Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.785
Filtrar
1.
J Am Chem Soc ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092859

RESUMEN

Searching for high energy-density electrode materials for sodium ion batteries has revealed Na-deficient intercalation compounds with lattice oxygen redox as promising high-capacity cathodes. However, anionic redox reactions commonly encountered poor electrochemical reversibility and unfavorable structural transformations during dynamic (de)sodiation processes. To address this issue, we employed lithium orbital hybridization chemistry to create Na-O-Li configuration in a prototype P2-layered Na43/60Li1/20Mg7/60Cu1/6Mn2/3O2 (P2-NaLMCM') cathode material. That Li+ ions, having low electronegativity, reside in the transition metal slabs serves to stimulate unhybridized O 2p orbitals to facilitate the stable capacity contribution of oxygen redox at high state of charge. The prismatic-type structure evolving to an intergrowth structure of the Z phase at high charging state could be simultaneously alleviated by reducing the electrostatic repulsion of O-O layers. As a consequence, P2-NaLMCM' delivers a high specific capacity of 183.8 mAh g-1 at 0.05 C and good cycling stability with a capacity retention of 80.2% over 200 cycles within the voltage range of 2.0-4.5 V. Our findings provide new insights into both tailoring oxygen redox chemistry and stabilizing dynamic structural evolution for high-energy battery cathode materials.

2.
Food Chem ; 460(Pt 2): 140435, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39089043

RESUMEN

The ginger-infused stewed beef exhibited a satisfactory odor in Chinese cooking meat. This study aimed to reveal its aroma quality and perception mechanism through electronic nose, sensory evaluation and gas chromatography-mass spectrometry (GC-MS), gas chromatography-ion mobility spectrometry (GC-IMS) coupled with chemometric methods and molecular docking. Sensory evaluation and electronic nose analysis indicated ginger could greatly modify aroma profile of beef. Most C6-C10 aldehydes significantly decreased and terpenes increased in ginger-infused stewed beef. Orthogonal partial least squares-discriminant analysis (OPLS-DA) found 7 key markers for distinguishing stewed beef with or without ginger. Ginger additions could reduce fatty acids consumption. Moreover, the key contributors of fatty, bloody, meaty, ginger and mint aroma attributes, namely (E)-2-octenal, 1-octen-3-ol, 2-acetylthiazole, zingiberene and γ-elemene, respectively, selected by partial least squares regression (PLSR) analysis were docked with the olfactory receptor. Hydrogen bonds and hydrophobic interactions were the main interaction forces between olfactory receptor and the five compounds.

4.
World J Gastrointest Surg ; 16(7): 2337-2342, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39087118

RESUMEN

BACKGROUND: Severe bleeding as a result of a major vascular injury is a potentially fatal event commonly observed in the emergency department. Bowel necrosis and gastric ulcers secondary to ischemia are rare due to their rich blood supply. In this case, we present the case of a patient who was treated successfully following rupture of his femoral artery resulting in bowel necrosis and an unusually large gastric ulcer. CASE SUMMARY: A 28-year-old male patient sustained a knife stab wound to the right thigh, causing rupture of his femoral artery and leading to massive bleeding. He underwent cardiopulmonary resuscitation and received a large blood transfusion. Abdominal surgeries confirmed bowel necrosis, and jejunostomy was performed. The necrotic intestine was removed, the remaining intestine was anastomosed, and the right thigh was amputated. After three surgeries, the patient's overall condition gradually improved, and the patient was discharged from the hospital. However, one day after discharge, the patient was admitted again due to dizziness and melena, and a gastroduodenoscopy revealed a giant banded ulcer. After 2 weeks of treatment, the ulcer had decreased in size without bleeding. Six months after the last surgery, enterostomy and reintroduction surgery were completed. The patient was fitted with a right lower limb prosthesis one year after surgery. After 3 years of follow-up, the patient did not complain of discomfort. CONCLUSION: Trauma department physicians need to be aware of the possible serious complications involving the abdomen of trauma patients with massive bleeding.

5.
Clin Nucl Med ; 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39086048

RESUMEN

PURPOSE: To investigate the role of CXCR4-targeted 68Ga-pentixafor PET/CT imaging in inflammatory bowel disease (IBD). METHODS: Five IBD patients and 12 control subjects performing 68Ga-pentixafor PET/CT examinations were included. 68Ga-pentixafor PET/CT imaging and endoscopic findings were recorded and compared. The semiquantitative parameters of 68Ga-pentixafor uptake by the lesion segments in IBD patients and the normal intestines in the control were investigated. RESULTS: Among these 5 IBD patients, endoscopy successfully examined a total of 26 intestinal segments, with 13 segments showing endoscopic lesions. 68Ga-pentixafor PET/CT was positive in all endoscopy-proven lesions (13/13). Additionally, 68Ga-pentixafor PET/CT revealed the lesions in small intestines and colons that cannot be reached by endoscopy due to severe stenosis, and mesenteric lymphadenitis accompanied IBD. The SUVmax of the lesion segments in IBD patients was significantly higher than that of the normal intestines in the control group (median, 3.15 [range, 1.61-6.26] vs 1.67 [1.18-2.29], P < 0.001). Moreover, the SUVmax ratios of the lesion segments/liver or blood pool were higher when compared with the control (2.20 [1.13-3.26] vs 0.85 [0.54-1.20]; 1.66 [0.94-2.95] vs 0.67 [0.52-1.04]; P ≤ 0.001). CONCLUSION: 68Ga-pentixafor PET/CT can be a potentially valuable tool to assess the active intestinal lesions of IBD with high sensitivity. Moreover, this noninvasive approach does not require fasting or bowel preparation, offering good tolerance and safety.

6.
Anim Nutr ; 18: 107-118, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39091296

RESUMEN

The intracellular lipids in muscle cells of farm animals play a crucial role in determining the overall intramuscular fat (IMF) content, which has a positive impact on meat quality. However, the mechanisms underlying the deposition of lipids in muscle cells of farm animals are not yet fully understood. The purpose of this study was to determine the roles of carbohydrate-response element binding protein (ChREBP) and fructose in IMF deposition of chickens. For virus-mediated ChREBP overexpression in tibialis anterior (TA) muscle of chickens, seven 5-d-old male yellow-feather chickens were used. At 10 d after virus injection, the chickens were slaughtered to obtain TA muscles for analysis. For fructose administration trial, sixty 9-wk-old male yellow-feather chickens were randomly divided into 2 groups, with 6 replicates per group and 5 chickens per replicate. The chickens were fed either a basal diet or a basal diet supplemented with 10% fructose (purity ≥ 99%). At 4 wk later, the chickens were slaughtered, and breast and thigh muscles were collected for analysis. The results showed that the skeletal ChREBP mRNA levels were positively associated with IMF content in multiple species, including the chickens, pigs, and mice (P < 0.05). ChREBP overexpression increased lipid accumulation in both muscle cells in vitro and the TA muscles of mice and chickens in vivo (P < 0.05), by activation of the de novo lipogenesis (DNL) pathway. Moreover, activation of ChREBP by dietary fructose administration also resulted in increased IMF content in mice and notably chickens (P < 0.05). Furthermore, the lipidomics analysis revealed that ChREBP activation altered the lipid composition of chicken IMF and tented to improve the flavor profile of the meat. In conclusion, this study found that ChREBP plays a pivotal role in mediating the deposition of fat in chicken muscles in response to fructose-rich diets, which provides a novel strategy for improving meat quality in the livestock industry.

7.
Clin Transl Med ; 14(8): e1738, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39095323

RESUMEN

BACKGROUND: The therapeutic potential of immune checkpoint blockade (ICB) extends across various cancers; however, its effectiveness in treating hepatocellular carcinoma (HCC) is frequently curtailed by both inherent and developed resistance. OBJECTIVE: This research explored the effectiveness of integrating anlotinib (a broad-spectrum tyrosine kinase inhibitor) with programmed death-1 (PD-1) blockade and offers mechanistic insights into more effective strategies for treating HCC. METHODS: Using patient-derived organotypic tissue spheroids and orthotopic HCC mouse models, we assessed the effectiveness of anlotinib combined with PD-1 blockade. The impact on the tumour immune microenvironment and underlying mechanisms were assessed using time-of-flight mass cytometry, RNA sequencing, and proteomics across cell lines, mouse models, and HCC patient samples. RESULTS: The combination of anlotinib with an anti-PD-1 antibody enhanced the immune response against HCC in preclinical models. Anlotinib remarkably suppressed the expression of transferrin receptor (TFRC) via the VEGFR2/AKT/HIF-1α signaling axis. CD8+ T-cell infiltration into the tumour microenvironment correlated with low expression of TFRC. Anlotinib additionally increased the levels of the chemokine CXCL14, crucial for attracting CD8+ T cells. CXCL14 emerged as a downstream effector of TFRC, exhibiting elevated expression following the silencing of TFRC. Importantly, low TFRC expression was also associated with a better prognosis, enhanced sensitivity to combination therapy, and a favourable response to anti-PD-1 therapy in patients with HCC. CONCLUSIONS: Our findings highlight anlotinib's potential to augment the efficacy of anti-PD-1 immunotherapy in HCC by targeting TFRC and enhancing CXCL14-mediated CD8+ T-cell infiltration. This study contributes to developing novel therapeutic strategies for HCC, emphasizing the role of precision medicine in oncology. HIGHLIGHTS: Synergistic effects of anlotinib and anti-PD-1 immunotherapy demonstrated in HCC preclinical models. Anlotinib inhibits TFRC expression via the VEGFR2/AKT/HIF-1α pathway. CXCL14 upregulation via TFRC suppression boosts CD8+ T-cell recruitment. TFRC emerges as a potential biomarker for evaluating prognosis and predicting response to anti-PD-1-based therapies in advanced HCC patients.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Inmunoterapia , Indoles , Neoplasias Hepáticas , Quinolinas , Receptores de Transferrina , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Quinolinas/farmacología , Quinolinas/uso terapéutico , Quinolinas/administración & dosificación , Animales , Ratones , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Indoles/farmacología , Indoles/uso terapéutico , Humanos , Inmunoterapia/métodos , Receptores de Transferrina/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología
8.
BMC Cancer ; 24(1): 941, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095759

RESUMEN

BACKGROUND: Advanced pancreatic adenocarcinoma lacks effective treatment options, and systemic gemcitabine-based chemotherapy offers only marginal survival benefits at the cost of significant toxicities and adverse events. New therapeutic options with better drug availability are warranted. This study aims to evaluate the safety and efficacy of digital subtraction angiography (DSA)-guided pancreatic arterial infusion (PAI) versus intravenous chemotherapy (IVC) using the gemcitabine and oxaliplatin (GEMOX) regimen in unresectable locally advanced or metastatic pancreatic cancer (PC) patients. MATERIALS AND METHODS: This study prospectively enrolled 51 eligible treatment-naive patients with unresectable PC to receive GEMOX treatment via PAI or IVC (1:1 ratio randomization) from December 2015 to December 2019. Cycles were repeated monthly, and each process consisted of two treatments administered bi-weekly. Overall survival (OS), progression-free survival (PFS), objective response rate (ORR), disease control rate (DCR), 1-year survival, 6-month survival, tumor-site subgroup survival, and incidences of adverse events were compared. RESULTS: The median OS of the PAI and IVC groups were 9.93 months and 10.07 months, respectively (p = 0.3049). The median PFS of the PAI and IVC groups were 5.07 months and 4.23 months (p = 0.1088). No significant differences were found in the ORR (11.54% vs. 4%, p = 0.6312), DCR (53.85% vs. 44%, p = 0.482), and 1-year OS rate (44% vs. 20.92%, p = 0.27) in PAI and IVC groups. The 6-month OS rate was significantly higher in the PAI group (100%) than in the IVC group (83.67%) (p = 0.0173). The median OS of patients in PAI group with pancreatic head and neck tumors were significantly higher than those of body and tail tumors (12.867 months vs. 9 months, p = 0.0214). The incidences of hematologic disorders, liver function disorders, and digestive disorders in the IVC group were higher than in the PAI group (p < 0.05). CONCLUSION: GEMOX PAI therapy presented a higher 6-month OS rate and fewer adverse events than IVC in advanced pancreatic adenocarcinoma patients. Those with pancreatic head and neck tumors may yield a superior treatment outcome from PAI treatment. TRIAL REGISTRATION NUMBER: NCT02635971. DATE OF REGISTRATION: 21/12/2015.


Asunto(s)
Adenocarcinoma , Angiografía de Substracción Digital , Protocolos de Quimioterapia Combinada Antineoplásica , Desoxicitidina , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/efectos adversos , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Infusiones Intraarteriales , Adulto , Estudios Prospectivos , Oxaliplatino/administración & dosificación , Oxaliplatino/efectos adversos , Gemcitabina , Infusiones Intravenosas , Páncreas/patología , Páncreas/diagnóstico por imagen , Compuestos Organoplatinos
9.
Small ; : e2404822, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096107

RESUMEN

Selective photocatalytic CO2 reduction to high-value hydrocarbons using graphitic carbon nitride (g-C3N4) polymer holds great practical significance. Herein, the cyano-functionalized g-C3N4 (CN-g-C3N4) with a high local electron density site is successfully constructed for selective CO2 photoreduction to CH4 and C2H4. Wherein the potent electron-withdrawing cyano group induces a giant internal electric field in CN-g-C3N4, significantly boosting the directional migration of photogenerated electrons and concentrating them nearby. Thereby, a high local electron density site around its cyano group is created. Moreover, this structure can also effectively promote the adsorption and activation of CO2 while firmly anchoring *CO intermediates, facilitating their subsequent hydrogenation and coupling reactions. Consequently, using H2O as a reducing agent, CN-g-C3N4 achieves efficient and selective photocatalytic CO2 reduction to CH4 and C2H4 activity, with maximum rates of 6.64 and 1.35 µmol g-1 h-1, respectively, 69.3 and 53.8 times higher than bulk g-C3N4 and g-C3N4 nanosheets. In short, this work illustrates the importance of constructing a reduction site with high local electron density for efficient and selective CO2 photoreduction to hydrocarbons.

10.
Sci Adv ; 10(31): eadn0560, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093971

RESUMEN

Passive imaging for mid-wave infrared (MWIR) is resistant to atmospheric pollutants, guaranteeing image clarity and accuracy. Arrayed photodetectors can simultaneously perform radiation sensing to improve efficiency. Room temperature van der Waals (vdWs) photodetectors without lattice matching have evolved rapidly with optimized stacking methods, primarily for single-pixel devices. The urgent need to implement arrayed devices aligns with practical demands. Here, we present an 8 by 1 black phosphorus/molybdenum sulfide (BP/MoS2) vdWs photodetector linear array with a fill-factor of ~77%, fabricated using a temperature-assisted sloping transfer method. The flat interface and uniform thickness facilitate carrier transport and minimize pixel nonuniformities, showing an average peak detectivity (D*) of 2.34 × 109 cm·Hz1/2·W-1 in the mid-wave infrared region. Compared to a single pixel, push-broom scanning passive imaging is eight times more efficient and further enhanced through mean filtering and fast Fourier transform filtering for strip noise correction. Our study offers guidance on vdWs arrayed devices for engineering applications.

11.
J Environ Manage ; 367: 122062, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096722

RESUMEN

Reticular river networks, essential for ecosystems and hydrology, pose challenges in assessing longitudinal connectivity due to complex multi-path structures and variable flows, exacerbated by human-made infrastructures like sluices. Existing tools inadequately track water flow's spatiotemporal changes, highlighting the need for targeted methods to gauge connectivity within complex river network systems. The Hydraulic Capacity Connectivity Index (HCCI) was developed adopting complex network theory. This involves river networks mapping, nodes and edges construstion, weight factor definition, maximum flow and resistance distance calculation. The connectivity between nodes is represented by the product of the maximum flow and the inverse of the resistance distance. The mean connectivity of each node with all other nodes, denoted as the node connectivity capacity Ci, and the HCCI of the whole river network is defined as the mean of the Ci for all nodes. The HCCI was firstly applied to a symmetrical virtual river network to investigate the factors influencing the HCCI. The results revealed that Ci showed a radial decreasing pattern from the obstructed river reach outwards, and the boundary rivers play the most significant role in regulating the flow dynamics. Subsequently, the HCCI was applied to a real river network in the Yandu district, followed by spatiotemporal statistical analysis comparing with 1D hydraulic model's simulated river discharge. Results showed a high correlation (Pearson coefficient of 0.89) between the HCCI and monthly average river discharge at the global scale. At the local scale, the geographically weighted regression model demonstrated the strong explanatory power of Ci in predicting the distribution of river reach discharge. This suggests that the HCCI addresses multi-path connectivity assessment challenge in reticular river networks, precisely characterizing spatiotemporal flow dynamics. Furthermore, since HCCI is based on a complex network model that can calculate the connectivity between all river node pairs, it is theoretically applicable to other types of river networks, such as dendritic river networks. By identifying low-connectivity areas, HCCI can guide managers in developing scientifically sound and effective strategies for restoring river network hydrodynamics. This can help prevent water stagnation and degradation of water quality, which is beneficial for environmental protection and water resource management.

12.
Int J Biol Macromol ; : 134429, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097064

RESUMEN

Cystatins are well known as a vast superfamily of functional proteins participated in the reversible competitive inhibition of cysteine proteases. Currently, increasing evidences point to the extensive phylogenetic diversity and crucial immune roles of type-2 cystatins in the vertebrate species. However, no information is available regarding the homologue in cephalochordate amphioxus, the representative of most basal living chordates, whose immune regulation are still ambiguous. Here, we clearly identified the presence of type-2 cystatin gene in amphioxus Branchiostoma japonicum, termed Bjcystatin-2, which was structurally characterized by typical wedge-shaped cystatin feature. Evolutionary analyses revealed that Bjcystatin-2 is the ancestral type-2 cystatin for chordates, with gene diversity emerging through duplication events. The expression of Bjcystatin-2 showed tissue-specific profile and was inducible upon invasive pathogens. Significantly, the recombinant Bjcystatin-2 exhibited not merely cathepsin L inhibitory activity, but also the ability to bind with bacteria and their characteristic molecules. Furthermore, Bjcystatin-2 also showed the capacity to enhance the macrophage-driven bacterial phagocytosis and to attenuate the generation of pro-inflammatory cytokines within macrophages. In summary, these findings demonstrate that Bjcystatin-2 exhibits dual role acting as both a protease inhibitor and an immunoactive molecule, greatly enriching our understanding of immune defense mechanisms of type-2 cystatin within the amphioxus.

13.
Small ; : e2403160, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051538

RESUMEN

Diabetic wounds pose a persistent challenge due to their slow healing nature, primarily caused by bacterial infection and excessive reactive oxygen species (ROS)-induced inflammation. In this study, carbon dots with synergistic antibacterial and antioxidant properties, referred to as AA-CDs, are developed specifically for diabetic wound healing using a straightforward solvothermal method. By utilizing cost-effective precursors like citric acid and ascorbic acid, AA-CDs are engineered to possess tailored functions of photothermal sterilization and ROS scavenging. The resulting AA-CDs demonstrats broad-spectrum antibacterial activity, particularly against multidrug-resistant strains, along with efficient ROS scavenging both in solution and within cells. Additionally, AA-CDs exhibits a protective effect against oxidative stress-induced damage. Notably, with a high photothermal conversion efficiency (41.18%), AA-CDs displays heat-enhanced antioxidant performance, providing not only augmented ROS scavenging but also additional protection against oxidative stress, yielding a true "1 + 1 > 2" effect. To facilitate their use in vivo, AA-CDs are incorporated into a thermally responsive hydrogel, which exhibits evident anti-inflammatory properties by modulating inflammatory factors and significantly promots the healing of diabetic wounds. This study underscores the value of integrated platforms for diabetic wound healing and highlights the potential of versatile CDs as promising therapeutic agents in biomedical applications.

14.
Biomater Sci ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052032

RESUMEN

The aim of this study was to develop a semi-interpenetrating network (IPN) hydrogel system suitable for the oral environment, capable of controlled release of DNase-I and oridonin (ORI), to exert antimicrobial, anti-inflammatory, and reparative effects on chemoradiotherapy-induced oral mucositis (OM). This IPN was based on the combination of ε-polylysine (PLL) and hetastarch (HES), loaded with DNase-I and ORI (ORI/DNase-I/IPN) for OM treatment. In vitro studies were conducted to evaluate degradation, adhesion, release analysis, and bioactivity including cell proliferation and wound healing assays using epidermal keratinocyte and fibroblast cell lines. Furthermore, the therapeutic effects of ORI/DNase-I/IPN were investigated in vivo using Sprague-Dawley (SD) rats with chemoradiotherapy-induced OM. The results demonstrated that the IPN exhibited excellent adhesion to wet mucous membranes, and the two drugs co-encapsulated in the hydrogel were released in a controlled manner, exerting inhibitory effects on bacteria and degrading NETs in wound tissues. The in vivo wound repair effect, microbiological assays, H&E and Masson staining supported the non-toxicity of ORI/DNase-I/IPN, as well as its ability to accelerate the healing of oral ulcers and reduce inflammation. Overall, ORI/DNase-I/IPN demonstrated a therapeutic effect on OM in rats by significantly accelerating the healing process. These findings provide new insights into possible therapies for OM.

15.
J Hazard Mater ; 477: 135199, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39053069

RESUMEN

Famoxadone is a chiral fungicide frequently found in the environment and agricultural products. However, the health risks of famoxadone enantiomers are not well understood. This study investigated the stereoselective cytotoxicity and metabolic behavior of famoxadone enantiomers in mammals. Results showed that R-famoxadone was 1.5 times more toxic to HepG2 cells than S-famoxadone. R-famoxadone induced more pronounced ferroptosis compared to S-famoxadone. It caused greater upregulation of genes related to iron transport and lipid peroxidation, and greater downregulation of genes related to peroxide clearance. Furthermore, R-famoxadone induced more severe lipid peroxidation and reactive oxygen species (ROS) accumulation through ACSL4 activation and GPX4 inhibition. Additionally, the bioavailability of R-famoxadone in mice was six times higher than that of S-famoxadone. Liver microsome assays, cytochrome P450 (CYP450) inhibition assays, human recombinant CYP450 assays, and molecular docking suggested that the lower binding affinities of CYP2C8, CYP2C19, and CYP2E1 for R-famoxadone caused its preferential accumulation. Overall, R-famoxadone poses a higher risk than S-famoxadone due to its greater cytotoxicity and persistence. This study provides the first evidence of ferroptosis-induced stereoselective toxicity, offering insights for the comprehensive health risk assessment of chiral famoxadone and valuable references for the application of high-efficiency, low-risk pesticide enantiomers.

16.
Cytokine ; 182: 156705, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39053079

RESUMEN

Gout is an autoinflammatory disease characterized by the deposition of monosodium urate crystals in or around the joints, primarily manifesting as inflammatory arthritis that recurs and resolves spontaneously. Interleukin-6 (IL-6) is a versatile cytokine with both anti-inflammatory and pro-inflammatory capabilities, linked to a variety of inflammatory diseases such as gouty arthritis, rheumatoid arthritis, inflammatory bowel disease, vasculitis, and several types of cancer. The rapid production of IL-6 during infections and tissue damage aids in host defense. However, excessive synthesis of IL-6 and dysregulation of its receptor signaling (IL-6R) might contribute to the pathology of diseases. Recent advancements in clinical and basic research, along with developments in animal models, have established the significant role of IL-6 and its receptors in the pathogenesis of gout, although the precise mechanisms remain to be fully elucidated. This review discusses the role of IL-6 and its receptors in gout progression and examines contemporary research on modulating IL-6 and its signaling pathways for treatment. It aims to provide insights into the pathogenesis of gout and to advance the development of targeted therapies for gout-related inflammation.

17.
Talanta ; 279: 126595, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39053356

RESUMEN

Multivariate calibration models often encounter challenges in extrapolating beyond the calibration instruments due to variations in hardware configurations, signal processing algorithms, or environmental conditions. Calibration transfer techniques have been developed to mitigate this issue. In this study, we introduce a novel methodology known as Supervised Factor Analysis Transfer (SFAT) aimed at achieving robust and interpretable calibration transfer. SFAT operates from a probabilistic framework and integrates response variables into its transfer process to effectively align data from the target instrument to that of the source instrument. Within the SFAT model, the data from the source instrument, the target instrument, and the response variables are collectively projected onto a shared set of latent variables. These latent variables serve as the conduit for information transfer between the three distinct domains, thereby facilitating effective spectra transfer. Moreover, SFAT explicitly models the noise variances associated with each variable, thereby minimizing the transfer of non-informative noise. Furthermore, we provide empirical evidence showcasing the efficacy of SFAT across three real-world datasets, demonstrating its superior performance in calibration transfer scenarios.

18.
Chem Sci ; 15(29): 11347-11357, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39055007

RESUMEN

Rational design of small organic molecule-based NIR-II photosensitizers (PSs) with high singlet oxygen quantum yield in aqueous solution for deep tissue imaging and cancer therapy still presents challenges. Herein, we devised a general synthesis strategy to obtain six NIR-II region PSs with tunable aggregation states by adjusting the steric effect, and all PSs possess longer NIR absorption/emission wavelengths with tails extending beyond 1200 nm. Notably, ATX-6 possessed a singlet oxygen quantum yield of 38.2% and exhibited concentration-dependent J-aggregation properties upon self-assembly in an aqueous solution. What's more, supramolecular engineering with DSPE-PEG2000 further enhanced its degree of J-aggregation, which was attributed to the dimer-excited reduction of the energy levels of the single-linear/triple-linear states and the facilitation of intersystem crossover processes. In addition, ATX-6 NPs showed superior photodynamic therapy effects and great potential in high-contrast in vivo bioimaging of the NIR-II region. These results provide valuable insights for achieving the diagnostic and therapeutic integration of tumors.

19.
iScience ; 27(7): 110319, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055957

RESUMEN

The rhizosphere microbiome is important for plant health, yet their contributions to disease resistance and assembly dynamics remain unclear. This study employed rhizosphere microbiome transplantation (RMT) to delineate the impact of the rhizosphere microbiome and the immune response of eggplant (Solanum melongena) on resistance to bacterial wilt caused by Ralstonia solanacearum. We first identified disease-suppressive and disease-conducive rhizosphere microbiome in a susceptible tomato recipient. Using a non-destructive rhizobox and 16S rRNA amplicon sequencing, we monitored the dynamics of both microbiome types during the eggplant development. Most differences were observed at the early stage and then diminished over time. The suppressive microbiome maintained a higher proportion of initial community members throughout eggplant development and exhibited stronger deterministic processes in the early stage, underscoring the importance of plant selection in recruiting protective microbes for rhizosphere immunity. Our study sheds light on the development of microbiome-based strategies for plant disease management and resistance breeding.

20.
Org Lett ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058573

RESUMEN

Here, we demonstrate palladium-catalyzed Hiyama-type cross-coupling reactions of aryl thianthrenium or phenoxathiinium salts. By employing stable and inexpensive organosilanes, the arylation, alkenylation, and alkynylation were realized in high efficiency using commercially available Pd(tBu3P)2 as the catalyst, thus providing a reliable method for preparation of biaryls, styrenes, and aryl acetylenes with a broad functional group tolerance under mild conditions. Given the accessibility of aryl thianthrenium or phenoxathiinium salts from simple arenes in a remarkable regioselective fashion, this protocol also provides an attractive approach for the late-stage modification of complex bioactive scaffolds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA