Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39200044

RESUMEN

Infections caused by multidrug-resistant pathogens have emerged as a serious threat to public health. To develop new antibacterial agents to combat such drug-resistant bacteria, a class of novel amphiphilic xanthoangelol-derived compounds were designed and synthesized by mimicking the structure and function of antimicrobial peptides (AMPs). Among them, compound 9h displayed excellent antimicrobial activity against the Gram-positive strains tested (MICs = 0.5-2 µg/mL), comparable to vancomycin, and with low hemolytic toxicity and good membrane selectivity. Additionally, compound 9h demonstrated rapid bactericidal effects, low resistance frequency, low cytotoxicity, and good plasma stability. Mechanistic studies further revealed that compound 9h had good membrane-targeting ability and was able to destroy the integrity of bacterial cell membranes, causing an increase in intracellular ROS and the leakage of DNA and proteins, thus accelerating bacterial death. These results make 9h a promising antimicrobial candidate to combat bacterial infection.

2.
Eur J Med Chem ; 277: 116784, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39178727

RESUMEN

Antimicrobial resistance has emerged as a significant threat to global public health. To develop novel, high efficiency antibacterial alternatives to combat multidrug-resistant bacteria, A total of thirty-two novel amphiphilic benzopyran derivatives by mimicking the structure and function of antimicrobial peptides were designed and synthesized. Among them, the most promising compounds 4h and 17e displayed excellent antibacterial activity against Gram-positive bacteria (MICs = 1-4 µg/mL) with weak hemolytic activity and good membrane selectivity. Additionally, compounds 4h and 17e had rapid bactericidal properties, low resistance frequency, good plasma stability, and strong capabilities of inhibiting and eliminating bacterial biofilms. Mechanistic studies revealed that compounds 4h and 17e could effectively disrupt the integrity of bacterial cell membranes, and accompanied by an increase in intracellular reactive oxygen species and the leakage of proteins and DNA, ultimately leading to bacterial death. Notably, compound 4h exhibited comparable in vivo antibacterial potency in a mouse septicemia model infected by Staphylococcus aureus ATCC43300, as compared to vancomycin. These findings indicated that 4h might be a promising antibacterial candidate to combat antimicrobial resistance.


Asunto(s)
Antibacterianos , Benzopiranos , Biopelículas , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Benzopiranos/farmacología , Benzopiranos/síntesis química , Benzopiranos/química , Animales , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Ratones , Relación Estructura-Actividad , Biopelículas/efectos de los fármacos , Estructura Molecular , Relación Dosis-Respuesta a Droga , Staphylococcus aureus/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Humanos , Tensoactivos/síntesis química , Tensoactivos/farmacología , Tensoactivos/química
3.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000025

RESUMEN

3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.


Asunto(s)
Iminas , Maleimidas , Fosfinas , Succinimidas , Maleimidas/química , Maleimidas/síntesis química , Fosfinas/química , Catálisis , Iminas/química , Succinimidas/química , Estereoisomerismo , Estructura Molecular , Isomerismo
4.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891859

RESUMEN

Abscisic acid (ABA) is a drought-stress-responsive hormone that plays an important role in the stomatal activity of plant leaves. Currently, ABA glycosides have been identified in apples, but their glycosyltransferases for glycosylation modification of ABA are still unidentified. In this study, the mRNA expression of glycosyltransferase gene MdUGT73AR4 was significantly up-regulated in mature apple leaves which were treated in drought stress by Real-Time PCR. It was hypothesised that MdUGT73AR4 might play an important role in drought stress. In order to further characterise the glycosylation modification substrate of glycosyltransferase MdUGT73AR4, we demonstrated through in vitro and in vivo functional validation that MdUGT73AR4 can glycosylate ABA. Moreover, the overexpression lines of MdUGT73AR4 significantly enhance its drought stress resistance function. We also found that the adversity stress transcription factor AREB1B might be an upstream transcription factor of MdUGT73AR4 by bioinformatics, EMSA, and ChIP experiments. In conclusion, this study found that the adversity stress transcription factor AREB1B was significantly up-regulated at the onset of drought stress, which in turn positively regulated the downstream glycosyltransferase MdUGT73AR4, causing it to modify ABA by mass glycosylation and promoting the ABA synthesis pathway, resulting in the accumulation of ABA content, and displaying a stress-resistant phenotype.


Asunto(s)
Ácido Abscísico , Sequías , Regulación de la Expresión Génica de las Plantas , Glicosiltransferasas , Malus , Proteínas de Plantas , Estomas de Plantas , Estrés Fisiológico , Ácido Abscísico/metabolismo , Estomas de Plantas/metabolismo , Estomas de Plantas/fisiología , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Malus/metabolismo , Malus/genética , Malus/fisiología , Glicosilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
5.
Molecules ; 29(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38893468

RESUMEN

In this paper, an interesting γ'-carbon 1,6-conjugate addition for phosphine-catalyzed α-succinimide substituted allenoates has been disclosed. A wide array of substrates was found to participate in the reaction, resulting in the production of diverse 4-diarylmethylated 3,4-disubstituted maleimides with satisfactory to outstanding yields. Furthermore, a plausible mechanism for the reaction was proposed by the investigators.

6.
Plants (Basel) ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38732386

RESUMEN

Nicosulfuron, an acetolactate synthase (ALS) inhibitor herbicide, is a broad-spectrum and highly effective post-emergence herbicide. Glycosyltransferases (GTs) are widely found in organisms and transfer sugar molecules from donors to acceptors to form glycosides or sugar esters, thereby altering the physicochemical properties of the acceptor molecule, such as participating in detoxification. In this study, nine glycosyltransferases in group D of the apple glycosyltransferase family I were predicted to possibly be involved in the detoxification metabolism of ALS-inhibiting herbicides based on gene chip data published online. In order to confirm this, we analysed whether the expression of the nine glycosyltransferase genes in group D was induced by the previously reported ALS-inhibiting herbicides by real-time PCR (polymerase chain reaction). It was found that the ALS-inhibiting herbicide nicosulfuron significantly increased the expression of the MdUGT73CG22 gene in group D. Further investigation of the mechanism of action revealed that the apple glycosyltransferase MdUGT73CG22 glycosylated and modified nicosulfuron both in vivo and ex vivo to form nicosulfuron glycosides, which were involved in detoxification metabolism. In conclusion, a new glycosyltransferase, MdUGT73CG22, was identified for the first time in this study, which can glycosylate modifications of the ALS-inhibiting herbicide nicosulfuron and may be involved in the detoxification process in plants, which can help to further improve the knowledge of the non-targeted mechanism of herbicides.

7.
Front Bioeng Biotechnol ; 12: 1352098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585708

RESUMEN

The Chinese hamster ovarian (CHO) cells serve as a common choice in biopharmaceutical production, traditionally cultivated in stirred tank bioreactors (STRs). Nevertheless, the pursuit of improved protein quality and production output for commercial purposes demand exploration into new bioreactor types. In this context, inverted frustoconical shaking bioreactors (IFSB) present unique physical properties distinct from STRs. This study aims to compare the production processes of an antibody-based biotherapeutic in both bioreactor types, to enhance production flexibility. The findings indicate that, when compared to STRs, IFSB demonstrates the capability to produce an antibody-based biotherapeutic with either comparable or enhanced bioprocess performance and product quality. IFSB reduces shear damage to cells, enhances viable cell density (VCD), and improves cell state at a 5-L scale. Consequently, this leads to increased protein expression (3.70 g/L vs 2.56 g/L) and improved protein quality, as evidenced by a reduction in acidic variants from 27.0% to 21.5%. Scaling up the culture utilizing the Froude constant and superficial gas velocity ensures stable operation, effective mixing, and gas transfer. The IFSB maintains a high VCD and cell viability at both 50-L and 500-L scales. Product expression levels range from 3.0 to 3.6 g/L, accompanied by an improved acidic variants attribute of 20.6%-22.7%. The IFSB exhibits superior productivity and product quality, underscoring its potential for incorporation into the manufacturing process for antibody-based biotherapeutics. These results establish the foundation for IFSB to become a viable option in producing antibody-based biotherapeutics for clinical and manufacturing applications.

8.
J Agric Food Chem ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38599785

RESUMEN

To develop aryloxyphenoxypropionate herbicides with a novel structure and improved activity, a total of 39 aryloxyphenoxypropionate/amide derivatives containing quinazolinone moiety were synthesized and further bioevaluated. The bioassay results in the greenhouse showed that most of the target compounds had good herbicidal activity under postemergence conditions, of which, QPP-I-6 displayed excellent herbicidal activity against Echinochloa crusgalli, Digitaria sanguinalis, Spartina alterniflora, Eleusine indica, and Pennisetum alopecuroides with inhibition rates >90% at a dosage of 187.5 g ha-1. More importantly, QPP-I-6 displayed higher crop safety to Gossypium hirsutum, Glycine max, and Arachis hypogaea than the commercial herbicide quizalofop-p-ethyl. Studying the molecular mode of action by phenotypic observation, membrane permeability evaluation, transcriptomic analysis, and in vivo ACCase activity evaluation reveals that QPP-I-6 is a novel ACCase inhibitor. The present work demonstrates that QPP-I-6 can serve as a lead compound for further developing novel ACCase-inhibiting herbicides.

9.
J Org Chem ; 89(10): 7169-7174, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38679873

RESUMEN

α-succinimide-substituted allenoates were employed as phosphine acceptors in phosphine-catalyzed (4 + 2) annulation with 1,1-dicyanoalkenes. They served as C4 synthons in the annulation reaction under mild reaction conditions and produced hexahydroisoindole derivatives in moderate to high yields with good to excellent diastereoselectivities.

10.
Int J Biol Macromol ; 268(Pt 1): 131500, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614179

RESUMEN

Modifying the carrier interface is a promising method to improve the microenvironment of immobilized enzymes and enhance their activity and stability. In this work, using proline as amino acid, magnetic metal-organic frameworks (MOFs) were modified with an amino-acid-based ionic liquid (AAIL) with two hydroxyl groups followed by adsorption of porcine pancreatic lipase (PPL). The activity recovery of the prepared immobilized lipase (MMOF-AAIL/PPL) was up to 162 % higher than that of MMOF-PPL (70.8 %). The Michaelis constant of MMOF-AAIL/PPL was 0.0742 mM lower than that of MMOF-PPL, but the catalytic efficiency was 0.0223 min-1 which was higher than MMOF-PPL. Furthermore, MMOF-AAIL/PPL maintained 85.6 % residual activity after stored for 40 days and its residual activity was 71.9 % while that for MMOF-PPL was 58.8 % after incubated in 6 M urea for 2 h. Particularly, after ten consecutive cycles, the residual activity of MMOF-AAIL/PPL still reached 84.4 %. In addition, the magnetic properties of the support facilitate the separation process which improves the utilization efficiency of immobilized enzymes.


Asunto(s)
Aminoácidos , Estabilidad de Enzimas , Enzimas Inmovilizadas , Líquidos Iónicos , Lipasa , Estructuras Metalorgánicas , Lipasa/química , Lipasa/metabolismo , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Estructuras Metalorgánicas/química , Líquidos Iónicos/química , Aminoácidos/química , Animales , Porcinos , Cinética , Adsorción , Concentración de Iones de Hidrógeno
11.
Colloids Surf B Biointerfaces ; 237: 113836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479261

RESUMEN

The enzyme immobilization technology has become a key tool in the field of enzyme applications; however, improving the activity recovery and stability of the immobilized enzymes is still challenging. Herein, we employed a magnetic carboxymethyl cellulose (MCMC) nanocomposite modified with ionic liquids (ILs) for covalent immobilization of lipase, and used Ca-based metal-organic frameworks (MOFs) as the support skeleton and protective layer for immobilized enzymes. The ILs contained long side chains (eight CH2 units), which not only enhanced the hydrophobicity of the carrier and its hydrophobic interaction with the enzymes, but also provided a certain buffering effect when the enzyme molecules were subjected to compression. Compared to free lipase, the obtained CaBPDC@PPL-IL-MCMC exhibited higher specific activity and enhanced stability. In addition, the biocatalyst could be easily separated using a magnetic field, which is beneficial for its reusability. After 10 cycles, the residual activity of CaBPDC@PPL-IL-MCMC could reach up to 86.9%. These features highlight the good application prospects of the present immobilization method.


Asunto(s)
Líquidos Iónicos , Estructuras Metalorgánicas , Lipasa/química , Enzimas Inmovilizadas/química , Calcio , Líquidos Iónicos/química , Estabilidad de Enzimas
12.
Mol Neurobiol ; 61(9): 6708-6720, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38347285

RESUMEN

Aging is a natural and inevitable process of organisms. With the intensification of population aging, research on aging has become a hot topic of global attention. The most obvious manifestation of human aging is the aging of brain function, which has been linked to the development of neurodegenerative diseases. In this study, COP-22, a mono-carbonyl curcumin derivative, was evaluated for its anti-aging ability, especially its ability to resist brain aging induced by D-galactose (D-gal) in mice. For brain protection, COP-22 could resist D-gal-induced oxidative stress by increasing the activity of antioxidative defense enzymes and enhancing antioxidant capacity in the brain tissue; COP-22 could improve the dysfunction of the cholinergic system by decreasing the increased activity of acetylcholinesterase and increasing the reduced content of acetylcholine induced by D-gal; and COP-22 could protect nerve cells of the brain. Further, western blot was used to determine related proteins of the brain. We found that COP-22 could effectively protect against brain injury (SIRT1, p53, p21, and p16) by inhibiting oxidative stress (Nrf2 and HO-1), inflammation (IL-6 and TNF-α), and apoptosis (Bax and caspase-3) in D-gal-induced aging mice. Additionally, COP-22 demonstrated the ability to reduce oxidative stress in serum and liver caused by D-gal, as well as relieve the damages in the liver and kidney induced by D-gal. These results indicated that COP-22 had potential anti-aging activity and could be used in the therapy of aging and aging-associated diseases like Alzheimer disease.


Asunto(s)
Envejecimiento , Apoptosis , Encéfalo , Curcumina , Galactosa , Inflamación , Estrés Oxidativo , Animales , Masculino , Ratones , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Envejecimiento/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Galactosa/efectos adversos , Inflamación/patología , Inflamación/metabolismo , Estrés Oxidativo/efectos de los fármacos , Curcumina/análogos & derivados
13.
J Enzyme Inhib Med Chem ; 39(1): 2286183, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38078358

RESUMEN

In this study, four series of piperazine derivatives were designed, synthesised and subjected to biological test, and compound 6a with potential antidepressant activity was obtained. An affinity assay of compound 6a with 5-hydroxytryptamine (serotonin, 5-HT)1A receptor (5-HT1AR) was undertaken, and the effects on the 5-HT level in the brains of mice were also tested. The results showed that compound 6a had the best affinity with 5-HT1AR (Ki = 1.28 nM) and significantly increased the 5-HT level. The expression levels of 5-HT1AR, BDNF, and PKA in the hippocampus were analysed by western blot and immunohistochemistry analyses. The results showed that the expression of 5-HT1AR, BDNF, and PKA in the model group was reduced compared to that of the control group, and compound 6a could reverse this phenomenon. Molecular docking was performed to investigate the interactions of the studied compound 6a with 5-HT1AR on the molecular level.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Serotonina , Ratones , Animales , Serotonina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Simulación del Acoplamiento Molecular , Encéfalo , Piperazinas/farmacología , Receptor de Serotonina 5-HT1A/metabolismo
14.
Bioorg Med Chem ; 96: 117533, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37976807

RESUMEN

Metabolic syndrome is a complex disease with diverse symptoms, but current pharmacological interventions have limited efficacy. Indeglitazar, a pan-agonist targeting the three-peroxisome proliferator activated receptors (PPAR), exhibits significant therapeutic effects on both diabetic and fatty liver animal models. However, its short half-life limits the in vivo efficacy, which might be attributed to the ß-oxidation of indolepropionic acid at Indeglitazar. To overcome this metabolic instability, two deuterium atoms were introduced to the α-position of indolepropionic acid to block the ß-oxidation. In this study, several deuterated derivatives were found to sustain PPARs activity and extend the half-life of liver microsomes. In oral glucose tolerance tests, I-1 exhibited the strongest glucose-lowering effect on ob/ob mice in this series. In db/db mice, I-1 reduced lipid levels, liver steatosis and promoted UCP1 expression in white adipose tissue. Mechanistic studies further revealed that I-1 exerts stronger effects than Indeglitazar on the regulation of genes related to lipid metabolism, mitochondrial function, and oxidative stress. Furthermore, I-1 significantly reduced liver steatosis, hepatocellular ballooning, inflammation, and fibrosis in NASH model induced by HFD + CCl4, and even exerted better therapeutic effect than that of Indeglitazar. With the above attractive efficacy, deuterated derivative I-1 is considered as a promising treatment for metabolic syndrome.


Asunto(s)
Diabetes Mellitus , Hígado Graso , Síndrome Metabólico , Ratones , Animales , PPAR alfa/agonistas , Síndrome Metabólico/metabolismo , Diabetes Mellitus/metabolismo , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hipoglucemiantes/farmacología , Hígado/metabolismo
15.
Eur J Pharm Sci ; 187: 106469, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209999

RESUMEN

Esculetin (ELT) is one of the best-known and simplest coumarins with powerful natural antioxidant effects but insoluble and difficult to absorb. In order to overcome the problems, cocrystal engineering was first applied to ELT in this paper. Nicotinamide (NAM) was selected as the coformer for its excellent water solubility and potential synergistic antioxidant effect with ELT. The structure of the ELT-NAM cocrystal was successfully prepared and characterized by IR, SCXRD, PXRD, and DSC-TG. Furthermore, the in vitro/vivo properties and antioxidant effects of the cocrystal were adequately studied. The results highlight that the ELT obtained tremendous improvements in water solubility and bioavailability after cocrystal formation. Meanwhile, the synergistic enhancement of ELT with NAM in antioxidant effect was demonstrated by the DPPH assay. Ultimately, the simultaneously optimized in vitro/vivo properties and antioxidant activity of the cocrystal created an improved practical effect of hepatoprotective in rat experiments. The investigation is significant for developing coumarin drugs represented by ELT.


Asunto(s)
Antioxidantes , Niacinamida , Ratas , Animales , Antioxidantes/farmacología , Cristalización/métodos , Niacinamida/farmacología , Niacinamida/química , Solubilidad , Agua
16.
ACS Synth Biol ; 12(1): 224-237, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36547683

RESUMEN

Gene digital circuits are the subject of many studies in Synthetic Biology due to their various applications from pollutant detection to medical diagnostics and biocomputing. Complex logic functions are calculated via small genetic components that mimic Boolean gates, i.e., they implement basic logic operations. Gates interact by exchanging proteins or noncoding RNAs. To carry out logic operations in the yeast Saccharomyces cerevisiae, we chose three bacterial repressors commonly used for proofs of concept in Synthetic Biology, namely, TetR, LexA, and LacI. We coexpressed them via synthetic polycistronic cassettes based on 2A peptide sequences. Our initial results highlighted the successful application of four 2A peptides─from Equine rhinitis B virus-1 (ERBV-1 2A), Operophtera brumata cypovirus 18 (OpbuCPV18 2A), Ljungan virus (LV2A), and Thosea asigna virus (T2A)─to the construction of single and two-input Boolean gates. In order to improve protein coexpression, we modified the original 2A peptides with the addition of the glycine-serine-glycine (GSG) prefix or by using two different 2As sequences in tandem. Remarkably, we finally realized a well-working tri-cistronic vector that carried LexA-HBD(hER), TetR, and LacI separated, in the order, by GSG-T2A and ERBV-1 2A. This plasmid led to the implementation of three-input circuits containing AND and OR gates. Taken together, polycistronic constructs simplify the cloning and coexpression of multiple proteins with a dramatic reduction in the complexity of gene digital circuits.


Asunto(s)
Péptidos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Péptidos/genética , Secuencia de Aminoácidos , Factores de Transcripción
17.
Chem Biodivers ; 20(1): e202200814, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36471492

RESUMEN

Diabetes mellitus (DM) is a serious disease affecting human health. Numerous attempts have been made to develop safe and effective new antidiabetic drugs. Recently, a series of G protein-coupled receptors for free fatty acids (FFAs) have been described and characterized, and small molecule agonists and antagonists of these receptors show considerable promise for managing diabetes and related complications. FFA-activated GPR120 could stimulate the release of glucagon-like peptide-1(GLP-1), which can enhance the glucose-dependent secretion of insulin from pancreatic ß cells. GPR120 is a promising target for treating type 2 DM (T2DM). Herein we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which was the first potent and selective GPR120 agonist. Among the designed compounds, 18 f showed excellent GPR120 activation activity and high selectivity for GPR40 in vitro. Compound 18 f dose-dependently improved glucose tolerance in normal mice, and no hypoglycemic side effects were observed at high dose. In addition, compound 18 f increased insulin release and displayed good antidiabetic effect in diet-induced obese mice. Molecular simulations illustrated that compound 18 f could enter the active site of GPR120 and interact with Arg99. Based on these observations, compound 18 f may be a promising lead compound for the design of novel GPR120 agonists to treat T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ratones , Humanos , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Insulina , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Ácidos Grasos no Esterificados , Glucosa
18.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202669

RESUMEN

With the intensification of population aging, aging-related diseases are attracting more and more attention, thus, the study of aging mechanisms and anti-aging drugs is becoming increasingly urgent. Resveratrol is a potential candidate as an anti-aging agent, but its low bioavailability limits its application in vivo. In this work, a 4-hydroxy-3'-trifluoromethoxy-substituted resveratrol derivative (4-6), owing to its superior cell accumulation, could inhibit NO production in an inflammatory cell model, inhibit oxidative cytotoxicity, and reduce ROS accumulation and the population of apoptotic cells in an oxidative stress cell model. In D-galactose (D-gal)-stimulated aging mice, 4-6 could reverse liver and kidney damage; protect the serum, brain, and liver against oxidative stress; and increase the body's immunity in the spleen. Further D-gal-induced brain aging studies showed that 4-6 could improve the pathological changes in the hippocampus and the dysfunction of the cholinergic system. Moreover, protein expression related to aging, oxidative stress, and apoptosis in the brain tissue homogenate measured via Western blotting also showed that 4-6 could ameliorate brain aging by protecting against oxidative stress and reducing apoptosis. This work revealed that meta-trifluoromethoxy substituted 4-6 deserved to be further investigated as an effective anti-aging candidate drug.


Asunto(s)
Envejecimiento , Estrés Oxidativo , Animales , Ratones , Resveratrol/farmacología , Hígado , Apoptosis , Galactosa
19.
Front Pharmacol ; 14: 1304801, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38235117

RESUMEN

The aging population has become an issue that cannot be ignored, and research on aging is receiving increasing attention. PL 1-3 possesses diverse pharmacological properties including anti-oxidative stress, inhibits inflammatory responses and anti-apoptosis. This study showed that PL 1-3 could protect mice, especially the brain, against the aging caused by D-galactose (D-gal). D-gal could cause oxidative stress, inflammation, apoptosis and tissue pathological injury and so on in aging mice. The treatment of PL 1-3 could increase the anti-oxidative stress ability in the serum, liver, kidney and brain of aging mice, via increasing the total antioxidant capacity and the levels of anti-oxidative defense enzymes (superoxide dismutase, glutathione peroxidase, and catalase), and reducing the end product of lipid peroxidation (malondialdehyde). In the brain, in addition to the enhanced anti-oxidative stress via upregulating the level of the nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, PL 1-3 could improve the dysfunction of the cholinergic system via reducing the active of acetylcholinesterase so as to increase the level of acetylcholine, increase the anti-inflammatory and anti-apoptosis activities via downregulating the expressions of pro-inflammatory cytokines (interleukin-6 and tumor necrosis factor-α) and pro-apoptosis proteins (Bcl-2 associated X protein and Caspase-3) in the D-gal-induced aging mice, to enhance the anti-aging ability via upregulating the expression of sirtuin 1 and downregulating the expressions of p53, p21, and p16. Besides, PL 1-3 could reverse the liver, kidney and spleen damages induced by D-gal in aging mice. These results suggested that PL 1-3 may be developed as an anti-aging drug for the prevention and intervention of age-related diseases.

20.
Molecules ; 27(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36558150

RESUMEN

Diabetes mellitus (DM), a chronic metabolic disorder characterized by high blood glucose, not only poses a serious threat to human life and health, but also places an economic burden on society. Currently available antidiabetic pharmacological agents have some adverse effects, which have stimulated researchers to explore novel antidiabetic agents with different mechanisms of action. G-protein Coupled Receptor 120 (GPR120), also known as free fatty acid receptor 4 (FFAR4), which is activated by medium-chain and long-chain fatty acids, has emerged as an interesting potential target for the treatment of metabolic disorders. Herein, we designed and synthesized a series of novel GPR120 agonists based on the structure of TUG-891, which is susceptible to ß-oxidation and loses its GPR120 agonistic activity in vivo. Among the designed compounds, 14d showed excellent agonistic activity and selectivity and could improve glucose tolerance in normal mice in a dose-dependent manner. In addition, the compound 14d displayed good antidiabetic effects in diet-induced obese (DIO) mice and elevated insulin levels. Molecular simulations illustrated that compound 14d could enter the active site of GPR120 and interact with ARG99, which plays an important role in GPR120 activation. Based on these observations, compound 14d may be a promising lead compound deserving of further biological evaluation and structural modifications.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Humanos , Ratones , Animales , Diabetes Mellitus Tipo 2/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Receptores Acoplados a Proteínas G/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA