. alopecuroides cv. 'Liqiu' provides data support for mining high-quality genetic resources of P. alopecuroides and provides a theoretical basis for the origin and evolutionary characteristics of Pennisetum.

4.
Planta ; 258(2): 43, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37450262

RESUMEN

MAIN CONCLUSION: The first complete mitochondrial genome of Carex (C. breviculmis) was sequenced and assembled, and its genomic signature was analyzed and the possible conformations of its mitochondrial genome were validated. Carex breviculmis is a very adaptable grass that is highly resistant to environmental stresses such as drought and low light. It is also admired as a landscape plant with high development prospects and scientific research value. In this study, the mitochondrial genome of C. breviculmis was assembled using Pacbio and Illumina sequencing data. We detected 267 pairs of repeats and found that three pairs of repeats could mediate the recombination of its mitochondrial genome and formed four possible conformations, of which we verified the two conformations mediated by the shortest pair of repeats using PCR amplification and Sanger sequencing. The major conformation of the C. breviculmis mitochondrial genome is a 1,414,795 bp long circular molecule with 33 annotated protein-coding genes, 15 tRNA genes, and three rRNA genes. We detected a total of 25 homologous sequences between the chloroplast and mitochondrial genomes, corresponding to 0.40% of the mitochondrial genome. Combined with the low GC content (41.24%), we conclude that the reduction in RNA editing sites in the C. breviculmis mitochondrial genome may be due to an accumulation of point mutations in C-to-T or retroprocessing events within the genome. The relatively low number of RNA editing sites in its mitochondrial genome could serve as important material for subsequent studies on the selection pressure of RNA editing in angiosperms. A maximum likelihood analysis based on 23 conserved mitochondrial genes from 28 species reflects an accurate evolutionary and taxonomic position of C. breviculmis. This research provided us with a comprehensive understanding of the mitochondrial genome of Carex and also provided important information for its molecular breeding.


Asunto(s)
Carex (Planta) , Genoma del Cloroplasto , Genoma Mitocondrial , Genoma Mitocondrial/genética , Carex (Planta)/genética , Genómica , Secuencia de Bases , ARN de Transferencia/genética , Filogenia
5.
Front Plant Sci ; 14: 1100876, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36778700

RESUMEN

The chloroplast genomes of angiosperms usually have a stable circular quadripartite structure that exhibits high consistency in genome size and gene order. As one of the most diverse genera of angiosperms, Carex is of great value for the study of evolutionary relationships and speciation within its genus, but the study of the structure of its chloroplast genome is limited due to its highly expanded and restructured genome with a large number of repeats. In this study, we provided a more detailed account of the chloroplast genomes of Carex using a hybrid assembly of second- and third-generation sequencing and examined structural variation within this genus. The study revealed that chloroplast genomes of four Carex species are significantly longer than that of most angiosperms and are characterized by high sequence rearrangement rates, low GC content and gene density, and increased repetitive sequences. The location of chloroplast genome structural variation in the species of Carex studied is closely related to the positions of long repeat sequences; this genus provides a typical example of chloroplast structural variation and expansion caused by long repeats. Phylogenetic relationships constructed based on the chloroplast protein-coding genes support the latest taxonomic system of Carex, while revealing that structural variation in the chloroplast genome of Carex may have some phylogenetic significance. Moreover, this study demonstrated a hybrid assembly approach based on long and short reads to analyze complex chloroplast genome assembly and also provided an important reference for the analysis of structural rearrangements of chloroplast genomes in other taxa.

6.
Front Plant Sci ; 13: 982715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212309

RESUMEN

ABI4 is considered an important transcription factor with multiple regulatory functions involved in many biological events. However, its role in abiotic stresses, especially low-temperature-induced stress, is poorly understood. In this study, the MtABI4 gene was derived from M. truncatula, a widely used forage grass. Analysis of subcellular localization indicated that ABI4 was localized in the nucleus. Identification of expression characteristics showed that ABI4 was involved in the regulatory mechanisms of multiple hormones and could be induced by the low temperature. IP-MS assay revealed that MtABI4 protein could interact with xanthoxin dehydrogenase protein (ABA2). The two-hybrid yeast assay and the biomolecular fluorescence complementarity assay further supported this finding. Expression analysis demonstrated that overexpression of MtABI4 induced an increase in ABA2 gene expression both in M. truncatula and Arabidopsis, which in turn increased the ABA level in transgenic plants. In addition, the transgenic lines with the overexpression of MtABI4 exhibited enhanced tolerance to low temperature, including lower malondialdehyde content, electrical conductivity, and cell membrane permeability, compared with the wide-type lines after being cultivated for 5 days in 4°C. Gene expression and enzyme activities of the antioxidant system assay revealed the increased activities of SOD, CAT, MDHAR, and GR, and higher ASA/DHA ratio and GSH/GSSG ratio in transgenic lines. Additionally, overexpression of ABI4 also induced the expression of members of the Inducer of CBF expression genes (ICEs)-C-repeat binding transcription factor genes(CBFs)-Cold regulated genes (CORs) low-temperature response module. In summary, under low-temperature conditions, overexpression of ABI4 could enhance the content of endogenous ABA in plants through interactions with ABA2, which in turn reduced low-temperature damage in plants. This provides a new perspective for further understanding the molecular regulatory mechanism of plant response to low temperature and the improvement of plant cold tolerance.

7.
Plants (Basel) ; 11(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36015389

RESUMEN

Buffalograss [Buchloe dactyloides (Nutt.) Engelm.] has become the most widely cultivated warm-season turfgrass in northern China because of its low-maintenance requirements. Nitrogen (N) can be applied to plants in a range of formulations. However, preference of nitrogen uptake and the effects of N form on plant growth and nitrogen accumulation has not been established in buffalograss. In this study, we evaluated the effects of different inorganic nitrogen forms (NO3--N, NH4+-N, and NO3--N: NH4+-N = 1:1) on growth and nitrogen accumulation in buffalograss seedlings. Results showed that supply of three N forms significantly increased buffalograss seedlings growth, biomass, and N contents of all plant organs compared with the seedlings receiving free nitrogen. Plants achieved better growth performance when they received nitrate as the sole N source, which stimulated stolon growth and increased the biomass of ramets, spacers, and aboveground and total plant biomass, and also allocated more biomass to ramets and more N to spacers. Meanwhile, those plants supplied with the treatment +NH4NO3 displayed a significantly greater N content in the ramet, 15N abundance, and 15N accumulation amount in all organs. These data suggest NO3--N supplied either singly or in mixture increased vegetative propagation and thus facilitates buffalograss establishment. However, applications of ammonium caused detrimental effects on buffalograss seedlings growth, but +NO3- could alleviate NH4+-induced morphological disorders. Thus, recommendations to increase vegetative propagation and biomass accumulation in buffalograss seedlings should consider increasing NO3--N in a fertility program and avoiding applications of nitrogen as NH4+-N.

8.
Front Plant Sci ; 13: 906018, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599887

RESUMEN

The degradation of chlorophyll is of great significance to plant growth. The chlorophyll b reductase NOL (NYC1-like) is in charge of catalyzing the degradation of chlorophyll b and maintaining the stability of the photosystem. However, the molecular mechanisms of NOL-mediated chlorophyll degradation, senescence, and photosynthesis and its functions in other metabolic pathways remain unclear, especially in warm-season turfgrass. In this study, ZjNOL was cloned from Zoysia japonica. It is highly expressed in senescent leaves. Subcellular localization investigation showed ZjNOL is localized in the chloroplast and the bimolecular fluorescence complementation (BiFC) results proved ZjNOL interacts with ZjNYC1 in vivo. ZjNOL promoted the accumulation of abscisic acid (ABA) and carbohydrates, and the increase of SAG14 at the transcriptional level. ZjNOL simultaneously led to the excessive accumulation of reactive oxygen species (ROS), the activation of antioxidant enzymes, and the generation of oxidative stress, which in turn accelerated senescence. Chlorophyll fluorescence assay (JIP-test) analysis showed that ZjNOL inhibited photosynthetic efficiency mainly through damage to the oxygen-evolving complex. In total, these results suggest that ZjNOL promotes chlorophyll degradation and senescence and negatively affects the integrity and functionality of the photosystem. It could be a valuable candidate gene for genome editing to cultivate Z. japonica germplasm with prolonged green period and improved photosynthesis efficiency.

9.
BMC Plant Biol ; 22(1): 263, 2022 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-35614434

RESUMEN

BACKGROUND: Zoysia japonica is an important warm-season turfgrass used worldwide. Although the draft genome sequence and a vast amount of next-generation sequencing data have been published, the current genome annotation and complete mRNA structure remain incomplete. Therefore, to analyze the full-length transcriptome of Z. japonica, we used the PacBio single-molecule long-read sequencing method in this study. RESULTS: First, we generated 37,056 high-confidence non-redundant transcripts from 16,005 gene loci. Next, 32,948 novel transcripts, 913 novel gene loci, 8035 transcription factors, 89 long non-coding RNAs, and 254 fusion transcripts were identified. Furthermore, 15,675 alternative splicing events and 5325 alternative polyadenylation sites were detected. In addition, using bioinformatics analysis, the underlying transcriptional mechanism of senescence was explored based on the revised reference transcriptome. CONCLUSION: This study provides a full-length reference transcriptome of Z. japonica using PacBio single-molecule long-read sequencing for the first time. These results contribute to our knowledge of the transcriptome and improve the knowledge of the reference genome of Z. japonica. This will also facilitate genetic engineering projects using Z. japonica.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Empalme Alternativo/genética , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Anotación de Secuencia Molecular , Isoformas de Proteínas/genética , ARN Largo no Codificante/genética
10.
Sci Rep ; 12(1): 3353, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233054

RESUMEN

Ryegrass (Lolium perenne L.), a high-quality forage grass, is a good nutrient source for herbivorous livestock. However, improving nitrogen use efficiency and avoiding nitrate toxicity caused by excessive nitrogen are continual challenges in ryegrass production. The molecular mechanism underlying the response of ryegrass to nitrogen, especially excessive nitrogen, remains unclear. In this study, the transcriptomic changes under different nitrogen levels were investigated in perennial ryegrass by high-throughput next-generation RNA sequencing. Phenotypic characterization showed that treatment with half of the standard N concentration (N0.5) led to a better growth state than the other three treatments. The treatments with the standard N concentration (N1) and treatments with ten times higher than the standard N concentration (N10) contained excessive nitrogen, which placed stress on plant growth. Analysis of differentially expressed genes indicated that 345 and 104 genes are involved in the regulation of nitrogen utilization and excessive nitrogen stress, respectively. KEGG enrichment analysis suggested that "photosynthesis-antenna proteins" may respond positively to appropriate nitrogen conditions, whereas "steroid biosynthesis", "carotenoid biosynthesis" and "C5-branched dibasic acid metabolism" were identified as the top significantly enriched pathways in response to excessive nitrogen. Additionally, 21 transcription factors (TFs) related to nitrogen utilization were classified into 10 families, especially the AP2-EREBP and MYB TF families. Four TFs related to excessive nitrogen stress were identified, including LOBs, NACs, AP2-EREBPs and HBs. The expression patterns of these selected genes were also analyzed. These results provide new insight into the regulatory mechanism of ryegrass in response to nitrogen utilization and excessive nitrogen stress.


Asunto(s)
Lolium , Perfilación de la Expresión Génica , Humanos , Lolium/genética , Lolium/metabolismo , Nitrógeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
11.
Plant Mol Biol ; 109(1-2): 159-175, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35338443

RESUMEN

KEY MESSAGE: Combination analysis of single-molecule long-read and Illumina sequencing provide full-length transcriptome information and shed new light on the anthocyanin accumulation mechanism of Pennisetum setaceum cv. 'Rubrum'. Pennisetum setaceum cv. 'Rubrum' is an ornamental grass with purple leaves widely used in landscaping. However, the current next-generation sequencing (NGS) transcriptome information of this species is not satisfactory due to the difficulties in obtaining full-length transcripts. Furthermore, the molecular mechanisms of anthocyanin accumulation in P. setaceum have not been thoroughly studied. In this study, we used PacBio full-length transcriptome sequencing (SMRT) combined with NGS technology to build and improve the transcriptomic datasets and reveal the molecular mechanism of anthocyanin accumulation in P. setaceum cv. 'Rubrum'. Therefore, 280,413 full-length non-chimeric reads sequences were obtained using the SMRT technology. We obtained 97,450 high-quality non-redundant transcripts and identified 5352 alternative splicing events. In addition, 93,066 open reading frames (ORFs), including 57,457 full ORFs and 2910 long non-coding RNA (lncRNAs) were screened out. Furthermore, 10,795 differentially expressed genes were identified using NGS. We also explored key genes, synthesis pathways, and detected lncRNA involved in anthocyanin accumulation, providing new insights into anthocyanin accumulation in P. setaceum cv. 'Rubrum'. To our best knowledge, we provided the full-length transcriptome information of P. setaceum cv. 'Rubrum' for the first time. The results of this study will provide baseline information for gene function studies and pave the way for future P. setaceum cv. 'Rubrum' breeding projects.


Asunto(s)
Pennisetum , ARN Largo no Codificante , Antocianinas/metabolismo , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Pennisetum/genética , Fitomejoramiento , ARN Largo no Codificante/genética , Transcriptoma
12.
Front Plant Sci ; 13: 818458, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35310626

RESUMEN

The turfgrass species Carex rigescens has broad development and utilization prospects in landscaping construction. However, seed dormancy and a low germination rate have inhibited its application. Furthermore, the molecular mechanisms of seed germination in C. rigescens have not been thoroughly studied. Therefore, in the present study, PacBio full-length transcriptome sequencing combined with Illumina sequencing was employed to elucidate the germination mechanism of C. rigescens seeds under variable temperatures. In general, 156,750 full-length non-chimeric sequences, including those for 62,086 high-quality transcripts, were obtained using single-molecule long read sequencing. In total, 40,810 high-quality non-redundant, 1,675 alternative splicing, 28,393 putative coding sequences, and 1,052 long non-coding RNAs were generated. Based on the newly constructed full-length reference transcriptome, 23,147 differentially expressed genes were identified. We screened four hub genes participating in seed germination using weighted gene co-expression network analysis. Combining these results with the physiological observations, the important roles of sucrose and starch metabolic pathways in germination are further discussed. In conclusion, we report the first full-length transcriptome of C. rigescens, and investigated the physiological and transcriptional mechanisms of seed germination under variable temperatures. Our results provide valuable information for future transcriptional analyses and gene function studies of C. rigescens.

13.
Plants (Basel) ; 11(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35161377

RESUMEN

Phytoene synthase (PSY) is a key limiting enzyme in the carotenoid biosynthesis pathway for regulating phytoene synthesis. In this study, ZjPSY was isolated and identified from Zoysia japonica, an important lawn grass species. ZjPSY cDNA was 1230 bp in length, corresponding to 409 amino acids. ZjPSY showed higher expression in young leaves and was downregulated after GA3, ABA, SA, and MeJA treatments, exhibiting a sensitivity to plant hormones. Regulatory elements of light and plant hormone were found in the upstream of ZjPSY CDS. Expression of ZjPSY in Arabidopsis thaliana protein led to carotenoid accumulation and altered expression of genes involved in the carotenoid pathway. Under no-treatment condition, salt treatment, and drought treatment, transgenic plants exhibited yellowing, dwarfing phenotypes. The carotenoid content of transgenic plants was significantly higher than that of wild-type under salt stress and no-treatment condition. Yeast two-hybrid screening identified a novel interacting partner ZjJ2 (DNAJ homologue 2), which encodes heat-shock protein 40 (HSP40). Taken together, this study suggested that ZjPSY may affect plant height and play an important role in carotenoid synthesis. These results broadened the understanding of carotenoid synthesis pathways and laid a foundation for the exploration and utilization of the PSY gene.

14.
BMC Plant Biol ; 21(1): 17, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407132

RESUMEN

BACKGROUND: Carex L. is one of the largest genera in the Cyperaceae family and an important vascular plant in the ecosystem. However, the genetic background of Carex is complex and the classification is not clear. In order to investigate the gene function annotation of Carex, RNA-sequencing analysis was performed. Simple sequence repeats (SSRs) were generated based on the Illumina data and then were utilized to investigate the genetic characteristics of the 79 Carex germplasms. RESULTS: In this study, 36,403 unigenes with a total length of 41,724,615 bp were obtained and annotated based on GO, KOG, KEGG, NR databases. The results provide a theoretical basis for gene function exploration. Out of 8776 SSRs, 96 pairs of primers were randomly selected. One hundred eighty polymorphic bands were amplified with a polymorphism rate of 100% based on 42 pairs of primers with higher polymorphism levels. The average band number was 4.3 per primer, the average distance value was 0.548, and the polymorphic information content was ranged from 0.133 to 0.494. The number of observed alleles (Na), effective alleles (Ne), Nei's (1973) gene diversity (H), and the Shannon information index (I) were 2.000, 1.376, 0.243, and 0.391, respectively. NJ clustering divided into three groups and the accessions from New Zealand showed a similar genetic attribute and clustered into one group. UPGMA and PCoA analysis also revealed the same result. The analysis of molecular variance (AMOVA) revealed a superior genetic diversity within accessions than between accessions based on geographic origin cluster and NJ cluster. What's more, the fingerprints of 79 Carex species are established in this study. Different combinations of primer pairs can be used to identify multiple Carex at one time, which overcomes the difficulties of traditional identification methods. CONCLUSIONS: The transcriptomic analysis shed new light on the function categories from the annotated genes and will facilitate future gene functional studies. The genetic characteristics analysis indicated that gene flow was extensive among 79 Carex species. These markers can be used to investigate the evolutionary history of Carex and related species, as well as to serve as a guide in future breeding projects.


Asunto(s)
Carex (Planta)/genética , Flujo Génico , Genes de Plantas , Marcadores Genéticos , Repeticiones de Microsatélite , Análisis de Secuencia de ADN , China , Perfilación de la Expresión Génica , Variación Genética , Genotipo , Alemania , Nueva Zelanda , América del Norte , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ARN
15.
Front Plant Sci ; 12: 786570, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003174

RESUMEN

Pheophytinase (PPH), the phytol hydrolase, plays important roles in chlorophyll degradation. Nevertheless, little attention has been paid to the PPHs in warm-season grass species; neither its detailed function in photosynthesis has been systematically explored to date. In this study, we isolated ZjPPH from Zoysia japonica, an excellent warm-season turfgrass species. Quantitative real-time PCR analysis and promoter activity characterization revealed that the expression of ZjPPH could be induced by senescence, ABA, and dark induction. Subcellular localization observation proved that ZjPPH was localized in the chloroplasts. Overexpression of ZjPPH accelerated the chlorophyll degradation and rescued the stay-green phenotype of the Arabidopsis pph mutant. Moreover, ZjPPH promoted senescence with the accumulation of ABA and soluble sugar contents, as well as the increased transcriptional level of SAG12 and SAG14. Transmission electron microscopy investigation revealed that ZjPPH caused the decomposition of chloroplasts ultrastructure in stable transformed Arabidopsis. Furthermore, chlorophyll a fluorescence transient measurement analysis suggested that ZjPPH suppressed photosynthesis efficiency by mainly suppressing both photosystem II (PSII) and photosystem I (PSI). In conclusion, ZjPPH plays an important role in chlorophyll degradation and senescence. It could be a valuable target for genetic editing to cultivate new germplasms with stay-green performance and improved photosynthetic efficiency.

16.
Mol Genet Genomics ; 295(2): 475-489, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31894400

RESUMEN

Perennial ryegrass (Lolium perenne), one of the most widely used forage and cool-season turfgrass worldwide, has a breeding history of more than 100 years. However, the current draft genome annotation and transcriptome characterization are incomplete mainly because of the enormous difficulty in obtaining full-length transcripts. To explore the complete structure of the mRNA and improve the current draft genome, we performed PacBio single-molecule long-read sequencing for full-length transcriptome sequencing in perennial ryegrass. We generated 29,175 high-confidence non-redundant transcripts from 15,893 genetic loci, among which more than 66.88% of transcripts and 24.99% of genetic loci were not previously annotated in the current reference genome. The re-annotated 18,327 transcripts enriched the reference transcriptome. Particularly, 6709 alternative splicing events and 23,789 alternative polyadenylation sites were detected, providing a comprehensive landscape of the post-transcriptional regulation network. Furthermore, we identified 218 long non-coding RNAs and 478 fusion genes. Finally, the transcriptional regulation mechanism of perennial ryegrass in response to drought stress based on the newly updated reference transcriptome sequences was explored, providing new information on the underlying transcriptional regulation network. Taken together, we analyzed the full-length transcriptome of perennial ryegrass by PacBio single-molecule long-read sequencing. These results improve our understanding of the perennial ryegrass transcriptomes and refined the annotation of the reference genome.


Asunto(s)
Empalme Alternativo/genética , Genoma de Planta/genética , Lolium/genética , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Isoformas de Proteínas/genética , ARN Largo no Codificante/genética , Imagen Individual de Molécula
17.
BMC Genomics ; 20(1): 789, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31664898

RESUMEN

BACKGROUND: Carex L., a grass genus commonly known as sedges, is distributed worldwide and contributes constructively to turf management, forage production, and ecological conservation. The development of next-generation sequencing (NGS) technologies has considerably improved our understanding of transcriptome complexity of Carex L. and provided a valuable genetic reference. However, the current transcriptome is not satisfactory mainly because of the enormous difficulty in obtaining full-length transcripts. RESULTS: In this study, we employed PacBio single-molecule long-read sequencing (SMRT) technology for whole-transcriptome profiling in Carex breviculmis. We generated 60,353 high-confidence non-redundant transcripts with an average length of 2302-bp. A total of 3588 alternative splicing events, and 1273 long non-coding RNAs were identified. Furthermore, 40,347 complete coding sequences were predicted, providing an informative reference transcriptome. In addition, the transcriptional regulation mechanism of C. breviculmis in response to shade stress was further explored by mapping the NGS data to the reference transcriptome constructed by SMRT sequencing. CONCLUSIONS: This study provided a full-length reference transcriptome of C. breviculmis using the SMRT sequencing method for the first time. The transcriptome atlas obtained will not only facilitate future functional genomics studies but also pave the way for further selective and genic engineering breeding projects for C. breviculmis.


Asunto(s)
Carex (Planta)/genética , Transcriptoma , Empalme Alternativo , Carex (Planta)/metabolismo , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Fotosíntesis , ARN Largo no Codificante/clasificación , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo
18.
Front Plant Sci ; 9: 1159, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154810

RESUMEN

Growing evidence indicates that some grass species are more tolerant to various abiotic and biotic stresses than many crops. Zinc finger proteins play important roles in plant abiotic and biotic stresses. Although genes coding for these proteins have been cloned and identified in various plants, their function and underlying transcriptional mechanisms in the halophyte Zoysia japonica are barely known. In the present study, ZjZFN1 was isolated from Z. japonica using RACE method. Quantitative real time PCR results revealed that the expression of ZjZFN1 was much higher in leaf than in root and stem tissues, and induced by salt, cold or ABA treatment. The subcellular localization assay demonstrated that ZjZFN1 was localized to the nucleus. Expression of the ZjZFN1 in Arabidopsis thaliana improved seed germination and enhanced plant adaption to salinity stress with improved percentage of green cotyledons and growth status under salinity stress. Physiological and transcriptional analyses suggested that ZjZFN1 might, at least in part, influence reactive oxygen species accumulation and regulate the transcription of salinity responsive genes. Furthermore, RNA-sequencing analysis of ZjZFN1-overexpressing plants revealed that ZjZFN1 may serve as a transcriptional activator in the regulation of stress responsive pathways, including phenylalanine metabolism, α-linolenic acid metabolism and phenylpropanoid biosynthesis pathways. Taken together, these results provide evidence that ZjZFN1 is a potential key player in plants' tolerance to salt stress, and it could be a valuable gene in Z. japonica breeding projects.

19.
J Zhejiang Univ Sci B ; 18(11): 986-993, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29119736

RESUMEN

Prolonged farrowing remains one of the critical challenges in intensive pig farming. This study aims to explore the effects and mechanism of Yimu San (YMS), a Chinese veterinary medicine micro mist, on delivery ability with mouse models. Thirty-two pregnant mice were randomly divided into a control group and low-YMS, med-YMS, and high-YMS groups. The labor process time and stillbirth rate were recorded, the levels of serum oxytocin and prostaglandin E2 (PGE2) were measured with enzyme-linked immunosorbent assay (ELISA). Contractility measurements of the isolated uterus and the expression of connexin 43 (Cx43) in uterine smooth muscle were evaluated. The results showed that compared with the control group, the birth process time and stillbirth rate in the med-YMS and high-YMS groups were remarkably lower. The in vitro uterine contractions, levels of oxytocin, PGE2, and Cx43 in the med-YMS and high-YMS groups were significantly higher than those in the control group. The differences of the above measurements between the low-YMS group and the control group were not obvious. It can be speculated that YMS could significantly promote labor in pregnant mice by enhancing the levels of oxytocin, Cx43, and PGE2.


Asunto(s)
Conexina 43/metabolismo , Medicamentos Herbarios Chinos/farmacología , Músculo Liso/metabolismo , Oxitocina/sangre , Útero/efectos de los fármacos , Útero/metabolismo , Animales , Dinoprostona/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Regulación de la Expresión Génica , Masculino , Ratones , Embarazo , Preñez
20.
Plant Cell Rep ; 36(1): 179-191, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27796490

RESUMEN

KEY MESSAGE: A novel Zoysia japonica salt-induced glycine-rich RNA-binding protein gene was cloned in this study and its overexpression caused salt sensitivity in transgenic Arabidopsis. Glycine-rich RNA-binding proteins (GRPs) play crucial roles in diverse plant developmental processes. However, the mechanisms and functions of GRPs in salinity stress responses remain largely unknown. In this study, rapid amplification of cDNA end (RACE) PCR methods was adopted to isolate ZjGRP from Zosyia japonica, a salt-tolerant grass species. ZjGRP cDNA was 456 bp in length, corresponding to 151 amino acids. ZjGRP was localized in the nucleus and cytoplasm, and was found particularly abundantly in stomatal guard cells. Quantitative real-time PCR showed that ZjGRP was expressed in the roots, stems, and leaves of Zoysia japonica, with the greatest expression seen in the fast-growing leaves. Furthermore, expression of ZjGRP was strongly induced by treatment with NaCl, ABA, MeJA, and SA. Overexpression of ZjGRP in Arabidopsis reduced the rate of germination and retarded seedling growth. ZjGRP-overexpressing Arabidopsis thaliana exhibited weakened salinity tolerance, likely as a result of effects on ion transportation, osmosis, and antioxidation. This study indicates that ZjGRP plays an essential role in inducing salt sensitivity in transgenic plants.


Asunto(s)
Arabidopsis/fisiología , Genes de Plantas , Proteínas de Plantas/genética , Poaceae/genética , Proteínas de Unión al ARN/genética , Cloruro de Sodio/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Secuencia de Bases , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Biología Computacional , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Germinación/genética , Malondialdehído/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Prolina/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Análisis de Secuencia de ADN , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...