Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(4): e4058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38783647

RESUMEN

We aimed to evaluate the materials based on 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane (Super-bond [SB]) and nano hydroxyapatite (naHAp) for the repair of perforation at pulp chamber floor (PPF) in vitro and in vivo models. SB and naHAp were mixed in the mass ratio of 10% or 30% to produce naHAp/SB. Human periodontal ligament stem cells (HPDLSCs) were cultured on resin discs of SB or naHAp/SB to analyze the effects of naHAp/SB on cell adhesion, proliferation, and cementoblastic differentiation. A rat PPF model was treated with SB or naHAp/SB to examine the effects of naHAp/SB on the healing of defected cementum and periodontal ligament (PDL) at the site of PPF. HPDLSCs were spindle-shaped and adhered to all resin discs. Changing the resin from SB to naHAp/SB did not significantly alter cell proliferation. Both 10% and 30% naHAp/SB were more effective than SB in promoting cementoblastic differentiation of HPDLSCs. In the rat PPF model, 30% naHAp/SB was more effective than SB in promoting the formation Sharpey's fiber-like structures with expression of the PDL-related marker and cementum-like structures with expression of cementum-related markers. In conclusion, 30% naHAp/SB can be the new restorative material for PPF because it exhibited the abilities of adhering to dentin and healing of defected periodontal tissue.


Asunto(s)
Compuestos de Boro , Durapatita , Metacrilatos , Ligamento Periodontal , Animales , Ratas , Humanos , Durapatita/química , Durapatita/farmacología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Compuestos de Boro/farmacología , Compuestos de Boro/química , Metacrilatos/química , Metacrilatos/farmacología , Diferenciación Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Masculino , Proliferación Celular/efectos de los fármacos , Cavidad Pulpar/metabolismo , Cavidad Pulpar/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Células Cultivadas , Ratas Sprague-Dawley , Metilmetacrilatos/química , Metilmetacrilatos/farmacología , Adhesión Celular/efectos de los fármacos
2.
Polymers (Basel) ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732688

RESUMEN

This study evaluated the effect of simulated pulpal pressure (SPP) conditions and storage time on contemporary adhesive systems' microtensile bond strength (µTBS) to dentin. Extracted human molars were prepared and randomly divided into four groups according to the adhesives: Clearfil Megabond 2 (CSE), Beautibond Xtreme Universal (BXU), G2-Bond (G2B), and Scotchbond Universal Plus (SBP). Each adhesive group was further divided following the SPP conditions: control with no simulation (SPP-CTR), SPP with distilled water (SPP-DTW), and SPP with fetal bovine serum (SPP-FBS). Resin composite build-ups were prepared, and teeth were stored in water (37 °C) for 24 h (24 h) and 3 months (3 m). Then, teeth were sectioned to obtain resin-dentin bonded beams and tested to determine the µTBS. Data were analyzed using three-way ANOVA, Tukey post hoc tests (=0.05), and Weibull failure analysis. Failure mode was observed using scanning electron microscopy. The µTBS response was affected by adhesive systems, simulated pulpal pressure conditions, and storage time. SPP-CTR groups presented a higher overall bond strength than SPP-DTW and SPP-FBS, which were not significantly different from each other. Only for SBP, the SPP-FBS group showed higher µTBS than the SPP-DTW group. The Weibull analysis showed that the bonding reliability and durability under SPP-DTW and SPP-FBS were inferior to SPP-CTR, and the 24 h bonding quality of adhesives to dentin was superior to that of 3 m. SPP drastically reduced the µTBS of all adhesives to dentin regardless of solution (distilled water or fetal bovine serum). Storage after 3 m also decreased µTBS despite the SPP condition.

3.
Int Endod J ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780351

RESUMEN

AIM: Calcium hydroxide (CH) has been considered as a direct pulp capping materials (DPC) for the last decades despite having some limitations. Phosphorylate pullulan (PPL) incorporated with CH (CHPPL) is a novel biomaterial that was introduced as a promising DPC material. Thus, the aim of the study was to evaluate the inflammatory response and mineralized tissue formation (MTF) ability of PPL-based CH formulations on rat molars after DPC. METHODOLOGY: This study consisted of six groups: CH with 1% PPL (CHPPL-1); 3% PPL (CHPPL-3); 5% PPL (CHPPL-5); Dycal and NEX MTA Cement (N-MTA) as the positive control, and no capping materials (NC). One hundred twenty maxillary first molar cavities were prepared on Wistar rats. After capping, all the cavities were restored with 4-META/MMA-TBB resin and pulpal responses were evaluated at days 1, 7, and 28. Kruskal-Wallis followed by Mann-Whitney U-test was performed with a significance level of 0.05. Immunohistochemical expression of IL-6, Nestin, and DMP-1 was observed. RESULTS: At day 1, CHPPL-1, N-MTA, and Dycal exhibited no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC showed mild to moderate inflammation, and the results were significantly different (p < .05). At day 7, mild to moderate inflammation was observed in CHPPL-1, N-MTA, and Dycal, whereas CHPPL-3, CHPPL-5, and NC exhibited moderate to severe inflammation. Significant differences were observed between CHPPL-1 and N-MTA with NC (p < .05), CHPPL-1 and CHPPL-3 with CHPPL-5 and Dycal (p < .05), and CHPPL-3 with N-MTA (p < .05). A thin layer of mineralized tissue formation (MTF) was observed in all groups. At day 28, CHPPL-1, Dycal, and N-MTA showed no to mild inflammation, whilst CHPPL-3, CHPPL-5, and NC exhibited mild to severe inflammation, and statistically significant difference was detected (p < .05). CHPPL-1, Dycal, and N-MTA exhibited continuous MTF, whilst CHPPL-3, CHPPL-5, and NC had thicker and interrupted MTF. Significant differences were observed between CHPPL-1, CHPPL-3, and N-MTA with NC group (p < .05). Variable expressions of IL-6, Nestin, and DMP-1 indicated differences in the materials' impact on odontoblast-like cell formation and tissue mineralization. CONCLUSIONS: These findings suggest that CHPPL-1 has the potential to minimize pulpal inflammation and promote MTF and had similar efficacy as MTA cement.

4.
Dent Mater ; 40(4): e24-e32, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423937

RESUMEN

OBJECTIVES: This study aimed to evaluate microtensile bond strength (µTBS) and ultra-morphological characteristic changes in sound dentin resulting from silver diamine fluoride (SDF) when using adhesives. METHODS: Ninety-six extracted human third molars were divided into the SDF-contaminated dentin group and the sound dentin group. In the SDF-contaminated dentin group, 38% SDF was agitated for 1 min, left undisturbed for 2 min, and rinsed with distilled water for 30 s. Then, each group was further subdivided into six subgroups (n = 8 / group) according to application modes: self-etch mode (SE) and etch-and-rinse mode (ER) followed by three adhesives: (1) Scothbond Universal Plus Adhesive (SUP); (2) G2-Bond Universal Adhesive (G2B); and (3) Clearfil Mega Bond 2 (MB2). All specimens were restored with resin composite and were stored in distilled water for 24 h before µTBS testing. Data from the µTBS test were analyzed using Three-way ANOVA and Duncan test (p < 0.05). The morphology of fractured surface and adhesive-dentin interfaces were evaluated by SEM, TEM, and STEM. Further elemental analysis was done by EDX. RESULTS: All SDF-contaminated dentin groups demonstrated significantly lower µTBS than sound dentin groups. All ER groups had higher µTBS than SE groups, except for G2B in the sound dentin group. STEM/EDX revealed an SDF-dentin-reacted layer in the SDF-contaminated dentin group. SIGNIFICANCE: SDF had an adverse effect on adhesives. Additionally, ER mode is preferable when bonded to SDF-contaminated dentin. A calcium and fluoride-contained layer was observed in all SDF-contaminated dentin.


Asunto(s)
Recubrimiento Dental Adhesivo , Cementos Dentales , Compuestos de Amonio Cuaternario , Compuestos de Plata , Humanos , Cementos Dentales/farmacología , Recubrimientos Dentinarios/química , Recubrimiento Dental Adhesivo/métodos , Dentina , Resistencia a la Tracción , Ensayo de Materiales , Agua , Cementos de Resina/química , Fluoruros Tópicos
5.
Cells ; 12(23)2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38067170

RESUMEN

Periodontal ligament (PDL) stem-like cells (PDLSCs) are promising for regeneration of the periodontium because they demonstrate multipotency, high proliferative capacity, and the potential to regenerate bone, cementum, and PDL tissue. However, the transplantation of autologous PDLSCs is restricted by limited availability. Since PDLSCs are derived from neural crest cells (NCs) and NCs persist in adult PDL tissue, we devised to promote the regeneration of the periodontium by activating NCs to differentiate into PDLSCs. SK-N-SH cells, a neuroblastoma cell line that reportedly has NC-like features, seeded on the extracellular matrix of PDL cells for 2 weeks, resulted in the significant upregulation of PDL marker expression. SK-N-SH cell-derived PDLSCs (SK-PDLSCs) presented phenotypic characteristics comparable to induced pluripotent stem cell (iPSC)-derived PDLSCs (iPDLSCs). The expression levels of various hyaluronic acid (HA)-related genes were upregulated in iPDLSCs and SK-PDLSCs compared with iPSC-derived NCs and SK-N-SH cells, respectively. The knockdown of CD44 in SK-N-SH cells significantly inhibited their ability to differentiate into SK-PDLSCs, while low-molecular HA (LMWHA) induction enhanced SK-PDLSC differentiation. Our findings suggest that SK-N-SH cells could be applied as a new model to induce the differentiation of NCs into PDLSCs and that the LMWHA-CD44 relationship is important for the differentiation of NCs into PDLSCs.


Asunto(s)
Cresta Neural , Ligamento Periodontal , Adulto , Humanos , Ácido Hialurónico/farmacología , Células Cultivadas , Periodoncio
6.
Polymers (Basel) ; 15(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37836044

RESUMEN

This study evaluated the effect of a 0.5% chloramine T solution on a chemical-cured universal adhesive by comparing the light-cured, one-step, self-etch adhesive for the bonding performance, mechanical properties, and resin-dentin interfacial characteristics. Caries-free human molars were randomly assigned into eight groups based on the bonding systems employed (Bond Force II, BF and Bondmer Lightless, BL), the immersion solutions used before bonding (0.5% chloramine T solution and distilled water), and the immersion durations (5 and 60 min). Microtensile bond strength (µTBS), nanoleakage evaluation, and nanoindentation tests were performed, and the surface morphology of the resin-dentin interface was examined using a focus ion beam/scanning ion microscopy system. Immersion in chloramine-T for 5 min significantly decreased the µTBS of Bondmer Lightless (from 22.62 to 12.87 MPa) compared with that in distilled water. Moreover, there was also a decreasing trend after immersing in chloramine-T for 60 min (from 19.11 to 13.93 MPa). Chloramine T was found to have no effect on the hardness, elastic modulus, or morphological characteristics of the ion-beam milled resin-dentin interfacial surfaces in the tested adhesives, suggesting that chloramine T might reduce the bond strength by interfering with the interaction and the sealing between the adhesive resin and dentin in the chemical-cured universal adhesive, albeit without affecting the mechanical properties.

7.
Sci Rep ; 13(1): 5668, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37024514

RESUMEN

Conventional direct pulp-capping materials induce pulp cells to secrete various biomolecules in pulp tissues that promote reparative dentin formation through induction of odontoblastic differentiation of dental pulp stem cells (DPSCs). However, these biomolecules sometimes induce bone-like dentin with poor sealing properties. Therefore, exploration of biomolecules that allow tight sealing by tubular reparative dentin is required. We recently reported that dopamine (DA) is involved in dentinogenesis. Hence, we investigated the effect of DA on odontoblastic differentiation of DPSCs and reparative dentin formation. Both tyrosine hydroxylase (TH), a DA synthetase, and DA were expressed in odontoblast-like cells in vivo. In vitro, their expression was increased during odontoblastic differentiation of DPSCs. Furthermore, TH-overexpressing DPSCs had promoted odontoblastic differentiation and DA production. Moreover, DA stimulation promoted their differentiation and induced tubular reparative dentin. These results suggest that DA produced by TH is involved in odontoblastic differentiation of DPSCs and has an inductive capacity for reparative dentin formation similar to primary dentin. This study may lead to the development of therapy to preserve vital pulp tissues.


Asunto(s)
Pulpa Dental , Dopamina , Dopamina/metabolismo , Odontoblastos/metabolismo , Diferenciación Celular , Células Madre/metabolismo , Dentina/metabolismo
8.
Molecules ; 27(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36500314

RESUMEN

The aim of this study is to clarify the biological functions of decorin (DCN) in the healing and regeneration of wounded periodontal tissue. We investigated the expression pattern of DCN during the healing of wounded periodontal tissue in rats by immunohistochemistry and the effects of DCN on the osteoblastic differentiation of human periodontal ligament (PDL) stem cells (HPDLSCs) and preosteoblasts by Alizarin red S staining, quantitative reverse transcription-polymerase chain reactions, and western blotting. The expression of DCN was increased around the wounded PDL tissue on day 5 after surgery compared with the nonwounded PDL tissue, whereas its expression was not changed in the osteoblastic layer around the wounded alveolar bone. Furthermore, DCN promoted the osteoblastic differentiation of HPDLSCs, but it did not affect the osteoblastic differentiation of preosteoblasts. ERK1/2 phosphorylation was upregulated during the DCN-induced osteoblastic differentiation of HPDLSCs. DCN did not affect proliferation, migration, or the PDL-related gene expression of HPDLSCs. In conclusion, this study demonstrates that DCN has a role in the healing of wounded periodontal tissue. Furthermore, DCN secreted from PDL cells may contribute to bone healing by upregulating osteoblastic differentiation through ERK1/2 signaling in HPDLSCs, indicating a therapeutic effect of DCN in periodontal tissue regeneration.


Asunto(s)
Ligamento Periodontal , Células Madre , Humanos , Ratas , Animales , Células Cultivadas , Diferenciación Celular , Transducción de Señal , Osteogénesis , Proliferación Celular
9.
Biomedicines ; 10(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36552025

RESUMEN

When teeth and periodontal tissues are severely damaged by severe caries, trauma, and periodontal disease, such cases may be subject to tooth extraction. As tooth loss leads to the deterioration of quality of life, the development of regenerative medicine for tooth and periodontal tissue is desired. Induced pluripotent stem cells (iPS cells) are promising cell resources for dental tissue regeneration because they offer high self-renewal and pluripotency, along with fewer ethical issues than embryonic stem cells. As iPS cells retain the epigenetic memory of donor cells, they have been established from various dental tissues for dental tissue regeneration. This review describes the regeneration of dental tissue using iPS cells. It is important to mimic the process of tooth development in dental tissue regeneration using iPS cells. Although iPS cells had safety issues in clinical applications, they have been overcome in recent years. Dental tissue regeneration using iPS cells has not yet been established, but it is expected in the future.

10.
Life (Basel) ; 12(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362965

RESUMEN

In cases in which dental pulp tissue is accidentally exposed, direct pulp capping is often performed to induce reparative dentin formation. Although macrophages are essential for the inflammatory response and tissue repair, the emergence pattern and the role of macrophages in dental pulp tissue have not been clarified. Here, we investigated the emergence of M1/M2 macrophages in dental pulp tissue after a direct pulp capping and the effects of M2 macrophages on odontoblastic differentiation of the dental pulp stem cell (DPSC) clones. The emergence of macrophages in dental pulp tissue was investigated using a rat direct pulp capping model. Alizarin Red S staining and quantitative RT-PCR was performed to examine the effect of M2 macrophages on the mineralization and odontoblastic differentiation of DPSC clones. Immunohistochemical staining revealed that M1 macrophages were detected in dental pulp tissue after treatment and increased in number at three days after treatment. However, M2 macrophages gradually increased in number in dental pulp tissue after treatment, with the highest level recorded at seven days post-operation. Additionally, conditioned medium from M2 macrophages induced odontoblast-like differentiation of DPSC clones. These results suggest that macrophages play a role in the inflammatory response and reparative dentin formation after dental pulp exposure.

11.
Biomedicines ; 10(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36289626

RESUMEN

Periodontal ligament stem cells (PDLSCs) play central roles in periodontal ligament (PDL) tissue homeostasis, repair, and regeneration. Previously, we established a protocol to differentiate human-induced pluripotent stem cell-derived neural crest-like cells (iNCs) into PDLSC-like cells (iPDLSCs) using human PDL cell-derived extracellular matrix (ECM). However, it remained unclear what factors principally regulate the differentiation of iNCs into iPDLSCs. In this study, we aimed to identify the transcription factor regulating production of human PDL cell-derived ECM, which is responsible for the generation of iPDLSCs. We cultured iNCs on ECMs of two human PDL cell lines (HPDLC-3S and HPDLC-3U) and of human dermal fibroblasts (HDF). iNCs cultured on HPDLC-3U demonstrated higher iPDLSC-associated gene expression and mesenchymal differentiation capacity than cells cultured on HDF or HPDLC-3S. The transcription factor PAX9 was highly expressed in HPDLC-3U compared with HDF and HPDLC-3S. iNCs cultured on siPAX9-transfected HPDLC-3U displayed downregulation of iPDLSC-associated marker expression and adipocytic differentiation capacity relative to controls. Our findings suggest that PAX9 is one of the transcription factors regulating ECM production in human PDL cells, which is responsible for the differentiation of iNCs into iPDLSCs.

12.
Odontology ; 110(1): 127-137, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34382118

RESUMEN

The aim of this study was to characterize a clonal human periodontal ligament (PDL) stem cell line (line 2-23 cells) cultured with root canal sealers based on methacrylate resin (SuperBond sealer; SB), bioactive glass (Nishika Canal Sealer BG; BG), or silicon (GuttaFlow 2; GF). The sealers were set in rubber molds to form sealer discs. Line 2-23 cells were cultured with or without the discs for 3 days. The cell viability was evaluated by direct cell counting and MTT assay. Inflammation-, PDL-, collagen-, and cell cycle-related gene expression was investigated by real-time RT-PCR. Collagen production was analyzed by Picro Sirius Red staining. Calcium ion concentration in the culture was measured by a QuantiChrom calcium assay kit. Line 2-23 cells survived when cultured with GF discs, but decreased cell viability was observed with SB and BG discs. The expression of inflammation-related genes was higher in cells cultured with SB discs, and expression of PDL-related genes was lower in cells exposed to SB and BG discs. These discs also down-regulated collagen production in line 2-23 cells. BG discs increased calcium ion concentration in the culture medium. Cells exposed to GF discs exhibited the same inflammation-, PDL-, collagen-, and cell cycle-related gene expression and collagen production as untreated cells. These results suggested that the characteristics of line 2-23 cells cultured with GF discs was highly resemble to untreated cells throughout the 3 days of the culture model.


Asunto(s)
Materiales de Obturación del Conducto Radicular , Silicio , Línea Celular , Cavidad Pulpar , Resinas Epoxi , Humanos , Ensayo de Materiales , Metacrilatos , Ligamento Periodontal , Materiales de Obturación del Conducto Radicular/farmacología
13.
Arch Oral Biol ; 134: 105323, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34896864

RESUMEN

OBJECTIVES: Few clinical treatments to regenerate periodontal tissue lost due to severe endodontic and periodontal disease have yet been developed. Therefore, the development of new treatment methods for the regeneration of periodontal tissue is expected. The purpose of this study was to investigate the effects of a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, on the osteoblastic differentiation of periodontal ligament stem cells (PDLSCs) in vitro, and the function of SP600125 on the regeneration of alveolar bone in vivo. DESIGN: Alizarin red S staining, quantitative RT-PCR, and western blotting analysis was performed to determine whether SP600125 affects osteoblastic differentiation of human PDLSCs (HPDLSCs) and bone-related intracellular signaling. The effect of SP600125 on the regeneration of alveolar bone was assessed by using a rat periodontal defect model. The healing of periodontal defects was evaluated using micro-CT scans and histological analysis. RESULTS: SP600125 promoted the osteoblastic differentiation such as Alizarin red S-positive mineralized nodule formation and the expression of osteoblast-related genes in HPDLSCs under osteogenic conditions. In addition, this inhibitor upregulated the BMP2 expression and the phosphorylation of Smad1/5/8 in HPDLSCs under the same conditions. The inhibition of Smad1/5/8 signaling by LDN193189 suppressed the SP600125-induced osteoblastic differentiation of HPDLSCs. Furthermore, the application of SP600125 promoted the regeneration of not only alveolar bone but also PDL tissue in periodontal defects. CONCLUSION: This study suggested that inhibition of JNK signaling promotes the osteoblastic differentiation of HPDLSCs through BMP2-Smad1/5/8 signaling, leading to the regeneration of periodontal tissues such as alveolar bone and PDL tissue.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos , Ligamento Periodontal , Animales , Diferenciación Celular , Células Cultivadas , Osteogénesis , Ratas , Células Madre
14.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34948289

RESUMEN

Activin A, a member of transforming growth factor-ß superfamily, is involved in the regulation of cellular differentiation and promotes tissue healing. Previously, we reported that expression of activin A was upregulated around the damaged periodontal tissue including periodontal ligament (PDL) tissue and alveolar bone, and activin A promoted PDL-related gene expression of human PDL cells (HPDLCs). However, little is known about the biological function of activin A in alveolar bone. Thus, this study analyzed activin A-induced biological functions in preosteoblasts (Saos2 cells). Activin A promoted osteoblastic differentiation of Saos2 cells. Activin receptor-like kinase (ALK) 1, an activin type I receptor, was more strongly expressed in Saos2 cells than in HPDLCs, and knockdown of ALK1 inhibited activin A-induced osteoblastic differentiation of Saos2 cells. Expression of ALK1 was upregulated in alveolar bone around damaged periodontal tissue when compared with a nondamaged site. Furthermore, activin A promoted phosphorylation of Smad1/5/9 during osteoblastic differentiation of Saos2 cells and knockdown of ALK1 inhibited activin A-induced phosphorylation of Smad1/5/9 in Saos2 cells. Collectively, these findings suggest that activin A promotes osteoblastic differentiation of preosteoblasts through the ALK1-Smad1/5/9 pathway and could be used as a therapeutic product for the healing of alveolar bone as well as PDL tissue.


Asunto(s)
Receptores de Activinas Tipo II/metabolismo , Activinas/metabolismo , Diferenciación Celular/fisiología , Osteoblastos/metabolismo , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Adulto , Animales , Células Cultivadas , Humanos , Masculino , Fosforilación/fisiología , Ratas Sprague-Dawley , Adulto Joven
15.
Sci Rep ; 11(1): 22091, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764383

RESUMEN

White mineral trioxide aggregate (WMTA) is a root canal treatment material, which is known to exhibit a dark brown color when in contact with sodium hypochlorite solution (NaOCl). This study aimed to investigate the effects of NaOCl on the surface properties of WMTA discs and WMTA-induced osteoblastic differentiation of periodontal ligament stem cells (PDLSCs). Mixed WMTA (ProRoot MTA) was filled into the molds to form WMTA discs. These discs were immersed in distilled water (D-WMTA) or 5% NaOCl (Na-WMTA). Their surface structures and Ca2+ release level was investigated. Moreover, they were cultured with a clonal human PDLSC line (line 1-17 cells). The main crystal structures of Na-WMTA were identical to the structures of D-WMTA. Globular aggregates with polygonal and needle-like crystals were found on D-WMTA and Na-WMTA, which included Ca, Si, Al, C and O. However, many amorphous structures were also identified on Na-WMTA. These structures consisted of Na and Cl, but did not include Ca. NaOCl immersion also reduced Ca2+ release level from whole WMTA discs. Line 1-17 cells cultured with D-WMTA formed many mineralized nodules and exhibited high expression levels of osteoblast-related genes. However, cells incubated with Na-WMTA generated a small number of nodules and showed low expression levels of osteoblast-related genes. These results indicated that NaOCl reduced Ca2+ release from WMTA by generating amorphous structures and changing its elemental distribution. NaOCl may also partially abolish the ability of WMTA to stimulate osteoblastic differentiation of PDLSCs.


Asunto(s)
Compuestos de Aluminio/farmacología , Compuestos de Calcio/farmacología , Diferenciación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Óxidos/farmacología , Ligamento Periodontal/efectos de los fármacos , Materiales de Obturación del Conducto Radicular/farmacología , Silicatos/farmacología , Hipoclorito de Sodio/farmacología , Células Madre/efectos de los fármacos , Compuestos de Aluminio/química , Calcio/metabolismo , Compuestos de Calcio/química , Línea Celular , Combinación de Medicamentos , Humanos , Osteoblastos/metabolismo , Óxidos/química , Ligamento Periodontal/metabolismo , Silicatos/química , Hipoclorito de Sodio/química , Células Madre/metabolismo , Propiedades de Superficie/efectos de los fármacos
16.
Mater Sci Eng C Mater Biol Appl ; 130: 112426, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34702511

RESUMEN

In the case of dental pulp exposure, direct pulp capping is often performed to preserve vital dental pulp tissue. Numerous studies regarding the development of direct pulp-capping materials have been conducted, but materials with an appropriate sealing ability, which induce dense reparative dentin formation, have not been developed. Although nano hydroxyapatite (naHAp) is a bone-filling material with bioactivity and biocompatibility, the inductive effects of naHAp on reparative dentin formation remain unclear. In the present study, the effects of dental adhesive material 4-methacryloxyethyl trimellitate anhydride/methyl methacrylate tri-n-butylborane [4-META/MMA-TBB or Super-bond (SB)], which included 10%, 30%, and 50% naHAp (naHAp/SB) on odontoblastic differentiation of dental pulp stem cells (DPSCs) and reparative dentin formation were investigated. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometer analysis were performed to verify the existence of naHAp particles on the surface of naHAp/SB discs. The tensile adhesive strength of naHAp/SB was measured using a universal testing machine. As a result, 10% naHAp/SB and 30% naHAp/SB showed almost the same tensile adhesive strength as SB but 50% naHAp/SB showed significantly lower than the other experimental group. WST-1 proliferation assay and SEM analysis revealed that naHAp/SB did not affect the proliferation of DPSCs. Calcium release assay, quantitative RT-PCR, and western blotting analysis demonstrated that naHAp/SB did not release calcium ion but 30% naHAp/SB increased the expression of calcium-sensing receptor (CaSR) in DPSCs. Additionally, quantitative RT-PCR, western blotting analysis, Alizarin Red S- and von Kossa staining revealed that 30% naHAp/SB induced odontoblastic differentiation of DPSCs, which was inhibited by a MEK/ERK inhibitor and CaSR antagonist. Furthermore, 30% naHAp/SB promoted dense reparative dentin formation in an experimentally-formed rat dental pulp exposure model. These findings suggest that 30% naHAp/SB can be used as an ideal direct pulp capping material.


Asunto(s)
Durapatita , Cementos de Resina , Animales , Compuestos de Boro , Pulpa Dental , Metacrilatos , Metilmetacrilatos , Ratas
17.
Cells ; 10(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572140

RESUMEN

Direct pulp capping is an effective treatment for preserving dental pulp against carious or traumatic pulp exposure via the formation of protective reparative dentin by odontoblast-like cells. Reparative dentin formation can be stimulated by several signaling molecules; therefore, we investigated the effects of secreted frizzled-related protein (SFRP) 1 that was reported to be strongly expressed in odontoblasts of newborn molar tooth germs on odontoblastic differentiation and reparative dentin formation. In developing rat incisors, cells in the dental pulp, cervical loop, and inner enamel epithelium, as well as ameloblasts and preodontoblasts, weakly expressed Sfrp1; however, Sfrp1 was strongly expressed in mature odontoblasts. Human dental pulp cells (hDPCs) showed stronger expression of SFRP1 compared with periodontal ligament cells and gingival cells. SFRP1 knockdown in hDPCs abolished calcium chloride-induced mineralized nodule formation and odontoblast-related gene expression and decreased BMP-2 gene expression. Conversely, SFRP1 stimulation enhanced nodule formation and expression of BMP-2. Direct pulp capping treatment with SFRP1 induced the formation of a considerable amount of reparative dentin that has a structure similar to primary dentin. Our results indicate that SFRP1 is crucial for dentinogenesis and is important in promoting reparative dentin formation in response to injury.


Asunto(s)
Pulpa Dental/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Odontoblastos/metabolismo , Adolescente , Animales , Diferenciación Celular/genética , Pulpa Dental/fisiología , Dentina/metabolismo , Dentina/fisiología , Dentina Secundaria/fisiología , Dentinogénesis/genética , Dentinogénesis/fisiología , Femenino , Expresión Génica/genética , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Odontoblastos/fisiología , Ratas , Ratas Wistar , Transducción de Señal/genética , Adulto Joven
18.
J Cell Physiol ; 236(9): 6742-6753, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33604904

RESUMEN

We aimed to generate periodontal ligament (PDL) tissue-like structures from a multipotent human PDL cell line using three-dimensional (3D) bioprinting technology and to incorporate these structures with bioactive core materials to develop a new biohybrid implant system. After 3D bioprinting, single-cell spheroids were able to form 3D tubular structures (3DTBs). We established three types of complexes using 3DTBs and different core materials: 3DTB-titanium core (TIC), 3DTB-hydroxyapatite core (HAC), and 3DTB without a core material (WOC). The expressions of PDL-, angiogenesis-, cementum-, and bone-related genes were significantly increased in the three complexes compared with monolayer-cultured cells. Abundant collagen fibers and cells positive for the above markers were confirmed in the three complexes. However, more positive cells were detected in HAC than in WOC or TIC. The present results suggest that 3D-bioprinted structures and hydroxyapatite core materials can function similarly to the PDL and may be useful for the development of a new biohybrid implant system.


Asunto(s)
Materiales Biocompatibles/química , Ligamento Periodontal/fisiología , Prótesis e Implantes , Biomarcadores/metabolismo , Línea Celular , Durapatita/química , Regulación de la Expresión Génica , Humanos , Esferoides Celulares/citología , Coloración y Etiquetado , Andamios del Tejido/química
19.
Biology (Basel) ; 9(7)2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32659896

RESUMEN

Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.

20.
Stem Cells Int ; 2020: 9672673, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32724317

RESUMEN

Periodontal ligament (PDL) stem cells (PDLSCs) have been reported as a useful cell source for periodontal tissue regeneration. However, one of the issues is the difficulty of obtaining a sufficient number of PDLSCs for clinical application because very few PDLSCs can be isolated from PDL tissue of donors. Therefore, we aimed to identify a specific factor that converts human PDL cells into stem-like cells. In this study, microarray analysis comparing the gene profiles of human PDLSC lines (2-14 and 2-23) with those of a cell line with a low differentiation potential (2-52) identified the imprinted gene mesoderm-specific transcript (MEST). MEST was expressed in the cytoplasm of 2-23 cells. Knockdown of MEST by siRNA in 2-23 cells inhibited the expression of stem cell markers, such as CD105, CD146, p75NTR, N-cadherin, and NANOG; the proliferative potential; and multidifferentiation capacity for osteoblasts, adipocytes, and chondrocytes. On the other hand, overexpression of MEST in 2-52 cells enhanced the expression of stem cell markers and PDL-related markers and the multidifferentiation capacity. In addition, MEST-overexpressing 2-52 cells exhibited a change in morphology from a spindle shape to a stem cell-like round shape that was similar to 2-14 and 2-23 cell morphologies. These results suggest that MEST plays a critical role in the maintenance of stemness in PDLSCs and converts PDL cells into PDLSC-like cells. Therefore, this study indicates that MEST may be a therapeutic factor for periodontal tissue regeneration by inducing PDLSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...