Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
Int J Biol Macromol ; : 134378, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097048

RESUMEN

The soy hull polysaccharide (SHP) exhibits excellent interfacial activity and holds potential as an emulsifier for emulsions. To reveal the behavior of SHP at the water/oil (W/O) interface in situ, molecular dynamics (MD) simulations and particle tracking microrheology were used in this study. The results of MD reveal that SHP molecular spontaneously move toward the interface and rhamnogalacturonan-I initiates this movement, while its galacturonic acids on it act as anchors to immobilize the SHP molecules at the W/O interface. Microrheology results suggest that SHP forms microgels at the W/O interface, with the lattices of the microgels continually undergoing dynamic changes. At low concentrations of SHP and short interfacial formation time, the network of the microgels is weak and dominated by viscous properties. However, when SHP reaches 0.75 % and the interfacial formation time is about 60 min, the microgels show perfect elasticity, which is beneficial for stabilizing emulsions.

2.
Int J Biol Macromol ; 277(Pt 1): 133899, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39019361

RESUMEN

In the process of sepsis, excessive occurrence of pyroptosis, a form of programmed cell death acting as a defense mechanism against pathogens, can disrupt immune responses, thus leading to tissue damage and organ dysfunction. Chitosan oligosaccharide (COS), derived from chitosan degradation, has demonstrated diverse beneficial effects. However, its impact on sepsis-induced pyroptosis remains unexplored. In the present study, ATP/LPS was utilized to induce canonical-pyroptosis in THP-1 cells, while bacterial outer membrane vesicles (OMV) were employed to trigger non-canonical pyroptosis in RAW264.7 cells. Our results revealed a dose-dependent effect of COS on both types of pyroptosis. This was evidenced by a reduction in the expression of pro-inflammatory cytokines, as well as crucial regulatory proteins involved in pyroptosis. In addition, COS inhibited the cleavage of caspase-1 and GSDMD, and reduced ASC oligomerization. The underlying mechanism revealed that COS acts an antioxidant, reducing the release of pyroptosis-induced ROS and malondialdehyde (MDA) by upregulation the expression and promoting the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2), which led to an elevation of glutathione peroxidase 4 (GPX4) and superoxide dismutase (SOD). Notably, the actions of COS were completely reversed by the Nrf2 inhibitor. Consequently, COS intervention increased the survival rate of sepsis.

3.
Nat Commun ; 15(1): 5502, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951519

RESUMEN

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.


Asunto(s)
Antineoplásicos , Sistemas CRISPR-Cas , Resistencia a Antineoplásicos , Irinotecán , Oxaliplatino , Proteínas Serina-Treonina Quinasas , Resistencia a Antineoplásicos/genética , Humanos , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Oxaliplatino/farmacología , Irinotecán/farmacología , Sistemas CRISPR-Cas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Animales , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
4.
Mikrochim Acta ; 191(7): 436, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38954059

RESUMEN

A fluorescence probe based on molecularly imprinted polymers on red emissive biomass-derived carbon dots (r-BCDs@MIPs) was developed to detect tyramine in fermented meat products. The red emissive biomass-derived carbon dots (r-BCDs) were synthesized by the one-step solvothermal method using discarded passion fruit shells as raw materials. The fluorescence emission peak of r-BCDs was at 670 nm, and the relative quantum yield (QY) was about 2.44%. Molecularly imprinted sensing materials were prepared with r-BCDs as fluorescent centers for the detection of trace tyramine, which showed a good linear response in the concentration range of tyramine from 1 to 40 µg L-1. The linear correlation coefficient was 0.9837, and the limit of detection was 0.77 µg L-1. The method was successfully applied to the determination of tyramine in fermented meat products, and the recovery was 87.17-106.02%. The reliability of the results was verified through high-performance liquid chromatography (HPLC). Furthermore, we combined the r-BCDs@MIPs with smartphone-assisted signal readout to achieve real-time detection of tyramine in real samples. Considering its simplicity and convenience, the method could be used as a rapid and low-cost promising platform with broad application prospects for on-site detection of trace tyramine with smartphone-assisted signal readout.


Asunto(s)
Carbono , Colorantes Fluorescentes , Límite de Detección , Productos de la Carne , Polímeros Impresos Molecularmente , Puntos Cuánticos , Teléfono Inteligente , Tiramina , Tiramina/análisis , Tiramina/química , Carbono/química , Puntos Cuánticos/química , Productos de la Carne/análisis , Colorantes Fluorescentes/química , Polímeros Impresos Molecularmente/química , Espectrometría de Fluorescencia/métodos , Biomasa , Fermentación
5.
Biomedicines ; 12(7)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-39062041

RESUMEN

Cervical squamous cell carcinoma (CSCC) represents a significant global health concern among females. Identifying new biomarkers and therapeutic targets is pivotal for improving the prognosis of CSCC. This study investigates the prognostic relevance of CCZ1 in CSCC and elucidates its downstream pathways and targets using a combination of bioinformatics analysis and experimental validation. Transcriptomic analysis of 239 CSCC and 3 normal cervical samples from The Cancer Genome Atlas database reveals a marked upregulation of CCZ1 mRNA levels in CSCC, and elevated CCZ1 mRNA levels were associated with poor prognosis. Immunohistochemical analysis of clinical samples also confirmed these findings. Furthermore, functional assays, including Cell Counting Kit-8, colony formation, Transwell, and flow cytometry, elucidated the influence of CCZ1 on CSCC cell proliferation, migration, invasion, and cell cycle progression. Remarkably, CCZ1 knockdown suppressed CSCC progression both in vitro and in vivo. Mechanistically, CCZ1 knockdown downregulated MMP2 and MMP17 expression. Restoring MMP2 or MMP17 expression rescued phenotypic alterations induced by CCZ1 knockdown. Hence, CCZ1 promotes CSCC progression by upregulating MMP2 and MMP17 expression, emerging as a novel biomarker in CSCC and presenting potential as a therapeutic target in CSCC.

6.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39066095

RESUMEN

Microstructures have been proved as crucial factors for the sensing performance of flexible pressure sensors. In this study, polypyrrole (PPy)/sunflower pollen (SFP) (P/SFP) was prepared via the in situ growth of PPy on the surface of degreased SFP with a sea urchin-like microstructure; then, these P/SFP microspheres were sprayed onto a flat silk cocoon (FSC) to prepare a sensing layer P/SFP-FSC. PPy-FSC (P-FSC) was prepared as an electrode layer through the in situ polymerization of PPy on the FSC surface. The sensing layer P/SFP-FSC was placed between two P-FSC electrode layers to assemble a P/SFP-FSC pressure sensor together with a fork finger electrode. With 6 mg/cm2 of optimized sprayed P/SFP microspheres, the prepared flexible pressure sensor has a sensitivity of up to 0.128 KPa-1 in the range of 0-13.18 KPa and up to 0.13 KPa-1 in the range of 13.18-30.65 KPa, a fast response/recovery time (90 ms/80 ms), and a minimum detection limit as low as 40 Pa. This fabricated flexible P/SFP-FSC sensor can monitor human motion and can also be used for the encrypted transmission of important information via Morse code. In conclusion, the developed flexible P/SFP-FSC pressure sensor based on microstructure modification in this study shows good application prospects in the field of human-computer interaction and wearable electronic devices.


Asunto(s)
Polen , Presión , Seda , Dispositivos Electrónicos Vestibles , Seda/química , Polen/química , Animales , Humanos , Polímeros/química , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Pirroles/química , Electrodos
7.
Chem Sci ; 15(28): 11053-11064, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39027275

RESUMEN

Developing a high-performance near-ultraviolet (NUV) material and its simple non-doped device with a small efficiency roll-off and good color purity is a promising but challenging task. Here, we proposed a novel donor'-donor-acceptor (D'-D-A) type molecular strategy to largely solve the intrinsic contradictions among wide-bandgap NUV emission, fluorescence efficiency, carrier injection and transport. An efficient NUV fluorophore, 3,6-mPPICNC3, exhibiting a hybridized local and charge-transfer state, is achieved through precise molecular configuration engineering, realizing similar hole and electron mobilities at both low and high electric fields. Moreover, the planarized intramolecular charge transfer excited state and steric hindrance effect endow 3,6-mPPICNC3 with a considerable luminous efficiency and good color purity in the aggregation state. Consequently, the non-doped device emitting stable NUV light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.160, 0.032) and a narrow full width at half maximum of 44 nm exhibits a state-of-the-art external quantum efficiency (EQE) of 7.67% and negligible efficiency roll-off over a luminance range from 0 to 3300 cd m-2. This is a record-high efficiency among all the reported non-doped NUV devices. Amazingly, an EQE of 7.85% and CIE coordinates of (0.161, 0.025) are achieved in the doped device. This demonstrates that the D'-D-A-type molecular structure has great potential for developing high-performance organic light-emitting materials and their optoelectronic applications.

8.
Bioresour Technol ; 408: 131174, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39084537

RESUMEN

The impact of weak magnetic field (WMF) on anaerobic digestion (AD) performance of waste activated sludge (WAS) and underlying mechanism were investigated. Results showed that WMF significantly stimulated the methane yield by 12.9∼25.1% with 15 and 30 mT WMF addition, but high WMF (60 mT) attenuated the positive effect. The WMF enriched the anaerobic microbes, especially the acetoclastic and hydrogenotrophic methanogen. Additionally, the WMF dramatically facilitated the metabolic pathways of key enzymes for methanogenesis, which was validated by the significant increase of absolute abundance of anaerobic functional genes (mcrA). The enzyme activities of ATP and F420 were also significantly promoted by 30 mT WMF, but high WMF (60 mT) resulted in increased activity of lactate dehydrogenase. This study reveals that low WMF can promote AD performance of WAS through enhancing microbial activities especially methanogen, but high WMF leads to the loss of cell membrane integrity and attenuates its positive effect.

9.
Front Cell Infect Microbiol ; 14: 1364545, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868299

RESUMEN

Introduction: Gestational diabetes mellitus (GDM) is a form of gestational diabetes mellitus characterized by insulin resistance and abnormal function of pancreatic beta cells. In recent years, genomic association studies have revealed risk and susceptibility genes associated with genetic susceptibility to GDM. However, genetic predisposition cannot explain the rising global incidence of GDM, which may be related to the increased influence of environmental factors, especially the gut microbiome. Studies have shown that gut microbiota is closely related to the occurrence and development of GDM. This paper reviews the relationship between gut microbiota and the pathological mechanism of GDM, in order to better understand the role of gut microbiota in GDM, and to provide a theoretical basis for clinical application of gut microbiota in the treatment of related diseases. Methods: The current research results on the interaction between GDM and gut microbiota were collected and analyzed through literature review. Keywords such as "GDM", "gut microbiota" and "insulin resistance" were used for literature search, and the methodology, findings and potential impact on the pathophysiology of GDM were systematically evaluated. Results: It was found that the composition and diversity of gut microbiota were significantly associated with the occurrence and development of GDM. Specifically, the abundance of certain gut bacteria is associated with an increased risk of GDM, while other changes in the microbiome may be associated with improved insulin sensitivity. In addition, alterations in the gut microbiota may affect blood glucose control through a variety of mechanisms, including the production of short-chain fatty acids, activation of inflammatory pathways, and metabolism of the B vitamin group. Discussion: The results of this paper highlight the importance of gut microbiota in the pathogenesis of GDM. The regulation of the gut microbiota may provide new directions for the treatment of GDM, including improving insulin sensitivity and blood sugar control through the use of probiotics and prebiotics. However, more research is needed to confirm the generality and exact mechanisms of these findings and to explore potential clinical applications of the gut microbiota in the management of gestational diabetes. In addition, future studies should consider the interaction between environmental and genetic factors and how together they affect the risk of GDM.


Asunto(s)
Diabetes Gestacional , Microbioma Gastrointestinal , Resistencia a la Insulina , Diabetes Gestacional/microbiología , Humanos , Embarazo , Femenino , Probióticos , Bacterias/clasificación , Bacterias/genética
10.
Food Chem ; 454: 139853, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823200

RESUMEN

The effects of SHP on the texture, rheological properties, starch crystallinity and microstructure of frozen dough were investigated. The efficacy of SHP in enhancing dough quality is concentration-dependent, with frozen dough containing 1.5% SHP exhibiting hardness comparable to fresh dough without SHP (221.31 vs. 221.42 g). Even at 0.5% SHP, there is a noticeable improvement in frozen dough quality. The rheological results showed that the viscoelasticity of dough increased with higher SHP concentration. What's more, XRD and SEM results indicated that the SHP's hydrophilicity reduces the degree of starch hydrolysis, slows down the damage of starch particles during freezing, and consequently lowers the crystallinity of starch. Additionally, CLSM observations revealed that SHP enhances the gluten network structure, diminishing the appearance of holes. Therefore, the physical, chemical properties, and microstructure of frozen dough with SHP demonstrate significant enhancement, suggesting SHP's promising antifreeze properties and potential as a food antifreeze agent.


Asunto(s)
Harina , Congelación , Glycine max , Polisacáridos , Reología , Harina/análisis , Polisacáridos/química , Glycine max/química , Pan/análisis , Viscosidad , Almidón/química
11.
J Med Chem ; 67(13): 10946-10966, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38913497

RESUMEN

Thrombo-inflammation is closely associated with a few severe cardiovascular and infectious diseases. Factor XIIa (FXIIa) in the intrinsic coagulation pathway plays a pivotal role in the development of thrombo-inflammation and its inhibition has emerged as a potential therapeutic approach for thrombo-inflammatory disorders. Nonetheless, as of now, few small-molecule FXIIa inhibitors have demonstrated notable effectiveness against thrombo-inflammation, with none progressing into clinical stages. Herein, we present potent, covalent, reversible, and selective small-molecule FXIIa inhibitors such as 4a and 4j obtained through structure-based drug design. Compounds 4a and 4j showed significant anticoagulation and substantial anti-inflammatory effects in vitro, coupled with exceptional plasma stability. Furthermore, in carrageenan-induced thrombosis models, 4a and 4j demonstrated remarkable dual antithrombotic and anti-inflammatory activity when administered orally. Compound 4j exhibited a favorable safety profile without obvious tissue toxicity in mice, suggesting its potential as an oral therapeutic option for thrombo-inflammation.


Asunto(s)
Factor XIIa , Trombosis , Animales , Trombosis/tratamiento farmacológico , Ratones , Humanos , Factor XIIa/antagonistas & inhibidores , Factor XIIa/metabolismo , Administración Oral , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Relación Estructura-Actividad , Carragenina , Descubrimiento de Drogas , Inflamación/tratamiento farmacológico , Masculino , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Anticoagulantes/química , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Fibrinolíticos/química , Disponibilidad Biológica
12.
Food Chem ; 455: 139928, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850974

RESUMEN

In this study, the impact of Gluconolactone (GDL) concentration on the formation of high-internal-phase emulsion gels (HIPEGs) and the gastrointestinal digestive viability of Lactobacillus plantarum encapsulated within these HIPEGs were demonstrated. Increasing GDL concentrations led to cross-linking of particles at the oil-water interface, thereby stabilizing smaller oil droplets. The addition of GDL to HIPEs results in a significant increase in the secondary structure of SPI, specifically in ß-sheet and ß-turn formations, accompanied by a reduction in α-helix percentage. This alteration enhanced the binding effect of protein on water, leading to changes in intermolecular force. Notably, HIPEGs containing 3.0% GDL demonstrated superior encapsulation efficiency and delivery efficiency, reaching 99.0% and 84.5%, respectively. After 14 d of continuous zebrafishs feeding, the intestinal viable cells count of Lactobacillus plantarum reached 1.18 × 107 CFU/mL. This finding supports the potential use of HIPEGs as a probiotic delivery carrier, effectively enhancing the intestinal colonization rate.


Asunto(s)
Emulsiones , Tracto Gastrointestinal , Geles , Gluconatos , Lactobacillus plantarum , Probióticos , Pez Cebra , Lactobacillus plantarum/química , Lactobacillus plantarum/metabolismo , Lactobacillus plantarum/crecimiento & desarrollo , Emulsiones/química , Probióticos/química , Probióticos/farmacología , Probióticos/administración & dosificación , Animales , Geles/química , Gluconatos/química , Gluconatos/metabolismo , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Viabilidad Microbiana , Lactonas
13.
Int J Biol Macromol ; 274(Pt 2): 133487, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944093

RESUMEN

The applications of polysaccharides as emulsifiers are limited due to the lack of hydrophobicity. However, traditional hydrophobic modification methods used for polysaccharides are complicated and involve significant mechanical and thermal losses. In this study, soy hull polysaccharide (SHP) and terminally aminopropylated polydimethylsiloxane (NPN) were selected to investigate the feasibility of a simple and green interfacial membrane strengthening strategy based on the interfacial polymerization of anionic polysaccharides and fat-soluble alkaline ligands. Our results show that deprotonated SHP and protonated NPN can be complexed at the water/oil (W/O) interface, reduce interfacial tension, and form a strong membrane structure. Moreover, they can quickly form a membrane at the W/O interface upon the moment of contact to produce stable all-liquid printing products with complex patterns. However, the molecular weight of NPN affects the complexation reaction. Consequently, this study has long-term implications to expanding the areas of application for anionic polysaccharides.


Asunto(s)
Polisacáridos , Polisacáridos/química , Ligandos , Aniones/química , Membranas Artificiales , Agua/química , Dimetilpolisiloxanos/química , Glycine max/química , Interacciones Hidrofóbicas e Hidrofílicas
14.
Int J Biol Macromol ; 272(Pt 2): 132668, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38821305

RESUMEN

As the most abundant and renewable natural resource, cellulose has attracted significant attention and research interest for the production of hydrogels (HGs). To address environmental issues and emerging demands, the benefits of naturally produced HGs include excellent mechanical properties and superior biocompatibility. HGs are three-dimensional networks created by chemical or physical cross-linking of linear or branched hydrophilic polymers and have high capacity for absorption of water and biological fluids. Although widely used in the food and biomedical fields, most HGs are not biodegradable. Nanocellulose hydrogels (NC-HGs) have been extensively applied in the food industry for detection of freshness, chemical additives, and substitutes, as well as the biomedical field for use as bioengineering scaffolds and drug delivery systems owing to structural interchangeability and stimuli-responsive properties. In this review article, the sources, structures, and preparation methods of NC-HGs are described, applications in the food and biomedical industries are summarized, and current limitations and future trends are discussed.


Asunto(s)
Celulosa , Industria de Alimentos , Hidrogeles , Hidrogeles/química , Celulosa/química , Humanos , Materiales Biocompatibles/química , Nanoestructuras/química , Sistemas de Liberación de Medicamentos , Animales
15.
BMC Public Health ; 24(1): 1453, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816714

RESUMEN

OBJECTIVES: This study aimed to examine the impact of pertussis on the global, regional, and national levels between 1990 and 2019. METHODS: Data on pertussis on a global scale from 1990 to 2019 were collected from the 2019 Global Burden of Disease Study. We performed a secondary analysis to report the global epidemiology and disease burden of pertussis. RESULTS: During the period spanning from 1990 to 2019, pertussis exhibited a steady global decline in the age-standardized incidence rate (ASIR), age-standardized disability-adjusted life years rate (ASYR), and age-standardized death rate (ASDR). Nevertheless, upon delving into an in-depth analysis of various regions, it was apparent that ASIR in southern sub-Saharan Africa, ASYR and ASDR in high-income North America, and ASDR in Western Europe and Australasia, were witnessing an upward trajectory. Moreover, a negative correlation was observed between the Socio­demographic Index (SDI) and burden inflicted by pertussis. Notably, the incidence of pertussis was comparatively lower in men than in women, with 0-4-year-olds emerging as the most profoundly affected demographic. CONCLUSION: The global pertussis burden decreased from 1990 to 2019. However, certain regions and countries faced an increasing disease burden. Therefore, urgent measures are required to alleviate the pertussis burden in these areas.


Asunto(s)
Carga Global de Enfermedades , Salud Global , Tos Ferina , Humanos , Tos Ferina/epidemiología , Masculino , Incidencia , Lactante , Preescolar , Femenino , Salud Global/estadística & datos numéricos , Años de Vida Ajustados por Discapacidad , Niño , Recién Nacido , Adolescente , Adulto , Costo de Enfermedad
16.
Food Chem ; 453: 139643, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38761734

RESUMEN

The study aimed to evaluate a food adhesive developed using tea polyphenols (TPs) with soybean protein isolate (SPI) to create a cohesive bond between soy protein gel and simulated fat. Upon the addition of 5.0 % TPs, significant increases in viscosity, thermal stability, and crystallinity were noted in adhesives, suggesting the formation of a cohesive network. Furthermore, TPs effectively enhanced adhesion strength, with the optimal addition being 5.0 %. This enhancement can be attributed to hydrogen bonding, hydrophobic and electrostatic interactions between TPs and SPI molecules. TPs induced a greater expansion of the protein structure, exposing numerous buried hydrophobic groups to a more hydrophilic and polar environment. However, excessive TPs were found to diminish adhesion strength. This can be attributed to enhanced reactions between TPs and SPI, where high molecular weight SPI-TPs cooperatively aggregate to form agglomerates that eventually precipitated, rendering the adhesive network inhomogeneous, less stable, and more prone to disruption.


Asunto(s)
Adhesivos , Polifenoles , Proteínas de Soja , , Resistencia a la Tracción , Proteínas de Soja/química , Polifenoles/química , Adhesivos/química , Té/química , Interacciones Hidrofóbicas e Hidrofílicas , Viscosidad , Camellia sinensis/química , Extractos Vegetales/química , Enlace de Hidrógeno
17.
Phytomedicine ; 130: 155748, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38788398

RESUMEN

BACKGROUND: Nardosinone, a major extract of Rhizoma nardostachyos, plays a vital role in sedation, neural stem cell proliferation, and protection of the heart muscle. However, the huge potential of nardosinone in regulating lipid metabolism and gut microbiota has not been reported, and its potential mechanism has not been studied. PURPOSE: To explore the regulation of nardosinone on liver lipid metabolism and gut microbiota. METHODS: In this study, the role of nardosinone in lipid metabolism was investigated in vitro and in vivo by adding it to mouse feed and HepG2 cell culture medium. And 16S rRNA gene sequencing was used to explore its regulatory effect on gut microbiota. RESULTS: Results showed that nardosinone could improve HFD-induced liver injury and abnormal lipid metabolism by promoting mitochondrial energy metabolism in hepatocytes, alleviating oxidative stress damage, and regulating the composition of the gut microbiota. Mechanistically, combined with network pharmacology and reverse docking analysis, it was predicted that CYP2D6 was the target of nardosinone, and the binding was verified by cellular thermal shift assay (CETSA). CONCLUSIONS: This study highlights a novel mechanism function of nardosinone in regulating lipid metabolism and gut microbiota. It also predicts and validates CYP2D6 as a previously unknown regulatory target, which provides new possibilities for the application of nardosinone and the treatment of metabolic-associated fatty liver disease.


Asunto(s)
Citocromo P-450 CYP2D6 , Metabolismo Energético , Microbioma Gastrointestinal , Metabolismo de los Lípidos , Humanos , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Células Hep G2 , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Metabolismo Energético/efectos de los fármacos , Citocromo P-450 CYP2D6/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Simulación del Acoplamiento Molecular , Hígado Graso/tratamiento farmacológico
18.
Food Chem ; 454: 139832, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820641

RESUMEN

Mesoporous silica microspheres (MSMs) possess poor biocompatibility. This study focuses on integrating MSMs with polymers to obtain hybrid materials with superior performance compared to the individual components and responsive release in specific environments. The synthesized MSMs were aminated, and subsequently, soybean hull polysaccharide (SHPs) was modified onto MSMs-NH2 to produce MSMs-NH2@SHPs nanoparticles. The encapsulation rate, loading rate of curcumin (Cur), and in vitro release behavior were investigated. Results indicated that the encapsulation efficiency of Cur by MSMs-NH2@SHPs nanoparticles reached 75.58%, 6.95 times that of MSMs-NH2 with a load capacity of 35.12%. It is noteworthy that these nanoparticles exhibit pH-responsive release capacity in vitro. The cumulative release rate of the three nanoparticles at pH 5.0 was higher than that at pH 7.4. MSMs-NH2@SHPs had a cumulative release rate of 56.55% at pH 7.4, increasing to 76.21% at pH 5.0. In vitro experiments have shown that MSMs-based nanoparticles have high delivery efficiency and can achieve pH-sensitive drug release, with a high release rate in a slightly acidic acid, highlighting the potential for controlled release of Cur.


Asunto(s)
Curcumina , Preparaciones de Acción Retardada , Glycine max , Microesferas , Polisacáridos , Dióxido de Silicio , Curcumina/química , Concentración de Iones de Hidrógeno , Dióxido de Silicio/química , Polisacáridos/química , Glycine max/química , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Liberación de Fármacos , Porosidad , Composición de Medicamentos , Nanopartículas/química
19.
Food Chem ; 454: 139759, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805926

RESUMEN

A ratiometric fluorescence molecularly imprinted probe employing two distinct emission wavelengths of biomass carbon dots was developed for highly selective and visual quantitative detection of tyramine in fermented meat products. The red emission biomass carbon dots were employed as responsive elements, and the blue ones were utilized as the reference elements. The molecularly imprinted polymers were incorporated in the ratiometric sensing to distinguish and adsorb tyramine. With the linear range of 1-60 µg/L, the ratiometric fluorescence molecularly imprinted probe was successfully applied to detect tyramine in real samples with the satisfactory recoveries of 79.74-112.12% and the detect limitation of 1.3 µg/kg, indicating that this probe has great potential applications for the detection of tyramine in real samples. Moreover, smartphone-based fluorescence signal recognition analysis on hand has been developed for the quantitative analysis of tyramine, providing a portable visual optical analysis terminal for rapid on-site determination of tyramine.


Asunto(s)
Carbono , Productos de la Carne , Impresión Molecular , Teléfono Inteligente , Tiramina , Tiramina/análisis , Carbono/química , Productos de la Carne/análisis , Contaminación de Alimentos/análisis , Puntos Cuánticos/química , Biomasa , Fluorescencia , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Animales
20.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731831

RESUMEN

Small secreted peptides (SSPs) play important roles in regulating plants' growth and development in response to external stimulus, but the genes and functions of SSPs in many species are still unknown. Therefore, it is particularly significant to characterize and annotate SSP genes in plant genomes. As a widely used stock of pears, Pyrus betulifolia has strong resistance to biotic and abiotic stresses. In this study, we analyzed the SSPs genes in the genome of P. betulifolia according to their characteristics and homology. A total of 1195 SSP genes were identified, and most of them are signaling molecules. Among these, we identified a new SSP, subtilase peptide 3 (SUBPEP3), which derived from the PA region of preSUBPEP3, increasing the expression level under salt stress. Both adding synthetic peptide SUBPEP3 to the culture medium of pears and the overexpression of SUBPEP3 in tobacco can improve the salt tolerance of plants. In summary, we annotated the SSP genes in the P. betulifolia genome and identified a small secreted peptide SUBPEP3 that regulates the salt tolerance of P. betulifolia, which provides an important theoretical basis for further revealing the function of SSPs.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Pyrus , Tolerancia a la Sal , Pyrus/genética , Pyrus/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Nicotiana/genética , Nicotiana/metabolismo , Secuencia de Aminoácidos , Péptidos/metabolismo , Péptidos/genética , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA