Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.293
Filtrar
1.
Food Chem ; 462: 141021, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226644

RESUMEN

Gelatin have excellent film-forming and barrier properties, but its lack of biological activity limits its application in packaging. In this study, fish gelatin incorporated with apple polyphenol/cumin essential oil composite films were successfully prepared by melt extrusion. The cross-linking existed in gelatin and apple polyphenol improved the thermal stability and oxidation resistance of the film. The synergistic effect of apple polyphenols and cumin essential oil decreased the sensitivity of the film to water, especially the water solubility decreased from 41.60 % to 26.07 %. The plasticization of essential oil nearly doubled the elongation at break while maintaining the tensile strength of the film (11.45 MPa). Furthermore, the FG-CEO-AP film can inhibit peroxide value to extend the shelf life about 20 days in the walnut oil preservation. In summary, the apple polyphenol/cumin essential oil of FG film exhibits excellent comprehensive properties and high preparation efficiency for utilization as an active packaging material.


Asunto(s)
Embalaje de Alimentos , Gelatina , Juglans , Aceites de Plantas , Embalaje de Alimentos/instrumentación , Gelatina/química , Juglans/química , Aceites de Plantas/química , Aceites Volátiles/química , Resistencia a la Tracción , Malus/química , Solubilidad
2.
J Environ Sci (China) ; 147: 50-61, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003066

RESUMEN

With the increasing severity of arsenic (As) pollution, quantifying the environmental behavior of pollutant based on numerical model has become an important approach to determine the potential impacts and finalize the precise control strategies. Taking the industrial-intensive Jinsha River Basin as typical area, a two-dimensional hydrodynamic water quality model coupled with Soil and Water Assessment Tool (SWAT) model was developed to accurately simulate the watershed-scale distribution and transport of As in the terrestrial and aquatic environment at high spatial and temporal resolution. The effects of hydro-climate change, hydropower station construction and non-point source emissions on As were quantified based on the coupled model. The result indicated that higher As concentration areas mainly centralized in urban districts and concentration slowly decreased from upstream to downstream. Due to the enhanced rainfall, the As concentration was significantly higher during the rainy season than the dry season. Hydro-climate change and the construction of hydropower station not only affected the dissolved As concentration, but also affected the adsorption and desorption of As in sediment. Furthermore, As concentration increased with the input of non-point source pollution, with the maximum increase about 30%, resulting that non-point sources contributed important pollutant impacts to waterways. The coupled model used in pollutant behavior analysis is general with high potential application to predict and mitigate water pollution.


Asunto(s)
Arsénico , Monitoreo del Ambiente , Ríos , Contaminantes Químicos del Agua , Arsénico/análisis , China , Contaminantes Químicos del Agua/análisis , Ríos/química , Monitoreo del Ambiente/métodos , Modelos Químicos , Modelos Teóricos
3.
J Environ Sci (China) ; 148: 665-682, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095198

RESUMEN

Emission characteristics of biogenic volatile organic compounds (BVOCs) from dominant tree species in the subtropical pristine forests of China are extremely limited. Here we conducted in situ field measurements of BVOCs emissions from representative mature evergreen trees by using dynamic branch enclosures at four altitude gradients (600-1690 m a.s.l.) in the Nanling Mountains of southern China. Composition characteristics as well as seasonal and altitudinal variations were analyzed. Standardized emission rates and canopy-scale emission factors were then calculated. Results showed that BVOCs emission intensities in the wet season were generally higher than those in the dry season. Monoterpenes were the dominant BVOCs emitted from most broad-leaved trees, accounting for over 70% of the total. Schima superba, Yushania basihirsuta and Altingia chinensis had relatively high emission intensities and secondary pollutant formation potentials. The localized emission factors of isoprene were comparable to the defaults in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), while emission factors of monoterpenes and sesquiterpenes were 2 to 58 times of those in the model. Our results can be used to update the current BVOCs emission inventory in MEGAN, thereby reducing the uncertainties of BVOCs emission estimations in forested regions of southern China.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Bosques , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , China , Contaminantes Atmosféricos/análisis , Árboles , Estaciones del Año
4.
Sci Rep ; 14(1): 21927, 2024 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304726

RESUMEN

Establishing predictive models for the pathological response and lymph node metastasis in locally advanced rectal cancer (LARC) treated with neoadjuvant chemoradiotherapy (nCRT) based on MRI radiomic features derived from the tumor and mesorectal compartment (MC). This study included 209 patients with LARC who underwent rectal MRI both before and after nCRT. The patients were divided into a training set (n = 146) and a test set (n = 63). Regions of interest (ROIs) for the tumor and MC were delineated on both pre- and post-nCRT MRI images. Radiomic features were extracted, and delta radiomic features were computed. The predictive endpoints were pathological complete response (pCR), pathological good response (pGR), and lymph node metastasis (LNM). Feature selection for various models involved sequentially removing features with a correlation coefficient > 0.9, and features with P-values ≥ 0.05 in univariate analysis, followed by LASSO regression on the remaining features. Logistic regression models were developed, and their performance was evaluated using the area under the receiver operating characteristic curve (AUC). Among the 209 LARC patients, the number of patients achieving pCR, pGR, and LNM were 44, 118, and 40, respectively. The optimal model for predicting each endpoint is the combined model that incorporates pre- and delta-radiomics features for both the tumor and MC. These models exhibited superior performance with AUC values of 0.874 (for pCR), 0.801 (for pGR), and 0.826 (for LNM), outperforming the MRI tumor regression grade (mrTRG) which yielded AUC values of 0.800, 0.715, and 0.603, respectively. The results demonstrate the potential utility of the tumor and MC radiomics features, in predicting treatment efficacy among LARC patients undergoing nCRT.


Asunto(s)
Metástasis Linfática , Imagen por Resonancia Magnética , Terapia Neoadyuvante , Neoplasias del Recto , Humanos , Neoplasias del Recto/terapia , Neoplasias del Recto/diagnóstico por imagen , Neoplasias del Recto/patología , Terapia Neoadyuvante/métodos , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Persona de Mediana Edad , Metástasis Linfática/diagnóstico por imagen , Anciano , Adulto , Resultado del Tratamiento , Curva ROC , Quimioradioterapia/métodos , Radiómica
6.
J Nanobiotechnology ; 22(1): 566, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39272206

RESUMEN

Breast cancer is the most common malignant tumor that threatens women's life and health, and metastasis often occurs in the advanced stage of breast cancer, leading to pathological bone destruction and seriously reducing patient quality of life. In this study, we coupled chlorin e6 (Ce6) with mono-(6-amino-6-deoxy)-beta-cyclodextrin (ß-CD) to form Ce6-CD, and combined ferrocene with the FFVLG3C peptide and PEG chains to form the triblock molecule Fc-pep-PEG. In addition, the IDO-1 inhibitor NLG919 was loaded with Ce6-CD and Fc-pep-PEG to construct the supramolecular nanoparticle NLG919@Ce6-CD/Fc-pep-PEG (NLG919@CF). After laser irradiation, Ce6 produced robust reactive oxidative species to induce tumor cell apoptosis. Simultaneously, ferrocene became charged, and Fc-pep-PEG dissociated from the spherical nanoparticles, enabling their transformation into nanofibers, which increased both the retention effect and the induction of ferroptosis. The released NLG919 reduced the number of regulatory T cells (Tregs) and restored the function of cytotoxic T lymphocytes (CTLs) by inhibiting the activity of IDO-1. Moreover, combined administration with an anti-PD-1 antibody further relieved immune suppression in the tumor microenvironment. This article presents a new strategy for the clinical treatment of breast cancer with bone metastasis and osteolysis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Neoplasias Óseas/secundario , Neoplasias Óseas/tratamiento farmacológico , Humanos , Animales , Ratones , Línea Celular Tumoral , Porfirinas/química , Porfirinas/uso terapéutico , Porfirinas/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Clorofilidas , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Nanopartículas/química , Compuestos Ferrosos/química , Compuestos Ferrosos/uso terapéutico , Terapia de Inmunosupresión/métodos
7.
Small ; : e2406958, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279402

RESUMEN

With the depletion of petroleum resources, the development of sustainable alternatives for plastic substitutes has grown in importance. It is urgently desirable yet challenging to design high-performance polyesters with extensive mechanical and prominent gas barrier properties. This work uses bio-based PBF polyester as a matrix, "leaf-shaped" carbon nanotube@boron nitride nano-sheet (CNT@BNNS) covalent hetero-junctions as functional fillers, to fabricate CNT@BNNS/PBF (denoted as CBNP) composite films through an "in-situ polymerizing and hot-pressing" strategy. The covalent CNT "stem" suppresses the re-stacking of BNNS "leaf", endowing hetero-structured CNT@BNNS illustrates superior stress transfer and physical barrier effect. The covalently hetero structure and high orientation degree of CNT@BNNS greatly improve the comprehensive performance of the CBNP composites, including excellent mechanical (strength of 76 MPa, modulus of 2.3 GPa, toughness of 85 MJ m-3, elongation at break of 193%) and gas barrier (O2 of 0.015 barrer, and H2O of 1.1 × 10-14 g cm cm-2 s-1 Pa-1) properties that are much higher than for pure PBF or other-type polyesters, and most engineering plastics. Moreover, the CBNP composites also boast easy recyclability, overcoming the tradeoff between high performance and easy recycling of traditional plastics, which makes the polyester composite competitive as a plastic substitute.

8.
Cell Oncol (Dordr) ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283477

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is a highly aggressive type of lung cancer with poor responses to traditional therapies such as surgery, radiotherapy, and chemotherapy. While immunotherapy has become an effective approach for treating multiple types of cancer, solid tumors frequently exhibit immune escape through various mechanisms, including downregulation of MHC I expression. However, whether the upregulation of MHC I expression can improve the immunotherapeutic effect on NSCLC remains unexplored. Suberoylanilide hydroxamic acid (SAHA) is a potent histone deacetylase (HDAC) inhibitor that has been applied clinically to treat lymphoma, but a high dose of SAHA kills tumor cells and normal cells without preference. Here, we report that low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by upregulating MHC I expression in NSCLC cells. METHODS: Flow cytometric analysis, quantitative real-time PCR and western blot were used to analyze the expression of MHC I, STAT1 and Smad2/3 in both human and mouse NSCLC cell lines after SAHA treatment. The nuclear translocation of phosphorylated STAT1 and Smad2/3 was investigated by western blot and immunofluorescence staining. The mechanisms underlying STAT1 and Smad2/3 upregulation were analyzed through database searches and chromatin immunoprecipitation-qPCR. Finally, we assessed the antitumor effect of specific CD8+ T cells with SAHA treatment in vivo and in vitro. RESULTS: We showed that low-dose SAHA upregulated the expression of MHC I in NSCLC cell lines without affecting cell viability. We also provided evidence that high levels of MHC I induced by SAHA promoted the activation, proliferation, and cytotoxicity of specific CD8+ T cells in mouse models. Mechanistically, low-dose SAHA increased the levels of H3K9ac and H3K27ac in the promoters of the STAT1, Smad2 and Smad3 genes in NSCLC cells by inhibiting HDAC activity, resulting in elevated expression levels of STAT1, Smad2 and Smad3. The nuclear translocation of phosphorylated STAT1 and Smad2/3 markedly upregulated the expression of MHC I in NSCLC cells. CONCLUSIONS: Low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by boosting MHC I expression in NSCLC cells. Thus, we revealed a key mechanism of SAHA-mediated enhanced antitumor immunity, providing insights into a novel immunotherapy strategy for NSCLC.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39283715

RESUMEN

BACKGROUND: Phosphodiesterases (PDEs) are enzymes that catalyze the hydrolysis of cyclic adenosine monophosphate AMP (cAMP) and/or cyclic guanosine monophosphate (cGMP). PDE inhibitors can mitigate chronic pain and depression when these disorders occur individually; however, there is limited understanding of their role in concurrent chronic pain and depression. We aimed to evaluate the mechanisms of action of PDE using two mouse models of concurrent chronic pain and depression. METHODS: C57BL/6J mice were subjected to partial sciatic nerve ligation (PSNL) to induce chronic neuropathic pain or injected with complete Freund's adjuvant (CFA) to induce inflammatory pain, and both animals showed depression-like behavior. First, we determined the change in PDE expression in both animal models. Next, we determined the effect of PDE7 inhibitor BRL50481 or hippocampal PDE7A knockdown on PSNL- or CFA-induced chronic pain and depression-like behavior. We also investigated the role of cAMP-protein kinase A (PKA)-cAMP response element binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling and neuroinflammation in the effect of PDE7A inhibition on PSNL- or CFA-induced chronic pain and depression-like behavior. RESULTS: This induction of chronic pain and depression in the two animal models upregulated hippocampal PDE7A. Oral administration of PDE7 inhibitor, BRL50481, or hippocampal PDE7A knockdown significantly reduced mechanical hypersensitivity and depression-like behavior. Hippocampal PDE7 inhibition reversed PSNL- or CFA-induced downregulation of cAMP and BDNF and the phosphorylation of PKA, CREB and p65. cAMP agonist forskolin, reversed these changes and caused milder behavioral symptoms of pain and depression. BRL50481 reversed neuroinflammation in the hippocampus in PSNL mice. CONCLUSIONS: Hippocampal PDE7A mediated concurrent chronic pain and depression in both mouse models by inhibiting cAMP-PKA-CREB-BDNF signaling Inhibiting PDE7A or activating cAMP-PKA-CREB-BDNF signaling are potential strategies to treat concurrent chronic pain and depression.

10.
Sensors (Basel) ; 24(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39275551

RESUMEN

Precise finite element modeling is critically important for the construction and maintenance of long-span suspension bridges. During the process of modeling, shape-finding and model calibration directly impact the accuracy and reliability. Scholars have provided numerous alternative proposals for the shape-finding of main cables in suspension bridges from both theoretical and finite element analysis perspectives. However, it is difficult to apply these solutions to suspension bridges with special components. Seeking a viable solution for such suspension bridges holds practical significance. The Nanjing Qixiashan Yangtze River Bridge is the first three-span suspension bridge in China. To maintain the configuration of the main cable, the suspension bridge is equipped with specialized suspenders near the anchors, referred to as displacement-limiting suspenders. It is the first suspension bridge in China to use displacement-limiting suspenders and their anchorage system. Taking the suspension bridge as a research background, this paper introduces a refined finite element modeling approach considering the effect of geometric nonlinearity. Firstly, based on the loop adjustment and temperature correction, the shape-finding and force assessment of the main cables are carried out. On this basis, a nonlinear finite element model of the bridge was established and calibrated, taking into account factors such as pylon settlement and cable saddle precession. Finally, the static and dynamic characteristics of the suspension bridge were thoroughly investigated. This study aims to provide a reference for the design, construction and operation of the three-span continuous suspension bridge.

11.
J Hazard Mater ; 480: 135764, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39276733

RESUMEN

Biomass serves as a sustainable energy source; however, the environmental risks associated with polycyclic aromatic hydrocarbons (PAHs) emitted from industrial biomass-fueled boilers are not well understood. This study analyzed 16 priority PAHs in both particulate and gaseous phases from 13 representative real-world industrial biomass-fueled boilers. Flue gas samples were collected from the stacks and analyzed using advanced techniques. Total PAHs concentrations ranged from 1.36 to 8870 µg m-3 (9 % O2 v/v), with benzo[a]pyrene emissions from certain boilers exceeding the allowable emissions standards for the coking chemical and petroleum refining industries in China. PAHs were predominantly found in the gaseous phase, with both gas and particle phases exhibiting similar toxicity. The average emission factor (EFmass) was 9.23 mg kg-1, while the toxicity-equivalent emission factors (EFCEQ, EFMEQ, and EFTEQ) were 1.96 × 10-2, 1.39 × 10-2 and 7.61 × 10-4 mg kg-1, respectively. It is estimated that annual PAH emissions from 2020 to 2050 will significantly decrease if biomass is used as industrial fuel in boilers (0.61 to 1.32 Gg y-1) instead of being openly burned in the field (3.39 to 7.21 Gg y-1). Overall, this study provides a comprehensive evaluation of PAH emissions from industrial biomass combustion, offering valuable data for future research and policy-making.

12.
Pestic Biochem Physiol ; 204: 106099, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277422

RESUMEN

Echinochloa crus-galli (L.) P. Beauv is a monocotyledonous weed that seriously infests rice fields. Florpyrauxifen-benzyl, a novel synthetic auxin herbicide commercialized in China in 2018, is an herbicide for controlling E. crus-galli. However, a suspected resistant population (R) collected in 2012 showed resistance to the previously unused florpyrauxifen-benzyl. Whole-plant dose-response bioassay indicated that the R population evolved high resistance to quinclorac and florpyrauxifen-benzyl. Pretreatment with P450 inhibitors did not influence the GR50 of E. crus-galli to florpyrauxifen-benzyl. The expression of target receptor EcAFB4 was down-regulated in the R population, leading to the reduced response to florpyrauxifen-benzyl (suppresses over-production of ethylene and ABA). We verified this resistance mechanism in the knockout OsAFB4 in Oryza sativa L. The Osafb4 mutants exhibited high resistance to florpyrauxifen-benzyl and moderate resistance to quinclorac. Furthermore, DNA methylation in the EcAFB4 promoter regulated its low expression in the R population after florpyrauxifen-benzyl treatment. In summary, the low expression of the auxin receptor EcAFB4 confers target resistance to the synthetic auxin herbicide florpyrauxifen-benzyl in the R- E. crus-galli.


Asunto(s)
Echinochloa , Resistencia a los Herbicidas , Herbicidas , Proteínas de Plantas , Echinochloa/efectos de los fármacos , Echinochloa/genética , Echinochloa/metabolismo , Herbicidas/farmacología , Resistencia a los Herbicidas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/genética , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Quinolinas/farmacología , Malezas/efectos de los fármacos , Malezas/genética , Malezas/metabolismo
13.
Front Nutr ; 11: 1445369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39285869

RESUMEN

Objective: Exploring the association between common mineral intake and the risk of colorectal cancer (CRC). Methods: We utilized the multivariate Cox proportional hazards model to assess the association between intake of minerals and the risk of CRC, estimating hazard ratios (HRs) and 95% confidence intervals (CIs). Results: A total of 101,686 eligible participants were included in the analysis of this study, including 1,100 CRC cases. After adjusting for potential confounders, we found that total zinc intake (HRQ4vs.Q1: 0.79, 95%CI 0.67-0.93; P for trend <0.05), iron intake (HRQ4vs.Q1: 0.81, 95%CI 0.68-0.96; P for trend <0.05), copper intake (HRQ4vs.Q1: 0.80, 95%CI 0.68-0.95; P for trend <0.05), selenium intake (HRQ4vs.Q1: 0.83, 95%CI 0.69-0.98; P for trend <0.05) were significantly negatively associated with the incidence of CRC, but magnesium intake in the appropriate range is associated with a reduced risk of CRC (HRQ3vs.Q1: 0.77, 95%CI 0.65-0.91; P for trend >0.05). Conclusion: Our findings suggested that an appropriate intake of total zinc, iron, copper, selenium and magnesium were associated with lower CRC risk.

14.
Angew Chem Int Ed Engl ; : e202410978, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287021

RESUMEN

Efficient and stable bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts are urgently needed to unlock the full potential of zinc-air batteries (ZABs). High-valence oxides (HVOs) and high entropy oxides (HEOs) are suitable candidates for their optimal electronic structures and stability but suffer from demanding synthesis. Here, a low-cost fluorine-lodged high-valent high-entropy layered double hydroxide (HV-HE-LDH) (FeCoNi2F4(OH)4) is conveniently prepared through multi-ions co-precipitation, where F- are firmly embedded into the individual hydroxide layers. Spectroscopic detections and theoretical simulations reveal high valent metal cations are obtained in FeCoNi2F4(OH)4, which enlarge the energy band overlap between metal 3d and O 2p, enhancing the electronic conductivity and charge transfer, thus affording high intrinsic OER catalytic activity. More importantly, the strengthened metal-oxygen (M-O) bonds and stable octahedral geometry (M-O(F)6) in FeCoNi2F4(OH)4 prevent structural reorganization, rendering long-term catalytic stability. Furthermore, an efficient three-phase reaction interface with fast oxygen transportation was constructed, significantly improving the ORR activity. ZABs assembled with FeCoNi2F4(OH)4@HCC (hydrophobic carbon cloth) cathodes deliver a top performance with high round-trip energy efficiency (60.6% at 10 mA cm-2) and long-term stability (efficiency remains at 58.8% after 1050 charge-discharge cycles).

15.
Bioconjug Chem ; 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39287188

RESUMEN

Currently, pulmonary complications such as lung infections during the perioperative period are still the main cause of prolonged hospitalization and death in patients with lung injury due to the lack of effective drugs. Clusterzyme, a kind of artificial enzyme with a high enzyme-like activity and safety profile, exhibits good effects on reducing oxidative stress and immunomodulation. Here, we present the functionalized patches that is administered on the lung airways and rescues the injured organ via clusterzymes. The long-term antioxidant capacity of the patches significantly ameliorated lipopolysaccharide-induced lung function impairment with a significant reduction in lung goblet cell metaplasia and oxidative stress. The inflammatory factors such as cytokines interleukin-1ß, interleukin-6, and tumor necrosis factor-α levels decreased by 50%, while the mtDNA copy number increased by 50% and ATP production increased by 100%. Mice lung function was significantly improved, suggesting that the patches can rescue lung injury by modulating oxidative stress and immune responses as well as protecting the mitochondria, providing an avenue for effective intervention of lung injury.

16.
Biomaterials ; 314: 122839, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39288618

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by destructive effects. Although current therapies utilizing antibodies against inflammatory cytokines have shown some success, the inhibition of a single inflammatory molecule may not suffice to impede the progression of RA due to the intricate pathogenesis involving multiple molecules. In this study, we have developed an intelligent transformable peptide, namely BP-FFVLK-DSGLDSM (BFD). BFD has the ability to self-assemble into spherical nanoparticles in water or in the blood circulation to facilitate their delivery and distribution. When endocytosed into immune cells, BFD can identify and attach to phosphorylation sites on IκBα and in situ transform into a nanofibrous network coating NF-κB/IκBα complexes, blocking the phosphorylation and degradation of IκBα. As a result, BFD enables decreasing expression of proinflammatory mediators. In the present study, we demonstrate that BFD exhibits notable efficacy in alleviating arthritis-related manifestations, such as joints and tissues swelling, as well as bone and cartilage destruction on the collagen-induced arthritis (CIA) rat model. The investigation of intracellular biodistribution, phosphorylation of IκBα, and cytokine detection in culture medium supernatant, joint tissue, and serum exhibits strong associations with therapeutic outcomes. The utilization of transformable peptide presents a novel approach for the management of inflammatory diseases.

17.
Plant Biotechnol J ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312475

RESUMEN

It is well known that the overall quality of japonica/geng rice is superior to that of indica/xian rice varieties. However, the molecular mechanisms underlying the quality disparities between these two subspecies of rice are still largely unknown. In this study, we have pinpointed a gene homologous to SLR1, termed LCG1, exhibiting significant expression during early caryopsis development and playing a specific role in regulating rice chalkiness and taste by affecting the accumulation of grain storage components, starch granule structure and chain length distribution of amylopectin. LCG1 physically interacts with OsBP5 and indirectly influences the expression of the amylose synthesis gene Waxy (Wx) by hindering the transcriptional activity of the OsBP5/OsEBP89 complex. Notably, sequence variations in the promoter region of LCG1 result in enhanced transcription in japonica rice accessions. This leads to elevated LCG1 expression in CSSL-LCG1Nip, thereby enhancing rice quality. Our research elucidates the molecular mechanism underlying the impact of the LCG1-OsBP5/OsEBP89-Wx regulatory pathway on rice chalkiness and taste quality, offering new genetic resources for improving the indica rice quality.

18.
Adv Mater ; : e2407826, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313982

RESUMEN

The extended use of androgen deprivation therapy (ADT) may often lead to the progression from castration-sensitive prostate cancer (CSPC) to castration-resistant prostate cancer (CRPC) in prostate cancer. To address this, it is essential to inhibit the nuclear translocation of the androgen receptor (AR) as part of an effective disease-modifying strategy. Microtubules play a central role in facilitating AR nuclear translocation, highlighting their importance as a therapeutic target. In this regard, a designated as the targeted microtubules transformable nanopeptide system (MTN) is developed. This system is designed to disrupt microtubule structure and function through dual-targeting of prostate-specific membrane antigen (PSMA) and ß-tubulin. Initially, MTN targets prostate cells via PSMA and then specifically binds to ß-tubulin within microtubules, leading to the formation of nanofibers. These nanofibers subsequently induce the polymerization of microtubules, thereby disrupting AR transport. Notably, MTN exhibits efficient and prolonged suppression of prostate cancer across the spectrum from CSPC to CRPC, with a highly favorable safety profile in normal cells. These findings highlight the potential of MTN as a novel and promising approach for comprehensive prostate cancer therapy throughout its entire progression.

20.
Food Chem X ; 24: 101790, 2024 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-39296481

RESUMEN

Plums (Prunus salicina and Prunus domestica) are prevalent in southwestern China, and have attracted interest owing to their delectable taste and exceptional nutritional properties. Therefore, this study aimed to investigate the nutritional and flavor properties of plum to improve its nutritional utilization. Specifically, we determined the soluble sugars, organic acids, and phenolic components in 86 accessions using high-performance liquid chromatography. Notably, glucose, fructose, malic, and quinic acids were the predominant sweetness and acidity in plums, with sucrose contributing more to the sweetness of the flesh than the peel. Moreover, The peel contains 5.5 fold more phenolics than flesh, epicatechin, gallic acid, and proanthocyanidins C1 and B2 were the primary sources of astringency. Correlation and principal component analyses showed eight core factors for plum flavor rating, and a specific rating criterion was established. Conclusively, these findings provide information on the integrated flavor evaluation criteria and for enhancing optimal breeding of plums.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA