Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 308
Filtrar
1.
J Environ Sci (China) ; 148: 502-514, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095184

RESUMEN

Objective weather classification methods have been extensively applied to identify dominant ozone-favorable synoptic weather patterns (SWPs), however, the consistency of different classification methods is rarely examined. In this study, we apply two widely-used objective methods, the self-organizing map (SOM) and K-means clustering analysis, to derive ozone-favorable SWPs at four Chinese megacities in 2015-2022. We find that the two algorithms are largely consistent in recognizing dominant ozone-favorable SWPs for four Chinese megacities. In the case of classifying six SWPs, the derived circulation fields are highly similar with a spatial correlation of 0.99 between the two methods, and the difference in the mean frequency of each SWP is less than 7%. The six dominant ozone-favorable SWPs in Guangzhou are all characterized by anomaly higher radiation and temperature, lower cloud cover, relative humidity, and wind speed, and stronger subsidence compared to climatology mean. We find that during 2015-2022, the occurrence of ozone-favorable SWPs days increases significantly at a rate of 3.2 day/year, faster than the increases in the ozone exceedance days (3.0 day/year). The interannual variability between the occurrence of ozone-favorable SWPs and ozone exceedance days are generally consistent with a temporal correlation coefficient of 0.6. In particular, the significant increase in ozone-favorable SWPs in 2022, especially the Subtropical High type which typically occurs in September, is consistent with a long-lasting ozone pollution episode in Guangzhou during September 2022. Our results thus reveal that enhanced frequency of ozone-favorable SWPs plays an important role in the observed 2015-2022 ozone increase in Guangzhou.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Ozono , Tiempo (Meteorología) , Ozono/análisis , China , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos
2.
Chem Soc Rev ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129564

RESUMEN

Apoptosis, as type I cell death, is an active death process strictly controlled by multiple genes, and plays a significant role in regulating various activities. Mounting research indicates that the unique modality of cell apoptosis is directly or indirectly related to different diseases including cancer, autoimmune diseases, viral diseases, neurodegenerative diseases, etc. However, the underlying mechanisms of cell apoptosis are complicated and not fully clarified yet, possibly due to the lack of effective chemical tools for the nondestructive and real-time visualization of apoptosis in complex biological systems. In the past 15 years, various small-molecule fluorescent probes (SMFPs) for imaging apoptosis in vitro and in vivo have attracted broad interest in related disease diagnostics and therapeutics. In this review, we aim to highlight the recent developments of SMFPs based on enzyme activity, plasma membranes, reactive oxygen species, reactive sulfur species, microenvironments and others during cell apoptosis. In particular, we generalize the mechanisms commonly used to design SMFPs for studying apoptosis. In addition, we discuss the limitations of reported probes, and emphasize the potential challenges and prospects in the future. We believe that this review will provide a comprehensive summary and challenging direction for the development of SMFPs in apoptosis related fields.

3.
Int Immunopharmacol ; 140: 112814, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39094364

RESUMEN

The aim of this study was to investigated the effects of forsythiaside A (FA) on acute lung injury (ALI). The lung tissue pathological was detected by hematoxylin-eosin staining (HE) staining. Wet weight/dry weight (w/d) of the lung in mice was measured. Cytokine such as interleukin 1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α) were also detected. Compared with the vector group, the protein expression levels of TRAF6 and TAK1 the RNF99 group were significantly reduced. Ubiquitinated TRAF6 protein was increased after knockdown of RNF99. Finally, it was found that FA significantly ameliorated ALI via regulation of RNF99/TRAF6/NF-κB signal pathway. In conclusion, RNF99 was an important biomarker in ALI and FA alleviated ALI via RNF99/ TRAF6/NF-κB signal pathway.

4.
ACS Omega ; 9(30): 32837-32852, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39100340

RESUMEN

Important breakthroughs have recently been achieved in deep coalbed methane (CBM) exploration and development in regions such as the eastern margin of the Ordos Basin, China. Investigating the development characteristics of various-scale pores in deep coalbeds is of great significance for resource assessment and selection of favorable zones for CBM exploration. Herein, six deep coal samples were selected from the Shanxi and Taiyuan Formations in the Daning-Jixian block on the eastern margin of the Ordos Basin. Low-pressure CO2/N2 adsorption (LP-CO2/N2GA) and high-pressure mercury intrusion (HPMI) methods were employed to analyze pore volume, specific surface area, and pore size distribution, thereby evaluating the full-scale pore characteristics. Furthermore, the fractal dimension characteristics of deep coal rock pores were elucidated, revealing the influence of pore structure, burial depth, and coal composition. The results indicate that micropores in deep coal rocks have the highest volume and specific surface area proportions, while mesopores have the smallest volume proportion, and macropores make the least contribution to the total specific surface area. The V-S, Frenkel-Halsey-Hill, and Sierpinski models were suitable for calculating the fractal dimensions of micropores, mesopores, and macropores with LP-CO2GA, LP-N2GA, and HPMI experimental data, respectively. Other than the relatively smaller mesopore fractal dimension of samples 20-8 and 20-10, the micropore, mesopore, and macropore fractal dimensions successively increased in the other four samples. The comprehensive fractal dimension, which exhibited a decreasing trend with increasing pore volume and specific surface area, was negatively correlated with burial depth, mineral and moisture contents, and ash and volatile component yields, while it was positively correlated with vitrinite and fixed carbon contents.

5.
J Med Virol ; 96(7): e29768, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38978388

RESUMEN

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Asunto(s)
Pulmón , Infecciones por Orthomyxoviridae , Transducción de Señal , Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/genética , Nervio Vago/metabolismo , Ratones , Infecciones por Orthomyxoviridae/virología , Pulmón/virología , Pulmón/patología , Ratones Endogámicos C57BL , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/metabolismo , Humanos , Ratones Noqueados
6.
Angew Chem Int Ed Engl ; : e202409436, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016543

RESUMEN

The appearance of disordered lithium dendrites and fragile solid electrolyte interfaces (SEI) significantly hinder the serviceability of lithium metal batteries. Herein, guided by theoretical predictions, a multi-component covalent triazine framework with partially electronegative channels (4C-TA0.5TF0.5-CTF) is incorporated as a protective layer to modulate the interface stability of the lithium metal batteries. Notably, the 4C-TA0.5TF0.5-CTF with optimized electronic structure at the molecular level by fine-tuning the local acceptor-donor functionalities not only enhances the intermolecular interaction thereby providing larger dipole moment and improved crystallinity and mechanical stress, but also facilitates the beneficial effect of lithiophilic sites (C-F bonds, triazine cores, C=N linkages and aromatic rings) to further regulate the migration of Li+ and achieve a uniform lithium deposition behavior as determined by various in-depth in/ex situ characterizations. Due to the synergistic effect of multi-component organic functionalities, the 4C-TA0.5TF0.5-CTF modified full cells perform significantly better than the common two/three-component 2C-TA-CTF and 3C-TF-CTF electrodes, delivering an excellent capacity of 116.3 mAh g-1 (capacity retention ratio: 86.8%) after 1000 cycles at 5 C and improved rate capability. This work lays a platform for the prospective molecular design of improved organic framework relative artificial SEI for highly stable lithium metal batteries.

7.
Molecules ; 29(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998960

RESUMEN

The United Nations proposed the Sustainable Development Goals with the aim to make human settlements in cities resilient and sustainable. The excessive discharge of urban waste including sludge and garden waste can pollute groundwater and lead to the emission of greenhouse gases (e.g., CH4). The proper recycling of urban waste is essential for responsible consumption and production, reducing environmental pollution and addressing climate change issues. This study aimed to prepare biochar with high adsorption amounts of iodine using urban sludge and peach wood from garden waste. The study was conducted to examine the variations in the mass ratio between urban sludge and peach wood (2/1, 1/1, and 1/2) as well as pyrolysis temperatures (300 °C, 500 °C, and 700 °C) on the carbon yield and adsorption capacities of biochar. Scanning electron microscopy, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectrometry, powder X-ray diffraction, and elemental analysis were used to characterize the biochar produced at different pyrolysis temperatures and mass ratios. The results indicate that the carbon yield of biochar was found to be the highest (>60%) at a pyrolysis temperature of 300 °C across different pyrolysis temperatures. The absorbed amounts of iodine in the aqueous solution ranged from 86 to 223 mg g-1 at a mass ratio of 1:1 between urban sludge and peach wood, which were comparably higher than those observed in other mass ratios. This study advances water treatment by offering a cost-effective method by using biochar derived from the processing of urban sludge and garden waste.


Asunto(s)
Carbón Orgánico , Yodo , Pirólisis , Aguas del Alcantarillado , Carbón Orgánico/química , Yodo/química , Aguas del Alcantarillado/química , Adsorción , Temperatura , Jardines , Espectroscopía Infrarroja por Transformada de Fourier , Ciudades
8.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998982

RESUMEN

In this research, the authors studied the synthesis of a silicon-based quaternary ammonium material based on the coupling agent chloromethyl trimethoxysilane (KH-150) as well as its adsorption and separation properties for Th(IV). Using FTIR and NMR methods, the silicon-based materials before and after grafting were characterized to determine the spatial structure of functional groups in the silicon-based quaternary ammonium material SG-CTSQ. Based on this, the functional group grafting amount (0.537 mmol·g-1) and quaternization rate (83.6%) of the material were accurately calculated using TGA weight loss and XPS. In the adsorption experiment, the four materials with different grafting amounts showed different degrees of variation in their adsorption of Th(IV) with changes in HNO3 concentration and NO3- concentration but all exhibited a tendency toward anion exchange. The thermodynamic and kinetic experimental results demonstrated that materials with low grafting amounts (SG-CTSQ1 and SG-CTSQ2) tended to physical adsorption of Th(IV), while the other two tended toward chemical adsorption. The adsorption mechanism experiment further proved that the functional groups achieve the adsorption of Th(IV) through an anion-exchange reaction. Chromatographic column separation experiments showed that SG-CTSQ has a good performance in U-Th separation, with a decontamination factor for uranium in Th(IV) of up to 385.1, and a uranium removal rate that can reach 99.75%.

9.
Expert Opin Ther Pat ; 34(8): 593-610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38946486

RESUMEN

INTRODUCTION: Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED: There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION: FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Proteína-Tirosina Quinasas de Adhesión Focal , Neoplasias , Patentes como Asunto , Inhibidores de Proteínas Quinasas , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Química Farmacéutica , Desarrollo de Medicamentos , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
10.
J Agric Food Chem ; 72(31): 17248-17259, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39051932

RESUMEN

Apriona germari (Hope) presents a significant threat as a dangerous wood-boring pest, inflicting substantial harm to forest trees. Investigating the olfactory sensory system of A. germari holds substantial theoretical promise for developing eco-friendly control strategies. To date, however, the olfactory perception mechanism in A. germari remains largely unknown. Therefore, we performed transcriptome sequencing of A. germari across four distinct body parts: antennae, foreleg tarsal segments, mouthparts (maxillary and labial palps), and abdomen terminals, pinpointing the odorant binding protein (OBP) genes and analyzing their expression. We found eight AgerOBPs (5, 19, 23, 25, 29, 59, 63, 70) highly expressed in the antennae. In our competitive binding experiments, AgerOBP23 showed strong binding abilities to the pheromone component fuscumol acetate, eight plant volatiles (farnesol, cis-3-hexenal, nerolidol, myristol acetate, cis-3-hexenyl benzoate, (-)-α-cedrene, 3-ethylacetophenone, and decane), and four insecticides (chlorpyrifos, phoxim, indoxacarb, and cypermethrin). However, AgerOBP29 and AgerOBP63 did not show prominent binding activities to these tested chemicals. Through homology modeling and molecular docking, we identified the key amino acid sites involved in the binding process of AgerOBP23 to these ligands, which shed light on the molecular interactions underlying its binding specificity. Our study suggests that AgerOBP23 may serve as a potential target for future investigations of AgerOBP ligand binding. This approach is consistent with the reverse chemical ecology principle, establishing the groundwork for future studies focusing on attractant or repellent development by exploring further the molecular interactions between OBP and various compounds.


Asunto(s)
Proteínas de Insectos , Receptores Odorantes , Receptores Odorantes/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Animales , Simulación del Acoplamiento Molecular , Filogenia , Feromonas/metabolismo , Feromonas/química
12.
Sci Total Environ ; 928: 172321, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604373

RESUMEN

Understanding of the photochemical ozone (O3) pollution over the Pearl River Estuary (PRE) of southern China remains limited. We performed an in-depth analysis of volatile organic compounds (VOCs) data collected on an island (i.e., the Da Wan Shan Island, DWS) located at the downwind of Pearl River Delta (PRD) from 26 November to 15 December 2021. Abundances of O3 and its precursors were measured when the air masses originated from the inland PRD. We observed that the VOCs levels at the DWS site were lower, while the mixing ratio of O3 was higher, compared to those reported at inland PRD, indicating the occurrence of photochemical consumption of VOCs during the air masses transport, which was further confirmed by the composition and diurnal variations of VOCs, as well as ratios of specific VOCs. The simulation results from a photochemical box model showed that the O3 level in the outflow air masses of inland PRD (O3(out-flow)) was the dominant factor leading to the intensification of O3 pollution and the enhancement of atmospheric radical concentrations (ARC) over PRE, which was mainly contributed by the O3 production via photochemical consumption of VOCs during air masses transport. Overall, our findings provided direct quantitative evidence for the roles of outflow O3 and its precursors from inland PRD on O3 abundance and ARC over the PRE area, highlighting that alleviation of O3 pollution over PRE should focus on the impact of photochemical loss of VOCs in the outflow air masses from inland PRD.

13.
Front Endocrinol (Lausanne) ; 15: 1295677, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38572473

RESUMEN

The liver plays pivotal roles in nutrient metabolism, and correct hepatic adaptations are required in maternal nutrient metabolism during pregnancy. In this review, hepatic nutrient metabolism, including glucose metabolism, lipid and cholesterol metabolism, and protein and amino acid metabolism, is first addressed. In addition, recent progress on maternal hepatic adaptations in nutrient metabolism during pregnancy is discussed. Finally, the factors that regulate hepatic nutrient metabolism during pregnancy are highlighted, and the factors include follicle-stimulating hormone, estrogen, progesterone, insulin-like growth factor 1, prostaglandins fibroblast growth factor 21, serotonin, growth hormone, adrenocorticotropic hormone, prolactin, thyroid stimulating hormone, melatonin, adrenal hormone, leptin, glucagon-like peptide-1, insulin glucagon and thyroid hormone. Our vision is that more attention should be paid to liver nutrient metabolism during pregnancy, which will be helpful for utilizing nutrient appropriately and efficiently, and avoiding liver diseases during pregnancy.


Asunto(s)
Insulina , Hígado , Embarazo , Femenino , Humanos , Hígado/metabolismo , Insulina/metabolismo , Hormona del Crecimiento/metabolismo , Glucagón/metabolismo , Nutrientes
14.
Med Hypotheses ; 1862024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38617026

RESUMEN

Inflamm-aging is a condition of low-grade and chronic systemic inflammation characterized by a systemic increase in multiple inflammatory biomarkers such as tumor necrosis factor (TNF), interleukin 6 (IL-6), C-reactive protein (CRP), and CXCL9 (MIG) in experimental and clinical settings. However, despite the recent identification of extracellular procathepsin L (pCTS-L) as a novel mediator of inflammatory diseases such as sepsis, its possible role in inflamm-aging was previously not investigated. In the present study, we compared blood levels of pCTS-L and other 62 cytokines and chemokines between young and aged Balb/C mice by Western blotting and Cytokine Antibody Arrays. In light of the surprising finding of a marked increase in blood pCTS-L levels in aged mice, we propose that blood pCTS-L levels may serve as another biomarker of inflamm-aging. Given the capacity of pCTS-L in inducing various cytokines (e.g., TNF and IL-6), it will be important to test the hypothetic role of pCTS-L in inflamm-aging under experimental and clinical conditions.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38521445

RESUMEN

The MARK2 gene, coding microtubule affinity-regulating kinase or serine/threonine protein kinase, is an important modulator in organism microtubule generation and cell polarity. However, its role in the metamorphosis of insects remains unknown. In this study, we found a conserved miRNA, miR-7-5p, which targets MARK2 to participate in the regulation of the larval-pupal metamorphosis in Galeruca daurica. The dual luciferase reporter assay showed that miR-7-5p interacted with the 3' UTR of MARK2 and repressed its expression. The expression profiling of miR-7-5p and MARK2 displayed an opposite trend during the larval-adult development process. In in-vivo experiments, overexpression of miR-7-5p by injecting miR-7-5p agomir in the final instar larvae down-regulated MARK2 and up-regulated main ecdysone signaling pathway genes including E74, E75, ECR, FTZ-F1 and HR3, which was similar to the results from knockdown of MARK2 by RNAi. In contrast, repression of miR-7-5p by injecting miR-7-5p antagomir obtained opposite effects. Notably, both overexpression and repression of miR-7-5p in the final instar larvae caused abnormal molting and high mortality during the larval-pupal transition, and high mortality during the pupal-adult transition. The 20-hydroxyecdysone (20E) injection experiment showed that 20E up-regulated miR-7-5p whereas down-regulated MARK2. This study reveals that the accurate regulation of miRNAs and their target genes is indispensable for insect metamorphosis.


Asunto(s)
Escarabajos , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Escarabajos/genética , Metamorfosis Biológica/genética , Ecdisterona/farmacología , Larva/metabolismo
16.
Front Immunol ; 15: 1368448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550581

RESUMEN

The pathogenic mechanisms of bacterial infections and resultant sepsis are partly attributed to dysregulated inflammatory responses sustained by some late-acting mediators including the procathepsin-L (pCTS-L). It was entirely unknown whether any compounds of the U.S. Drug Collection could suppress pCTS-L-induced inflammation, and pharmacologically be exploited into possible therapies. Here, we demonstrated that a macrophage cell-based screening of a U.S. Drug Collection of 1360 compounds resulted in the identification of progesterone (PRO) as an inhibitor of pCTS-L-mediated production of several chemokines [e.g., Epithelial Neutrophil-Activating Peptide (ENA-78), Monocyte Chemoattractant Protein-1 (MCP-1) or MCP-3] and cytokines [e.g., Interleukin-10 (IL-10) or Tumor Necrosis Factor (TNF)] in primary human peripheral blood mononuclear cells (PBMCs). In vivo, these PRO-entrapping 2,6-dimethal-ß-cyclodextrin (DM-ß-CD) nanoparticles (containing 1.35 mg/kg PRO and 14.65 mg/kg DM-ß-CD) significantly increased animal survival in both male (from 30% to 70%, n = 20, P = 0.041) and female (from 50% to 80%, n = 30, P = 0.026) mice even when they were initially administered at 24 h post the onset of sepsis. This protective effect was associated with a reduction of sepsis-triggered accumulation of three surrogate biomarkers [e.g., Granulocyte Colony Stimulating Factor (G-CSF) by 40%; Macrophage Inflammatory Protein-2 (MIP-2) by 45%; and Soluble Tumor Necrosis Factor Receptor I (sTNFRI) by 80%]. Surface Plasmon Resonance (SPR) analysis revealed a strong interaction between PRO and pCTS-L (KD = 78.2 ± 33.7 nM), which was paralleled with a positive correlation between serum PRO concentration and serum pCTS-L level (ρ = 0.56, P = 0.0009) or disease severity (Sequential Organ Failure Assessment, SOFA; ρ = 0.64, P = 0.0001) score in septic patients. Our observations support a promising opportunity to explore DM-ß-CD nanoparticles entrapping lipophilic drugs as possible therapies for clinical sepsis.


Asunto(s)
Catepsina L , Precursores Enzimáticos , Sepsis , beta-Ciclodextrinas , Humanos , Masculino , Femenino , Ratones , Animales , Progesterona , Leucocitos Mononucleares
17.
Gastroenterol Rep (Oxf) ; 12: goae017, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38524186

RESUMEN

Background: Postoperative recurrence (POR) remains a major challenge for patients with Crohn's disease (CD). Gut microbial dysbiosis has been reported to be involved in the pathogenesis of POR. This study aims to investigate the relationship between fecal microbiome and endoscopic recurrence in patients with CD after ileocolonic resection. Methods: This is a cross-sectional study. Fecal samples were collected from 52 patients with CD after surgical intervention from 6 to 12 months before endoscopic examination. Endoscopic recurrence was defined as Rutgeerts score ≥ i2. The microbiome was analyzed by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene. Results: A total of 52 patients were included and classified into POR (n = 27) and non-POR (n = 25) groups. Compared with the non-POR group, the POR group had a significantly lower community richness (Chao1 index: 106.5 vs 124, P = 0.013) and separated microbial community (P = 0.007 for Adonis, P = 0.032 for Anosim), combined with different distribution of 16 gut microbiotas and decrease of 11 predicted metabolic pathways (P < 0.05). Lactobacillus and Streptococcus were identified to closely correlate to non-POR (P < 0.05) after controlling for confounding factors. Kaplan-Meier analysis indicated that the patients with higher abundance of Streptococcus experienced longer remission periods (P < 0.01), but this was not for Lactobacillus. The predicted ethylmalonyl-coA pathway related to increased amount of succinate was positively correlated with Streptococcus (r > 0.5, P < 0.05). Conclusions: The characteristic alterations of fecal microbiota are associated with postoperative endoscopic recurrence in patients with CD; particularly, high abundance of Streptococcus may be closely related to endoscopic remission.

19.
Pest Manag Sci ; 80(7): 3349-3357, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38385645

RESUMEN

BACKGROUND: Galeruca daurica has become a new pest on the Inner Mongolia grasslands since an abrupt outbreak in 2009 caused serious damage. As a pupa indicator during insect metamorphosis, the early response gene of the ecdysone signaling pathway, Broad-Complex (Br-C), plays a vital role in the growth and development of insects. MicroRNAs (miRNAs) are small non-coding RNAs which mediate various biological activities, but it is unknown whether and how Br-C is regulated by miRNAs. RESULTS: Temporal expression profiles revealed that miR-285 and Br-C basically displayed an opposite trend during larval-adult development, and Br-C was sharply up-regulated on the last day of final-instar larvae while miR-285 was significantly down-regulated. Both dual-luciferase reporter assay and miRNA-mRNA interaction assay indicated that miR-285 interacts with the coding sequence of Br-C and represses its expression. Not only overexpression but also downexpression of miR-285 led to the failure of larval to pupal to adult metamorphosis. In addition, both overexpression of miR-285 and silence of Br-C inhibited the expression of Br-C and other ecdysone signaling pathway genes, including E74, E75, ECR, FTZ-F1, and HR3. On the contrary, suppressing miR-285 obtained opposite results. Further experiments showed that 20-hydroxyecdysone down-regulated miR-285 and up-regulated Br-C and above-mentioned genes, whereas juvenile hormone alalogue (JHA) resulted in opposite effects. CONCLUSION: Our results reveal that miR-285 is involved in mediating the metamorphosis in G. daurica by targeting Br-C in the ecdysone signaling pathway. miR-285 and its target Br-C could be as a potential target for G. daurica management. © 2024 Society of Chemical Industry.


Asunto(s)
Proteínas de Insectos , Larva , Metamorfosis Biológica , MicroARNs , Mariposas Nocturnas , MicroARNs/genética , MicroARNs/metabolismo , Animales , Metamorfosis Biológica/genética , Larva/crecimiento & desarrollo , Larva/genética , Larva/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Pupa/crecimiento & desarrollo , Pupa/genética , Pupa/metabolismo , Transducción de Señal
20.
Environ Sci Technol ; 58(9): 4247-4256, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373403

RESUMEN

Nitrous acid (HONO) is an important source of hydroxyl radicals (OH) in the atmosphere. Precise determination of the absolute ultraviolet (UV) absorption cross section of gaseous HONO lays the basis for the accurate measurement of its concentration by optical methods and the estimation of HONO loss rate through photolysis. In this study, we performed a series of laboratory and field intercomparison experiments for HONO measurement between striping coil-liquid waveguide capillary cell (SC-LWCC) photometry and incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Specified HONO concentrations prepared by an ultrapure standard HONO source were utilized for laboratory intercomparisons. Results show a consistent ∼22% negative bias in measurements of the IBBCEAS compared with a SC-LWCC photometer. It is confirmed that the discrepancies occurring between these techniques are associated with the overestimation of the absolute UV absorption cross sections through careful analysis of possible uncertainties. We quantified the absorption cross section of gaseous HONO (360-390 nm) utilizing a custom-built IBBCEAS instrument, and the results were found to be 22-34% lower than the previously published absorption cross sections widely used in HONO concentration retrieval and atmospheric chemical transport models (CTMs). This suggests that the HONO concentrations retrieved by optical methods based on absolute absorption cross sections may have been underestimated by over 20%. Plus, the daytime loss rate and unidentified sources of HONO may also have evidently been overestimated in pre-existing studies. In summary, our findings underscore the significance of revisiting the absolute absorption cross section of HONO and the re-evaluation of the previously reported HONO budgets.


Asunto(s)
Contaminantes Atmosféricos , Ácido Nitroso , Ácido Nitroso/análisis , Gases/análisis , Contaminantes Atmosféricos/análisis , Análisis Espectral , Fotólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA