Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.656
Filtrar
1.
J Biomed Opt ; 30(Suppl 1): S13702, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39034960

RESUMEN

Significance: Near-infrared autofluorescence (NIRAF) utilizes the natural autofluorescence of parathyroid glands (PGs) to improve their identification during thyroid surgeries, reducing the risk of inadvertent removal and subsequent complications such as hypoparathyroidism. This study evaluates NIRAF's effectiveness in real-world surgical settings, highlighting its potential to enhance surgical outcomes and patient safety. Aim: We evaluate the effectiveness of NIRAF in detecting PGs during thyroidectomy and central neck dissection and investigate autofluorescence characteristics in both fresh and paraffin-embedded tissues. Approach: We included 101 patients diagnosed with papillary thyroid cancer who underwent surgeries in 2022 and 2023. We assessed NIRAF's ability to locate PGs, confirmed via parathyroid hormone assays, and involved both junior and senior surgeons. We measured the accuracy, speed, and agreement levels of each method and analyzed autofluorescence persistence and variation over 10 years, alongside the expression of calcium-sensing receptor (CaSR) and vitamin D. Results: NIRAF demonstrated a sensitivity of 89.5% and a negative predictive value of 89.1%. However, its specificity and positive predictive value (PPV) were 61.2% and 62.3%, respectively, which are considered lower. The kappa statistic indicated moderate to substantial agreement (kappa = 0.478; P < 0.001 ). Senior surgeons achieved high specificity (86.2%) and PPV (85.3%), with substantial agreement (kappa = 0.847; P < 0.001 ). In contrast, junior surgeons displayed the lowest kappa statistic among the groups, indicating minimal agreement (kappa = 0.381; P < 0.001 ). Common errors in NIRAF included interference from brown fat and eschar. In addition, paraffin-embedded samples retained stable autofluorescence over 10 years, showing no significant correlation with CaSR and vitamin D levels. Conclusions: NIRAF is useful for PG identification in thyroid and neck surgeries, enhancing efficiency and reducing inadvertent PG removals. The stability of autofluorescence in paraffin samples suggests its long-term viability, with false positives providing insights for further improvements in NIRAF technology.


Asunto(s)
Imagen Óptica , Glándulas Paratiroides , Espectroscopía Infrarroja Corta , Tiroidectomía , Humanos , Glándulas Paratiroides/cirugía , Glándulas Paratiroides/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Imagen Óptica/métodos , Adulto , Espectroscopía Infrarroja Corta/métodos , Adhesión en Parafina/métodos , Anciano , Cáncer Papilar Tiroideo/cirugía , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/análisis
2.
J Environ Sci (China) ; 147: 101-113, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003032

RESUMEN

Control of N-nitrosodimethylamine (NDMA) in drinking water could be achieved by removing its precursors as one practical way. Herein, superfine powdered activated carbons with a diameter of about 1 µm (SPACs) were successfully prepared by grinding powdered activated carbon (PAC, D50=24.3 µm) and applied to remove model NDMA precursors, i.e. ranitidine (RAN) and nizatidine (NIZ). Results from grain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size, and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ. Moreover, kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path. Furthermore, performance comparison experiments suggested that the removal of RAN and NIZ (C0=0.5 mg/L) could reach 61.3% and 60%, respectively, within 5 min, when the dosage of SAPC-1.1 (D50=1.1 µm) was merely 5 mg/L, while PAC-24.3 could only eliminate 17.5% and 18.6%. The adsorption isotherm was well defined by Langmuir isotherm model, indicating that the adsorption of RAN/NIZ was a monolayer coverage process. The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent, and high adsorption capacity could be observed under the condition of pH > pka+1. The coexistence of humic acid (HA) had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously. The coexistence of anions had little effect on the adsorption also. This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.


Asunto(s)
Carbón Orgánico , Dimetilnitrosamina , Tamaño de la Partícula , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Dimetilnitrosamina/química , Cinética , Modelos Químicos
3.
J Hazard Mater ; 477: 135351, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39088951

RESUMEN

Organophosphate esters (OPEs) pose hazards to both humans and the environment. This study applied target screening to analyze the concentrations and detection frequencies of OPEs in the soil and groundwater of representative contaminated sites in the Pearl River Delta. The clusters and correlation characteristics of OPEs in soil and groundwater were calculated by self-organizing map (SOM). The risk assessment and partitions of OPEs in industrial park soil and groundwater were conducted. The results revealed that 14 out of 23 types of OPEs were detected. The total concentrations (Σ23OPEs) ranged from 1.931 to 743.571 ng/L in the groundwater, and 0.218 to 79.578 ng/g in the soil, the former showed highly soluble OPEs with high detection frequencies and concentrations, whereas the latter exhibited the opposite trend. SOM analysis revealed that the distribution of OPEs in the soil differed significantly from that in the groundwater. In the industrial park, OPEs posed acceptable risks in both the soil and groundwater. The soil could be categorized into Zone I and II, and the groundwater into Zone I, II, and III, with corresponding management recommendations. Applying SOM to analyze the characteristics and partitions of OPEs may provide references for other new pollutants and contaminated sites.

4.
Opt Lett ; 49(15): 4186-4189, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090890

RESUMEN

Traditional designs driven by symmetry-protected bound states in the continuum (SP-BICs) hardly support independent dual-band resonances, and they require extremely small perturbations to obtain an ultrahigh-Q. Here, we propose an SP-BIC-driven structure composed of a metasurface and a resonator, which supports independent dual-band resonances and enables ultrahigh-Q at large perturbations. The underlying mechanism enabling this is to form reasonable eigenfield distributions of two BICs by coating a dielectric layer on the metasurface. One eigenfield is confined within the metasurface and the bottom of the resonator, while the other one concentrates at the top of the resonator. Thus, two resonances with different originations can be supported, and the effect of metasurface perturbations on the eigenfields is weakened. This work provides a promising pathway for unlocking the potential of SP-BICs, enhancing light trapping and manipulation across diverse applications.

6.
ACS Nano ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086076

RESUMEN

Insufficient angiogenic stimulation and dysregulated glycolipid metabolism in senescent vascular endothelial cells (VECs) constitute crucial features of vascular aging. Concomitantly, the generation of excess senescence-associated secretory phenotype (SASP) and active immune-inflammatory responses propagates within injured vessels, tissues, and organs. Until now, targeted therapies that efficiently rectify phenotypic abnormalities in senescent VECs have still been lacking. Here, we constructed a Pd/hCeO2-BMS309403@platelet membrane (PCBP) nanoheterostructured capsule system loaded with fatty acid-binding protein 4 (FABP4) inhibitors and modified with platelet membranes and investigated its therapeutic role in aged mice. PCBP showed significant maintenance in aged organs and demonstrated excellent biocompatibility. Through cyclic tail vein administration, PCBP extended the lifespan and steadily ameliorated abnormal phenotypes in aged mice, including SASP production, immune and inflammatory status, and age-related metabolic disorders. In senescent ECs, PCBP mediated the activation of vascular endothelial growth factor (VEGF) signaling and glycolysis and inhibition of FABP4 by inducing the synthesis of hypoxia-inducible factor-1α, thereby reawakening neovascularization and restoring glycolipid metabolic homeostasis. In conclusion, the PCBP nanocapsule system provides a promising avenue for interventions against aging-induced dysfunction.

7.
Front Immunol ; 15: 1414594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091506

RESUMEN

Hepatitis B Virus (HBV) is a stealthy and insidious pathogen capable of inducing chronic necro-inflammatory liver disease and hepatocellular carcinoma (HCC), resulting in over one million deaths worldwide per year. The traditional understanding of Chronic Hepatitis B (CHB) progression has focused on the complex interplay among ongoing virus replication, aberrant immune responses, and liver pathogenesis. However, the dynamic progression and crucial factors involved in the transition from HBV infection to immune activation and intrahepatic inflammation remain elusive. Recent insights have illuminated HBV's exploitation of the sodium taurocholate co-transporting polypeptide (NTCP) and manipulation of the cholesterol transport system shared between macrophages and hepatocytes for viral entry. These discoveries deepen our understanding of HBV as a virus that hijacks hepatocyte metabolism. Moreover, hepatic niche macrophages exhibit significant phenotypic and functional diversity, zonal characteristics, and play essential roles, either in maintaining liver homeostasis or contributing to the pathogenesis of chronic liver diseases. Therefore, we underscore recent revelations concerning the importance of hepatic niche macrophages in the context of viral hepatitis. This review particularly emphasizes the significant role of HBV-induced metabolic changes in hepatic macrophages as a key factor in the transition from viral infection to immune activation, ultimately culminating in liver inflammation. These metabolic alterations in hepatic macrophages offer promising targets for therapeutic interventions and serve as valuable early warning indicators, shedding light on the disease progression.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B Crónica , Hígado , Macrófagos , Humanos , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Animales , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Hígado/patología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/metabolismo , Hepatitis B Crónica/virología , Inflamación/inmunología , Inflamación/metabolismo , Hepatocitos/metabolismo , Hepatocitos/inmunología , Hepatocitos/virología
8.
Nano Lett ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39094116

RESUMEN

Component modulation endows Mn-based electrodes with prominent energy storage properties due to their adjustable crystal structure characteristics. Herein, ZnMn2(PO4)2·nH2O (ZMP·nH2O) was obtained by a hydration reaction from ZnMn2(PO4)2 (ZMP) during an electrode-aging evolution. Benefiting from the introduction of lattice H2O molecules into the ZMP structure, the ion transmission path has been expanded along with the extended d-spacing, which will further facilitate the ZMP → ZMP·nH2O phase evolution and electrochemical reaction kinetics. Meanwhile, the hydrogen bond can be generated between H2O and O in PO43-, which strengthens the structure stability of ZMP·nH2O and lowers the conversion barrier from ZMP to ZMP·4H2O during the Zn2+ uptake/removal process. Thereof, ZMP·nH2O delivers enhanced electrochemical reaction kinetics with robust structure tolerance (106.52 mA h g-1 at 100 mA g-1 over 620 cycles). This high-energy aqueous Zn||ZMP·nH2O battery provides a facile strategy for engineering and exploration of high-performance ZIBs to realize the practical application of Mn-based cathodes.

9.
Sci Total Environ ; : 175169, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094663

RESUMEN

The toxic effects of nanoparticles have been increasingly investigated, but there has been limited research on amphibians, especially those of conservation value. This study examined the effects of different concentrations (0, 0.04, 0.2, 1, 5 mg/L) of polystyrene nanoplastics (PS-NPs, 80 nm) on the short-term exposure (7 d) of Andrias davidianus. Results demonstrated the concentration-dependent enrichment of PS-NPs in the intestine. Histological lesions displayed increased hepatic macrophages with cellular rupture, broken intestinal villi, decreased cuprocytes and crypt depression. Antioxidant- and inflammation-related enzyme activities were analysed, and it was found that hepatic and intestinal MDA content and CAT activity were highest in the N-1 group and SOD activity was highest in the N-0.2 group (p < 0.05). AKP activity continued to decline, and iNOS activity was highest in the N-0.2 group (p < 0.05). il-10, tgf-ß, bcl-w and txnl1 were significantly downregulated in the N-0.2 group, while il-6 and il-8 were markedly upregulated in the N-0.2 group (p < 0.05). Exposing to PS-NPs decreased probiotic bacteria (Cetobacterium, Akkermansia) and increased pathogenic bacteria (Lachnoclostridium). Our results suggest that NPs exposure can have deleterious effects on salamanders, which predicts that NPs contamination may lead to continued amphibian declines. Therefore, we strongly recommend that attention be paid to amphibians, especially endangered species, in the field of NPs.

10.
Artículo en Inglés | MEDLINE | ID: mdl-39095328

RESUMEN

BACKGROUND: Alcohol use disorder (AUD) is a complex condition, and it remains unclear which specific neuronal substrates mediate alcohol-seeking and -taking behaviors. Engram cells and their related ensembles, which encode learning and memory, may play a role in this process. We aimed to assess the precise neural substrates underlying alcohol-seeking and -taking behaviors and determine how they may affect one another. METHODS: Using FLiCRE (Fast Light and Calcium-Regulated Expression; a newly developed technique which permits the trapping of acutely activated neuronal ensembles) and operant self-administration (OSA), we tagged striatal neurons activated during alcohol-taking behaviors. We used FLiCRE to express an inhibitory halorhodopsin in alcohol-taking neurons, permitting loss-of-function manipulations. RESULTS: We found that the inhibition of OSA-tagged alcohol-taking neurons decreased both alcohol-seeking and -taking behaviors in future OSA trials. In addition, optogenetic inhibition of these OSA-tagged alcohol-taking neurons during extinction training facilitated the extinction of alcohol-seeking behaviors. Furthermore, inhibition of these OSA-tagged alcohol-taking neurons suppressed the reinstatement of alcohol-seeking behaviors, but, interestingly, it did not significantly suppress alcohol-taking behaviors during reinstatement. CONCLUSIONS: Our findings suggest that alcohol-taking neurons are crucial for future alcohol-seeking behaviors during extinction and reinstatement. These results may help in the development of new therapeutic approaches to enhance extinction and suppress relapse in individuals with AUD.

11.
BMC Genomics ; 25(1): 755, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095713

RESUMEN

BACKGROUND: China is the hotspot of global freshwater crab diversity, but their wild populations are facing severe pressures associated with anthropogenic factors, necessitating the need to map their taxonomic and genetic diversity and design conservation policies. RESULTS: Herein, we sequenced the mitochondrial genome of a Chinese freshwater crab species Bottapotamon fukienense, and found that it is fragmented into two chromosomes. We confirmed that fragmentation was not limited to a single specimen or population. Chromosome 1 comprised 15,111 base pairs (bp) and there were 26 genes and one pseudogene (pseudo-nad1) encoded on it. Chromosome 2 comprised 8,173 bp and there were 12 genes and two pseudogenes (pseudo-trnL2 and pseudo-rrnL) encoded on it. Combined, they comprise the largest mitogenome (23,284 bp) among the Potamidae. Bottapotamon was the only genus in the Potamidae dataset exhibiting rearrangements of protein-coding genes. Bottapotamon fukienense exhibited average rates of sequence evolution in the dataset and did not differ in selection pressures from the remaining Potamidae. CONCLUSIONS: This is the first experimentally confirmed fragmentation of a mitogenome in crustaceans. While the mitogenome of B. fukienense exhibited multiple signs of elevated mitogenomic architecture evolution rates, including the exceptionally large size, duplicated genes, pseudogenisation, rearrangements of protein-coding genes, and fragmentation, there is no evidence that this is matched by elevated sequence evolutionary rates or changes in selection pressures.


Asunto(s)
Genoma Mitocondrial , Animales , Cromosomas/genética , Filogenia , Evolución Molecular , Braquiuros/genética , Braquiuros/clasificación , Seudogenes
12.
Gene ; 928: 148811, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39094713

RESUMEN

The gut microbiome plays a key role in regulating the gut-skin axis, and host genetics partially influence this regulation. The study investigated the role of gut microbiota and host genetics in the gut-skin axis, focusing on the unusual "coffee-like" color phenotype observed in TYRP1 mutant Oujiang Color Common Carp. We employed comparative high-throughput omics data from wild-type and mutant fish to quantify the influence of both genetics and gut microbes on skin transcriptomic expression and blood metabolites. We found 525 differential metabolites (DMs) and 45 distinct gut microbial genera in TYRP1 mutant fish compared to wild type. Interaction and causal mediation analyses revealed a complex interplay. The TYRP1 mutation likely triggers an inflammatory pathway involving Acinetobacter bacteria, Leukotrience-C4 and Spermine. This inflammatory response appears to be counterbalanced by an anti-inflammatory cardiovascular genetic network. The net effect is the upregulation of COMT, PLG, C2, C3, F10, TDO2, MHC1, and SERPINF2, leading to unusual coffee-like coloration. This study highlights the intricate interplay between gut microbiota, host genetics, and metabolic pathways in shaping complex phenotypes.

13.
Biointerphases ; 19(4)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39051723

RESUMEN

Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor ß1(TGFß1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFß1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFß1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFß1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.


Asunto(s)
Diferenciación Celular , Factor 2 de Crecimiento de Fibroblastos , Nanofibras , Células Madre , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Ratones , Nanofibras/química , Diferenciación Celular/efectos de los fármacos , Andamios del Tejido/química , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Condrogénesis/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/citología , Cartílago/fisiología , Tejido Adiposo/citología , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Células Cultivadas , Ingeniería de Tejidos/métodos
14.
Analyst ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051769

RESUMEN

Full-field transmission X-ray microscopy (TXM) in conjunction with X-ray absorption near edge structure (XANES) spectroscopy provides two-dimensional (2D) or three-dimensional (3D) morphological and chemical-specific information within samples at the tens of nanometer scale. This technique has a broad range of applications in materials sciences and battery research. Despite its extensive applicability, 2D XANES imaging is subject to the disadvantage of information overlap when the sample thickness is uneven. 3D XANES imaging combines 3D TXM with XANES to obtain 3D distribution information on chemical states. A 3D XANES imaging method has been established at the Shanghai Synchrotron Radiation Facility (SSRF) and has been used to characterize the structure and chemical state of commercial LiNixCoyMnzO2 (NCM, x + y + z = 1) battery powder materials. The imaging results provide a visual representation of the 3D chemical state information of the particles with depth resolution, allowing for the direct observation of 3D nickel oxidation. This paper will describe in detail the data acquisition, data processing, quantification and visualization analysis of 3D XANES imaging.

15.
Plant Dis ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051994

RESUMEN

Peony (Paeonia suffruticosa Andr.), belonging to family Paeoniaceae, is an important medicinal and ornamental plant. During August of each year from 2016 to 2023, peony plants at Heze city were found to exhibit leaf yellows symptoms. The incidence rate of the symptomatic plant was recorded from 10% to 30% in four peony gardens with about 200 acres. Total DNA was extracted from 0.10 g fresh plant leaf tissues from 24 symptomatic and 8 asymptomatic samples using rapid plant genomic DNA isolation kit (Aidlab Biotechnology, Beijing, China). The extracted DNA was amplified by nested polymerase chain reaction using universal primers R16mF2/R16mR1 followed by R16F2/R16R2 (Lee et al., 1993; Gundersen and Lee, 1996) specific for the 16S rRNA gene and new designed tuf gene specific primers JWB-tuforfF1 (5'-ATGGCTGAAATATTTTCAAGAG-3') and JWB-tuforfR1 (5'-TTATTCTATGATTTTAATAACAG-3') followed by JWB-tuforfF2 (5'-ATGTAAACGTAGGAACTATTGG-3') and JWB-tuforfR2 (5'- TCCGATAGTTCTTCCACCTTCAC-3'). Amplicons of about 1.25 kb and 1.02 kb (16S rRNA gene and tuf gene, respectively) were obtained in 8 symptomatic samples from four peony gardens. However, no amplification was obtained in any of the asymptomatic samples. The representative amplicons of 16S rRNA and tuf genes of three positive samples (Heze-9, -18 and -27) were cloned into a zero background pLB-simple vector (Tiangen Biotechnology, Beijing, China) and sequenced by Taihe Biotechnology, Beijing, China. Sequences obtained in the study were deposited in NCBI GenBank with accession numbers PP504882, PP504883 and PP504884 for the 16S rRNA gene as well as PP530237, PP530238 and PP530239 for the tuf gene. The phytoplasma strain under the study was described as peony yellows (PeY) phytoplasma, PeY-Heze strain. Alignment analysis by DNAMAN software showed that three 16S rRNA gene sequences obtained in the study shared 99.36% to 99.60% sequence identity and three tuf gene sequences obtained in the study were identical. BLAST analysis of the 16S rRNA gene sequences of the PeY-Heze phytoplasma strains showed 99.60%-99.84% sequence identity with 'Candidatus Phytoplasma ziziphi' (GenBank accession: CP025121). And tuf sequences of the strains showed 100% similarity with 'Ca. P. ziziphi' (CP025121). Interestingly, the virtual RFLP patterns derived from three 16Sr RNA gene sequences obtained in the study by iPhyClassifier (Zhao et al., 2009) were different from the reference patterns of all previously established 16Sr groups/subgroups. The most similar are the reference pattern of the 16Sr group VII, subgroup E (AY741531), with a similarity coefficient of 0.72, which is less than 0.85. These phytoplasma strains may represent a new 16Sr group. Phylogenetic analysis based on 16S rRNA genes using MEGA 7.0 by neighbor-joining (NJ) method with 1000 bootstrap value indicated that PeY-Heze strains clustered into one clade with the phytoplasma strains of 'Ca. P. ziziphi' with 68% bootstrap value. Although there are several reports available on 'Ca. P. solani' infecting peony in Shandong Province, China (Gao et al., 2013). To our knowledge, this is the first report of 'Ca. P. ziziphi'-related strains infecting peony in China. The findings in this study will be beneficial to the detection, quarantine, and prevention of peony yellows phytoplasmas in China.

16.
Mol Neurobiol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052186

RESUMEN

Results of previous studies suggested that programmed cell death 4 (PDCD4) was overexpressed in cerebral ischemia (CI), and mothers against decapentaplegic homolog 1 (SMAD1) is a transcription factor of PDCD4, and it is also elevated in CI; however, the regulatory mechanism of SMAD1/PDCD4 axis in CI remains unclear. The current work has been designed to explore the role and associated mechanisms of SMAD1/PDCD4 in CI. PDCD4 and SMAD1 expressions have been examined by real-time reverse transcription-polymerase chain reaction (RT-qPCR) method, and receiver operating characteristic (ROC) curve analysis has been performed to determine the potential diagnostic value of PDCD4 and SMAD1. An oxygen-glucose deprivation (OGD) model has been used to investigate the effects of PDCD4 and SMAD1 on CI in vitro. Cell apoptosis was evaluated using TdT-mediated dUTP nick end labeling (TUNEL) assays. The interaction between SMAD1 and PDCD4 axis has been confirmed by using dual-luciferase reporter as well as chromatin immunoprecipitation (Ch-IP) assays. Finally, the effects of SMAD1/PDCD4 axis on the ferroptosis of neuron cells have been examined. PDCD4 was overexpressed in blood samples of CI patients. ROC analysis showed the AUC for PDCD4 was 0.7478, and NIHSS and MRS scores were positively correlated with PDCD4 expression. Moreover, the cellular OGD model was established and knockdown of PDCD4 suppressed the apoptosis of neurons. Besides, knockdown of PDCD4 also inhibited ferroptosis of OGD-treated neuron cells in vitro. Additionally, SMAD1 was upregulated in blood samples of CI patients, NIHSS and MRS scores were positively correlated with SMAD1 expression, and SMAD1 is a transcriptional factor of PDCD4, and SMAD1 could transcriptionally regulate the expression of PDCD4. Finally, SMAD1 could regulate the ferroptosis of neuron cells through regulating the transcription of PDCD4. The SMAD1/PDCD4 axis regulates the growth, apoptosis, and ferroptosis of neuron cells, suggesting that targeting the SMAD1/PDCD4 axis may be a potential therapeutic method.

17.
J Hazard Mater ; 477: 135270, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39053056

RESUMEN

Triazine herbicides are widely used in agriculture and have become common pollutants in marine environments. However, the spatiotemporal distribution characteristics and water quality criteria (WQC) of triazine herbicides are still unclear. This study found that triazine herbicides had a high detection rate of 100 % in surface seawater of Laizhou Bay, China, with average concentrations of 217.61, 225.13, 21.97, and 1296.72 ng/L in March, May, August, and October, respectively. Moreover, estuaries were important sources, and especially the Yellow River estuary exhibited the highest concentrations of 16,115.86 ng/L in October. The 10 triazine herbicides were detected in the sediments of Laizhou Bay, with a concentration ranging from 0.14-1.68 µg/kg. Atrazine and prometryn accounted for 33.41 %-59.10 % and 28.93 %-50.06 % of the total triazine herbicides in the seawater, and prometryn had the highest proportion (63.50 %) in the sediments. Correlation analysis revealed that triazine herbicides led to the loss of plankton biodiversity, which further decreased the dissolved oxygen. In addition, this study collected 45 acute toxicity data and 22 chronic toxicity data of atrazine, 16 acute toxicity data of prometryn, and supplemented with toxicity experiments of prometryn on marine organisms. Based on the toxicity database, the WQCs of atrazine and prometryn were derived using species sensitivity distribution. The overall risk probability of atrazine and prometryn were both less than 1.75 % in the Laizhou Bay, indicating an acceptable risk. This study not only clarified the pollution status and ecological risk of triazine herbicides, but also provided scientific basis for their environmental management standards.

18.
Front Neurorobot ; 18: 1431643, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055779

RESUMEN

To ensure the safe operation and dispatching control of a low-voltage distributed photovoltaic (PV) power distribution network (PDN), the load forecasting problem of the PDN is studied in this study. Based on deep learning technology, this paper proposes a robot-assisted load forecasting method for low-voltage distributed photovoltaic power distribution networks using enhanced long short-term memory (LSTM). This method employs the frequency domain decomposition (FDD) to obtain boundary points and incorporates a dense layer following the LSTM layer to better extract data features. The LSTM is used to predict low-frequency and high-frequency components separately, enabling the model to precisely capture the voltage variation patterns across different frequency components, thereby achieving high-precision voltage prediction. By verifying the historical operation data set of a low-voltage distributed PV-PDN in Guangdong Province, experimental results demonstrate that the proposed "FDD+LSTM" model outperforms both recurrent neural network and support vector machine models in terms of prediction accuracy on both time scales of 1 h and 4 h. Precisely forecast the voltage in different seasons and time scales, which has a certain value in promoting the development of the PDN and related technology industry chain.

19.
Mol Plant ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39066483

RESUMEN

Under warm temperatures, plants adjust their morphologies for environmental adaption via precise gene expression regulation. However, the function and regulation of alternative polyadenylation (APA), an important fine-tuning of gene expression, remains unknown in plant thermomorphogenesis. Here we found that SUMOylation, a critical post-translational modification, was induced under a long-time treatment at warm temperatures mediated by a SUMO ligase SIZ1 in Arabidopsis. Depletion of SIZ1 altered the global usage of polyadenylation signals and affected the APA dynamic of thermomorphogenesis genes. CPSF100, a key subunit of the CPSF complex for polyadenylation regulation, was SUMOylated via SIZ1. Importantly, SUMOylation was essential for the function of CPSF100 in genome-wide polyadenylation site choice during thermomorphogenesis. The SUMO conjugation on CPSF100 attenuated its interaction with two isoforms of its partner CPSF30, increasing the nuclear accumulation of CPSF100 for polyadenylation regulation. In summary, we uncovered the mechanism for the regulation of APA via SUMOylation in plant thermomorphogenesis.

20.
Nano Lett ; 24(29): 8979-8987, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38994924

RESUMEN

With the development of miniaturized devices, there is an increasing demand for 2D multifunctional materials. Six ferroelastic semiconductors, Y2Se2XX' (X, X' = I, Br, Cl, or F; X ≠ X') monolayers, are theoretically predicted here. Their in-plane anisotropic band structure, elastic and piezoelectric properties can be switched by ferroelastic strain. Moderate energy barriers can prevent the undesired ferroelastic switching that minor interferences produce. These monolayers exhibit high carrier mobilities (up to 104 cm2 V-1 s-1) with strong in-plane anisotropy. Furthermore, their wide bandgaps and high potential differences make them broad-pH-value and high-performance photocatalysts at pH value of 0-14. Strikingly, Y2Se2BrF possesses outstanding d33 (d33 = -405.97 pm/V), greatly outperforming CuInP2S6 by 4.26 times. Overall, the nano Y2Se2BrF is a hopeful candidate for multifunctional devices to generate a direct current and achieve solar-free photocatalysis. This work provides a new paradigm for the design of multifunctional energy materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA