Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 632
Filtrar
1.
Dev Cell ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39025063

RESUMEN

The ubiquitin-proteasome system (UPS) plays crucial roles in cellular processes including plant growth, development, and stress responses. In this study, we report that a pair of E3 ubiquitin ligases, AvrPiz-t-interaction protein 6 (APIP6) and IPA1-interaction protein 1 (IPI1), intricately target early flowering3 (ELF3) paralogous proteins to control rice immunity and flowering. APIP6 forms homo-oligomers or hetero-oligomers with IPI1. Both proteins interact with OsELF3-2, promoting its degradation to positively control resistance against the rice blast fungus (Magnaporthe oryzae). Intriguingly, overexpression of IPI1 in Nipponbare caused significantly late-flowering phenotypes similar to the oself3-1 mutant. Except for late flowering, oself3-1 enhances resistance against M. oryzae. IPI1 also interacts with and promotes the degradation of OsELF3-1, a paralog of OsELF3-2. Notably, IPI1 and APIP6 synergistically modulate OsELF3s degradation, finely tuning blast disease resistance by targeting OsELF3-2, while IPI1 controls both disease resistance and flowering by targeting OsELF3-1. This study unravels multiple functions for a pair of E3 ligases in rice.

2.
Cell Prolif ; : e13717, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39021353

RESUMEN

Aerobic glycolysis is involved in the pathogenesis of pulmonary hypertension (PH). The mechanisms by which glycolysis is increased and how it contributes to pulmonary vascular remodelling are not yet fully understood. In this study, we demonstrated that elevated lipocalin-2 (LCN2) in PH significantly enhances aerobic glycolysis in human pulmonary artery smooth muscle cells (PASMCs) by up-regulating LDHA expression. Knockout of Lcn2 or having heterozygous LDHA deficiency in mice significantly inhibits the progression of hypoxic PH. Our study reveals that LCN2 stimulates LDHA expression by activating Akt-HIF-1α signalling pathway. Inhibition of Akt or HIF-1α reduces LDHA expression and proliferation of PASMCs. Both Akt and HIF-1α play critical roles in the development of PH and are suppressed in the pulmonary vessels of hypoxic PH mice lacking LCN2. These findings shed light on the LCN2-Akt-HIF1α-LDHA axis in aerobic glycolysis in PH.

3.
Int J Biol Macromol ; : 133798, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992555

RESUMEN

In this paper, the size-controllable nano­silver particles (AgNPs) were synthesized from walnut green husk polysaccharide, and its cytotoxicity and antibacterial activity were evaluated. Firstly, acidic polysaccharide WGHP2 was extracted from walnut green husk, and then the silver ion in AgNO3 was reduced in WGHP2 aqueous solution using NaBH4, so as to synthesize the nano­silver composite. The nano­silver composite was characterized by transmission electron microscope, Fourier infrared spectroscopy, ultraviolet-visible spectrometer, scanning electron microscope, inductively coupled plasma mass spectrometry and X-ray photoelectron spectroscopy. The results show that AgNPs stabilized by WGHP2 are mainly regular spheres with an average particle size distribution of 15.04-19.23 nm. The particle size distribution and morphology of AgNPs changed with the concentration of silver precursor, which is related to the dispersion of silver precursor in polysaccharide aqueous solution and the formation of AgO coordination bond between silver precursor and polysaccharide molecules. These coordination bonds changed the ability of nanoparticles to produce and release Ag+, and thus regulated their antibacterial activity and cytotoxicity, as evidenced by the experimental result of the cytotoxicity of the nano­silver particle against PC12 cells and the bacteriostatic effect on E.coli and S.aureus. Conclusively, WGHP2-Ag has good stability, antibacterial activity and low cytotoxicity.

4.
Trends Plant Sci ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38902122

RESUMEN

Cell-penetrating peptides (CPPs) are short (typically 5-30 amino acids), cationic, amphipathic, or hydrophobic peptides that facilitate the cellular uptake of diverse cargo molecules by eukaryotic cells via direct translocation or endocytosis across the plasma membrane. CPPs can deliver a variety of bioactive cargos, including proteins, peptides, nucleic acids, and small molecules into the cell. Once inside, the delivered cargo may function in the cytosol, nucleus, or other subcellular compartments. Numerous CPPs have been used for studies and drug delivery in mammalian systems. Although CPPs have many potential uses in plant research and agriculture, the application of CPPs in plants remains limited. Here we review the structures and mechanisms of CPPs and highlight their potential applications for sustainable agriculture.

5.
Adv Sci (Weinh) ; : e2309203, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837691

RESUMEN

Targeted delivery of glutamine metabolism inhibitors holds promise for cholangiocarcinoma therapy, yet effective delivery vehicles remain a challenge. This study reports the development of a biomimetic nanosystem, termed R-CM@MSN@BC, integrating mesoporous organosilicon nanoparticles with reactive oxygen species-responsive diselenide bonds for controlled release of the glutamine metabolism inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide (BPTES) and the photosensitizer Ce6. Erythrocyte membrane coating, engineered with Arg-Gly-Asp (RGD) peptides, not only enhanced biocompatibility but also improved tumor targeting and tissue penetration. Upon laser irradiation, R-CM@MSN@BC executed both photodynamic and glutamine-metabolic therapies, inducing necroptosis in tumor cells and triggering significant immunogenic cell death. Time-of-flight mass cytometry analysis revealed that R-CM@MSN@BC can remodel the immunosuppressive tumor microenvironment by polarizing M1-type macrophages, reducing infiltration of M2-type and CX3CR1+ macrophages, and decreasing T cell exhaustion, thereby increasing the effectiveness of anti-programmed cell death ligand 1 immunotherapy. This strategy proposed in this study presents a viable and promising approach for the treatment of cholangiocarcinoma.

6.
BMC Gastroenterol ; 24(1): 195, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849765

RESUMEN

BACKGROUND: Despite transarterial chemoembolization (TACE) was recommended as first line therapy for intermediate hepatocellular carcinoma (HCC), the efficacy of transarterial embolization (TAE) has not been widely recognized. This work was to determine whether TAE was as effective and safe as TACE for unresectable HCC. METHODS: We performed a systematic search of electronic databases and other sources for randomized controlled studies (RCTs) comparing TAE with TACE for unresectable HCC. Results were expressed as Hazard Ratio (HR) for survival and Odds Ratio (OR) for dichotomous outcomes using RevMan 5.4.1. RESULTS: We included 6 trials with 683 patients. The risk of bias of included RCTs was from unclear to high risk. There were no significant differences between TACE and TAE for progression-free survival (HR 0.83, 95% CI 0.45-1.55; p = 0.57), overall survival (HR 1.10, 95% CI 0.90-1.35; p = 0.36), and objective response rate (OR 1.17, 95% CI 0.80-1.71; p = 0.42) without obvious publication bias. Sensitivity analyses confirmed the robustness of the results. TAE group reported similar or less adverse effects than TACE group in all the studies. CONCLUSIONS: Our study demonstrated that TAE was as effective as TACE. Since TAE was simpler, cheaper and had less adverse effects than TACE, TAE should be a better choice in most cases where TACE was indicated for unresectable HCC.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Embolización Terapéutica , Neoplasias Hepáticas , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/mortalidad , Quimioembolización Terapéutica/métodos , Embolización Terapéutica/métodos , Resultado del Tratamiento
7.
Genes (Basel) ; 15(6)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38927691

RESUMEN

Liver cancer manifests as a profoundly heterogeneous malignancy, posing significant challenges in terms of both therapeutic intervention and prognostic evaluation. Given that the liver is the largest metabolic organ, a prognostic risk model grounded in single-cell transcriptome analysis and a metabolic perspective can facilitate precise prevention and treatment strategies for liver cancer. Hence, we identified 11 cell types in a scRNA-seq profile comprising 105,829 cells and found that the metabolic activity of malignant cells increased significantly. Subsequently, a prognostic risk model incorporating tumor heterogeneity, cell interactions, tumor cell metabolism, and differentially expressed genes was established based on eight genes; this model can accurately distinguish the survival outcomes of liver cancer patients and predict the response to immunotherapy. Analyzing the immune status and drug sensitivity of the high- and low-risk groups identified by the model revealed that the high-risk group had more active immune cell status and greater expression of immune checkpoints, indicating potential risks associated with liver cancer-targeted drugs. In summary, this study provides direct evidence for the stratification and precise treatment of liver cancer patients, and is an important step in establishing reliable predictors of treatment efficacy in liver cancer patients.


Asunto(s)
Neoplasias Hepáticas , RNA-Seq , Análisis de la Célula Individual , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Pronóstico , Análisis de la Célula Individual/métodos , Regulación Neoplásica de la Expresión Génica , Transcriptoma , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Análisis de Expresión Génica de una Sola Célula , Reprogramación Metabólica
8.
Cell Signal ; 121: 111258, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866351

RESUMEN

Adenosine deaminases acting on RNA 1(ADAR1), an RNA editing enzyme that converts adenosine to inosine by deamination in double-stranded RNAs, plays an important role in occurrence and progression of various types of cancer. Ferroptosis has emerged as a hot topic of cancer research in recent years. We have previously reported that ADAR1 promotes breast cancer progression by regulating miR-335-5p and METTL3. However, whether ADAR1 has effects on ferroptosis in breast cancer cells is largely unknown. In this study, we knocked down ADAR1 using CRISPR-Cas9 technology or over-expressed ADAR1 protein using plasmid expressing ADAR1 in MCF-7 and MDA-MB-231 breast cancer cell lines, then detected cell viability, and levels of ROS, MDA, GSH, Fe2+, GPX4 protein and miR-335-5p. We showed that the cell proliferation was inhibited, levels of ROS, MDA, Fe2+, and miR-335-5p were increased, while GSH and GPX4 levels were decreased after loss of ADAR1, compared to the control group. The opposite effects were observed after ADAR1 overexpression in the cells. Further, we demonstrated that ADAR1-controlled miR-335-5p targeted Sp1 transcription factor of GPX4, a known ferroptosis molecular marker, leading to inhibition of ferroptosis by ADAR1 in breast cancer cells. Moreover, RNA editing activity of ADAR1 is not essential for inducing ferroptosis. Collectively, loss of ADAR1 induces ferroptosis in breast cancer cells by regulating miR-335-5p/Sp1/GPX4 pathway. The findings may provide insights into the mechanism by which ADAR1 promotes breast cancer progression via inhibiting ferroptosis.

9.
Curr Mol Med ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38835130

RESUMEN

INTRODUCTION: The major complication of Obliterative Bronchiolitis (OB) is characterized by epithelial cell loss, fibrosis, and luminal occlusion of the terminal small airways, which limits the long-term survival of the recipient after lung transplantation. However, the underlying mechanisms are still not fully clarified. This research aims to investigate whether iron overload-induced ferroptosis is involved in OB development and provide a new target for OB prevention. MATERIALS AND METHODS: Allograft orthotopic tracheal transplantation in mice was applied in our study. Ferrostatin-1 and deferoxamine were administrated to inhibit ferroptosis and get rid of ferric iron, while iron dextran was used to induce an iron overload condition in the recipient. The histological examination, luminal occlusion rate, collagen deposition, iron level, ferroptosis marker (GPX4, PTGS2), and mitochondrial morphological changes of the graft were evaluated in mice. RESULTS: Our research indicated that ferroptosis and iron overload contribute to OB development, while ferroptosis inhibition and iron chelator could reverse the changes. Iron overload exacerbated OB development after orthotopic tracheal transplantation via promoting ferroptosis. CONCLUSION: Overall, this research demonstrated that iron overload-induced ferroptosis is involved in OB, which may be a potential therapeutic target for OB after lung transplantation.

10.
New Phytol ; 243(1): 362-380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38730437

RESUMEN

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Rhizoctonia , Ácido Salicílico , Xanthomonas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizoctonia/fisiología , Inmunidad de la Planta/efectos de los fármacos , Mutación/genética , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica/efectos de los fármacos
11.
J Clin Invest ; 134(13)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743492

RESUMEN

Steatotic donor livers are becoming more and more common in liver transplantation. However, the current use of steatotic grafts is less acceptable than normal grafts due to their higher susceptibility to ischemia/reperfusion (I/R) injury. To investigate the mechanism underlying the susceptibility of steatotic liver to I/R injury, we detected cell death markers and inflammation in clinical donor livers and animal models. We found that caspase-8-mediated hepatic apoptosis is activated in steatotic liver I/R injury. However, ablation of caspase-8 only slightly mitigated steatotic liver I/R injury without affecting inflammation. We further demonstrated that RIPK1 kinase induces both caspase-8-mediated apoptosis and cell death-independent inflammation. Inhibition of RIPK1 kinase significantly protects against steatotic liver I/R injury by alleviating both hepatic apoptosis and inflammation. Additionally, we found that RIPK1 activation is induced by Z-DNA binding protein 1 (ZBP1) but not the canonical TNF-α pathway during steatotic liver I/R injury. Deletion of ZBP1 substantially decreases the steatotic liver I/R injury. Mechanistically, ZBP1 is amplified by palmitic acid-activated JNK pathway in steatotic livers. Upon I/R injury, excessive reactive oxygen species trigger ZBP1 activation by inducing its aggregation independent of the Z-nucleic acids sensing action in steatotic livers, leading to the kinase activation of RIPK1 and the subsequent aggravation of liver injury. Thus, ZBP1-mediated RIPK1-driven apoptosis and inflammation exacerbate steatotic liver I/R injury, which could be targeted to protect steatotic donor livers during transplantation.


Asunto(s)
Apoptosis , Caspasa 8 , Hígado Graso , Proteínas de Unión al ARN , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Daño por Reperfusión , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Daño por Reperfusión/genética , Animales , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Ratones , Humanos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Caspasa 8/metabolismo , Caspasa 8/genética , Hígado/patología , Hígado/metabolismo , Ratones Noqueados , Inflamación/patología , Inflamación/metabolismo , Inflamación/genética , Masculino , Trasplante de Hígado , Ratones Endogámicos C57BL
12.
Mol Plant Pathol ; 25(6): e13459, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38808386

RESUMEN

F-box protein is a subunit of the SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complex, which plays a critical role in regulating different pathways in plant immunity. In this study, we identified the rice (Oryza sativa) F-box protein OsFBX156, which targets the heat shock protein 70 (OsHSP71.1) to regulate resistance to the rice blast fungus Magnaporthe oryzae. Overexpression of OsFBX156 or knockout of OsHSP71.1 in rice resulted in the elevation of pathogenesis-related (PR) genes and an induction burst of reactive oxygen species (ROS) after flg22 and chitin treatments, thereby enhancing resistance to M. oryzae. Furthermore, OsFBX156 can promote the degradation of OsHSP71.1 through the 26S proteasome pathway. This study sheds lights on a novel mechanism wherein the F-box protein OsFBX156 targets OsHSP71.1 for degradation to promote ROS production and PR gene expression, thereby positively regulating rice innate immunity.


Asunto(s)
Resistencia a la Enfermedad , Proteínas F-Box , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Ubiquitinación , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Resistencia a la Enfermedad/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Especies Reactivas de Oxígeno/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Inmunidad de la Planta/genética , Ascomicetos/patogenicidad
13.
Chin J Traumatol ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38811319

RESUMEN

PURPOSE: We carried out the study aiming to explore and analyze the risk factors, the distribution of pathogenic bacteria, and their antibiotic-resistance characteristics influencing the occurrence of surgical site infection (SSI), to provide valuable assistance for reducing the incidence of SSI after traumatic fracture surgery. METHODS: A retrospective case-control study enrolling 3978 participants from January 2015 to December 2019 receiving surgical treatment for traumatic fractures was conducted at Tangdu Hospital of Air Force Medical University. Baseline data, demographic characteristics, lifestyles, variables related to surgical treatment, and pathogen culture were harvested and analyzed. Univariate analyses and multivariate logistic regression analyses were used to reveal the independent risk factors of SSI. A bacterial distribution histogram and drug-sensitive heat map were drawn to describe the pathogenic characteristics. RESULTS: Included 3978 patients 138 of them developed SSI with an incidence rate of 3.47% postoperatively. By logistic regression analysis, we found that variables such as gender (males) (odds ratio (OR) = 2.012, 95% confidence interval (CI): 1.235 - 3.278, p = 0.005), diabetes mellitus (OR = 5.848, 95% CI: 3.513 - 9.736, p < 0.001), hypoproteinemia (OR = 3.400, 95% CI: 1.280 - 9.031, p = 0.014), underlying disease (OR = 5.398, 95% CI: 2.343 - 12.438, p < 0.001), hormonotherapy (OR = 11.718, 95% CI: 6.269 - 21.903, p < 0.001), open fracture (OR = 29.377, 95% CI: 9.944 - 86.784, p < 0.001), and intraoperative transfusion (OR = 2.664, 95% CI: 1.572 - 4.515, p < 0.001) were independent risk factors for SSI, while, aged over 59 years (OR = 0.132, 95% CI: 0.059 - 0.296, p < 0.001), prophylactic antibiotics use (OR = 0.082, 95% CI: 0.042 - 0.164, p < 0.001) and vacuum sealing drainage use (OR = 0.036, 95% CI: 0.010 - 0.129, p < 0.001) were protective factors. Pathogens results showed that 301 strains of 38 species of bacteria were harvested, among which 178 (59.1%) strains were Gram-positive bacteria, and 123 (40.9%) strains were Gram-negative bacteria. Staphylococcus aureus (108, 60.7%) and Enterobacter cloacae (38, 30.9%) accounted for the largest proportion. The susceptibility of Gram-positive bacteria to Vancomycin and Linezolid was almost 100%. The susceptibility of Gram-negative bacteria to Imipenem, Amikacin, and Meropenem exceeded 73%. CONCLUSION: Orthopedic surgeons need to develop appropriate surgical plans based on the risk factors and protective factors associated with postoperative SSI to reduce its occurrence. Meanwhile, it is recommended to strengthen blood glucose control in the early stage of admission and for surgeons to be cautious and scientific when choosing antibiotic therapy in clinical practice.

14.
Cells ; 13(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38727294

RESUMEN

Information on long-term effects of postovulatory oocyte aging (POA) on offspring is limited. Whether POA affects offspring by causing oxidative stress (OS) and mitochondrial damage is unknown. Here, in vivo-aged (IVA) mouse oocytes were collected 9 h after ovulation, while in vitro-aged (ITA) oocytes were obtained by culturing freshly ovulated oocytes for 9 h in media with low, moderate, or high antioxidant potential. Oocytes were fertilized in vitro and blastocysts transferred to produce F1 offspring. F1 mice were mated with naturally bred mice to generate F2 offspring. Both IVA and the ITA groups in low antioxidant medium showed significantly increased anxiety-like behavior and impaired spatial and fear learning/memory and hippocampal expression of anxiolytic and learning/memory-beneficial genes in both male and female F1 offspring. Furthermore, the aging in both groups increased OS and impaired mitochondrial function in oocytes, blastocysts, and hippocampus of F1 offspring; however, it did not affect the behavior of F2 offspring. It is concluded that POA caused OS and damaged mitochondria in aged oocytes, leading to defects in anxiety-like behavior and learning/memory of F1 offspring. Thus, POA is a crucial factor that causes psychological problems in offspring, and antioxidant measures may be taken to ameliorate the detrimental effects of POA on offspring.


Asunto(s)
Conducta Animal , Mitocondrias , Oocitos , Estrés Oxidativo , Animales , Oocitos/metabolismo , Mitocondrias/metabolismo , Femenino , Ratones , Masculino , Ovulación , Ansiedad/metabolismo , Ansiedad/patología , Antioxidantes/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Blastocisto/metabolismo , Senescencia Celular , Memoria
15.
Dev Cell ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38781974

RESUMEN

Broad-spectrum disease resistance (BSR) is crucial for controlling plant diseases and relies on immune signals that are subject to transcriptional and post-translational regulation. How plants integrate and coordinate these signals remains unclear. We show here that the rice really interesting new gene (RING)-type E3 ubiquitin ligase OsRING113 targets APIP5, a negative regulator of plant immunity and programmed cell death (PCD), for 26S proteasomal degradation. The osring113 mutants in Nipponbare exhibited decreased BSR, while the overexpressing OsRING113 plants showed enhanced BSR against Magnaporthe oryzae (M. oryzae) and Xanthomonas oryzae pv. oryzae (Xoo). Furthermore, APIP5 directly suppressed the transcription of the Bowman-Birk trypsin inhibitor genes OsBBTI5 and AvrPiz-t-interacting protein 4 (APIP4). Overexpression of these two genes, which are partially required for APIP5-mediated PCD and disease resistance, conferred BSR. OsBBTI5 and APIP4 associated with and stabilized the pathogenesis-related protein OsPR1aL, which promotes M. oryzae resistance. Our results identify an immune module with integrated and coordinated hierarchical regulations that confer BSR in plants.

16.
Heliyon ; 10(10): e30055, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778994

RESUMEN

Sports plays a pivotal role in national development. To accurately predict college students' sports performance and motivate them to improve their physical fitness, this study constructs a sports achievement prediction system by using a U-Net Convolutional Neural Network (CNN) in machine learning. Firstly, the current state of physical education teachers' instructional proficiency is investigated and analyzed to identify existing problems. Secondly, an improved U-Net-based sports achievement prediction system is proposed. This method enhances the utilization and propagation of network features by incorporating dense connections, thus addressing gradient disappearance issues. Simultaneously, an improved mixed loss function is introduced to alleviate class imbalance. Finally, the effectiveness of the proposed system is validated through testing, demonstrating that the improved U-Net CNN algorithm yields superior results. Specifically, the prediction accuracy of the improved network for sports performance surpasses that of the original U-Net by 4.22 % and exceeds that of DUNet by 5.22 %. Compared with other existing prediction networks, the improved U-Net CNN model exhibits a superior achievement prediction ability. Consequently, the proposed system enhances teaching and learning efficiency and offers insights into applying artificial intelligence technology to smart classroom development.

17.
ACS Nano ; 18(22): 14176-14186, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38768371

RESUMEN

Two-dimensional (2D) organic-inorganic metal halide perovskites have gained immense attention as alternatives to three-dimensional (3D) perovskites in recent years. The hydrophobic spacers in the layered structure of 2D perovskites make them more moisture-resistant than 3D perovskites. Moreover, they exhibit unique anisotropic electrical transport properties due to a structural confinement effect. In this study, four lead-free Dion-Jacobson (DJ) Sn-based phase perovskite single crystals, 3AMPSnI4, 4AMPSnI4, 3AMPYSnI4, and 4AMPYSnI4 [AMP = (aminomethyl)-piperidinium, AMPY = (aminomethyl)pyridinium] are reported. Results reveal structural differences between them impacting the resulting optical properties. Namely, higher octahedron distortion results in a higher absorption edge. Density functional theory (DFT) is also performed to determine the trends in energy band diagrams, exciton binding energies, and formation energies due to structural differences among the four single crystals. Finally, a field-effect transistor (FET) based on 4AMPSnI4 is demonstrated with a respectable hole mobility of 0.57 cm2 V-1 s-1 requiring a low threshold voltage of only -2.5 V at a drain voltage of -40 V. To the best of our knowledge, this is the third DJ-phase perovskite FET reported to date.

18.
Chin J Traumatol ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38762419

RESUMEN

PURPOSE: To methodically assess the effectiveness of augmentative plating (AP) and exchange nailing (EN) in managing nonunion following intramedullary nailing for long bone fractures of the lower extremity. METHODS: PubMed, EMBASE, Web of Science, and the Cochrane Library were searched to gather clinical studies regarding the use of AP and EN techniques in the treatment of nonunion following intramedullary nailing of lower extremity long bones. The search was conducted up until May 2023. The original studies underwent an independent assessment of their quality, a process conducted utilizing the Newcastle-Ottawa scale. Data were retrieved from these studies, and meta-analysis was executed utilizing Review Manager 5.3. RESULTS: This meta-analysis included 8 studies involving 661 participants, with 305 in the AP group and 356 in the EN group. The results of the meta-analysis demonstrated that the AP group exhibited a higher rate of union (odds ratio: 8.61, 95% confidence intervals (CI): 4.12 - 17.99, p < 0.001), shorter union time (standardized mean difference (SMD): -1.08, 95 % CI: -1.79 - -0.37, p = 0.003), reduced duration of the surgical procedure (SMD: -0.56, 95 % CI: -0.93 - -0.19, p = 0.003), less bleeding (SMD: -1.5, 95 % CI: -2.81 - -0.18), p = 0.03), and a lower incidence of complications (relative risk: -0.17, 95 % CI: -0.27 - -0.06, p = 0.001). In the subgroup analysis, the time for union in the AP group in nonisthmal and isthmal nonunion of lower extremity long bones was shorter compared to the EN group (nonisthmal SMD: -1.94, 95 % CI: -3.28 - -0.61, p < 0.001; isthmal SMD: -1.08, 95 % CI: -1.64 - -0.52, p = 0.002). CONCLUSION: In the treatment of nonunion in diaphyseal fractures of the long bones in the lower extremity, the AP approach is superior to EN, both intraoperatively (with reduced duration of the surgical procedure and diminished blood loss) and postoperatively (with an elevated union rate, shorter union time, and lower incidence of complications). Specifically, in the management of nonunion of lower extremity long bones with non-isthmal and isthmal intramedullary nails, AP demonstrated shorter union time in comparison to EN.

19.
Medicine (Baltimore) ; 103(17): e37840, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669412

RESUMEN

To investigate the clinical efficacy and knee joint kinematic changes of posterior cruciate ligament (PCL) reconstruction assisted by Chinese knotting technique (CKT). A retrospective analysis was conducted on 88 cases of PCL reconstructive surgery admitted between September 2016 and September 2020. All patients were operated on by the same senior doctor and his team. The patients were divided into 2 groups according to whether the CKT was applied, with 44 cases in each group. Both groups received active rehabilitation treatment after surgery. All patients were followed up for more than 2 years. International knee documentation committee, hospital for special surgery (HSS), and Lysholm scores were used to evaluate the clinical efficacy of the 2 methods at 3, 12, and 24 months after surgery. The motion cycle and kinematic indices of the knee joint were measured by the Opti_Knee three-dimensional motion measurement system before surgery and at 3, 12, and 24 months after surgery. A secondary arthroscopic examination was performed at 12 months after surgery, MAS score was used to evaluate the secondary endoscopic examination of PCL. All the patients had wound healing in stage I without infection. International Knee in both sets Documentation Committee scores, HSS scores and Lysholm scores were gradually improved at all time points (P < .05); compared with the traditional group, the HSS score was higher in the reduction group 12 months after surgery (P < .05), but there was no significant difference at 24 months after surgery. 12 months and 24 months after 3 dimensional motion measurement system using Opti_Knee showed a reduction group before and after displacement and displacement of upper and lower range than the traditional group (P < 0. 05). One year after surgery, the good and good rate of MAS score reduction group was higher than traditional group. CKT assisted PCL reconstruction can improve the subjective function score of the affected knee joint and the results of secondary microscopy. Satisfactory knee kinematic function can be obtained in the early stage, and the anteroposteric relaxation of the knee joint can be reduced.


Asunto(s)
Reconstrucción del Ligamento Cruzado Posterior , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Artroscopía/métodos , Fenómenos Biomecánicos , Pueblos del Este de Asia , Articulación de la Rodilla/cirugía , Articulación de la Rodilla/fisiopatología , Ligamento Cruzado Posterior/cirugía , Reconstrucción del Ligamento Cruzado Posterior/métodos , Rango del Movimiento Articular , Estudios Retrospectivos , Técnicas de Sutura , Resultado del Tratamiento , China
20.
Dev Cell ; 59(12): 1609-1622.e4, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38640925

RESUMEN

Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Ácido Salicílico , Xanthomonas , Ciclopentanos/metabolismo , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Xanthomonas/patogenicidad , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Rhizoctonia , Transducción de Señal , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas/genética , Magnaporthe , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA