Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 693
Filtrar
1.
Sci Rep ; 14(1): 18319, 2024 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112791

RESUMEN

Accurately assigning standardized diagnosis and procedure codes from clinical text is crucial for healthcare applications. However, this remains challenging due to the complexity of medical language. This paper proposes a novel model that incorporates extreme multi-label classification tasks to enhance International Classification of Diseases (ICD) coding. The model utilizes deformable convolutional neural networks to fuse representations from hidden layer outputs of pre-trained language models and external medical knowledge embeddings fused using a multimodal approach to provide rich semantic encodings for each code. A probabilistic label tree is constructed based on the hierarchical structure existing in ICD labels to incorporate ontological relationships between ICD codes and enable structured output prediction. Experiments on medical code prediction on the MIMIC-III database demonstrate competitive performance, highlighting the benefits of this technique for robust clinical code assignment.


Asunto(s)
Clasificación Internacional de Enfermedades , Redes Neurales de la Computación , Semántica , Humanos , Procesamiento de Lenguaje Natural , Algoritmos , Bases de Datos Factuales
2.
J Biol Chem ; : 107648, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39121998

RESUMEN

Most cancer cells exhibit high glycolysis rates under conditions of abundant oxygen. Maintaining a stable glycolytic rate is critical for cancer cell growth as it ensures sufficient conversion of glucose carbons to energy, biosynthesis, and redox balance. Here we deciphered the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway. Knocking down or knocking out PKM2 induced a thermodynamic equilibration in the glycolytic pathway, characterized by the reciprocal changes of the Gibbs free energy (ΔG) of the reactions catalyzed by PFK1 and PK, leading to a less exergonic PFK1-catalyzed reaction and a more exergonic PK-catalyzed reaction. The changes of the ΔGs of the two reactions causes the accumulation of intermediates, including the substrate PEP (the substrate of PK), in the segment between PFK1 and PK. The increased concentration of PEP in turn increased PK activity in the glycolytic pathway. Thus, the interaction between PKM2 and the thermodynamic properties of the glycolytic pathway maintains the reciprocal relationship between PK concentration and its substrate PEP concentration, by which, PK activity in the glycolytic pathway can be stabilized and effectively counteracts the effect of PKM2 KD or KO on glycolytic rate. In line with our previous reports, this study further validates the roles of the thermodynamics of the glycolytic pathway in stabilizing glycolysis in cancer cells. Deciphering the interaction between glycolytic enzymes and the thermodynamics of the glycolytic pathway will promote a better understanding of the flux control of glycolysis in cancer cells.

3.
ACS Nano ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110878

RESUMEN

Electrolyte solvation chemistry regulated by lithium salts, solvents, and additives has garnered significant attention since it is the most effective strategy for designing high-performance electrolytes in lithium-ion batteries (LIBs). However, achieving a delicate balance is a persistent challenge, given that excessively strong or weak Li+-solvent coordination markedly undermines electrolyte properties, including thermodynamic redox stability and Li+-desolvation kinetics, limiting the practical applications. Herein, we elucidate the crucial influence of solvent-solvent interactions in modulating the Li+-solvation structure to enhance electrolyte thermodynamic and kinetic properties. As a paradigm, by combining strongly coordinated propylene carbonate (PC) with weakly coordinated cyclopentylmethyl ether (CPME), we identified intermolecular interactions between PC and CPME using 1H-1H correlation spectroscopy. Experimental and computational findings underscore the crucial role of solvent-solvent interactions in regulating Li+-solvent/anion interactions, which can enhance both the thermodynamic (i.e., antireduction capability) and kinetic (i.e., Li+-desolvation process) aspects of electrolytes. Additionally, we introduced an interfacial model to reveal the intricate relationship between solvent-solvent interactions, electrolyte properties, and electrode interfacial behaviors at a molecular scale. This study provides valuable insights into the critical impact of solvent-solvent interactions on electrolyte properties, which are pivotal for guiding future efforts in functionalized electrolyte engineering for metal-ion batteries.

4.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3848-3856, 2024 Jul.
Artículo en Chino | MEDLINE | ID: mdl-39099358

RESUMEN

This paper investigated the effect of total saponins from Rhizoma Panacis Majoris on the proliferation, apoptosis, and autophagy of human cervical carcinoma HeLa cells. The saponin content was detected by ultraviolet-visible spectrophotometry. Cell coun-ting kit-8(CCK-8) assay, 4,6-diamidino-2-phenylindole(DAPI) staining, and flow cytometry were used to detect the effects of total saponins of Panacis Majoris Rhizoma on cell viability, morphology, cell cycle and apoptosis of HeLa cells. Western blot was used to detect the expression of apoptosis-related proteins B cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cleaved caspase-9, and cleaved caspase-3, autophagy-related proteins Beclin-1 and SQSTM1(p62), and the proteins related to the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR) and mitogen-activated protein kinase(MAPK) signaling pathways. It was found that the yield and saponin content of total saponins from Rhizoma Panacis Majoris were 6.3% and 78.3%, respectively. Total saponins from Rhizoma Panacis Majoris could significantly inhibit the proliferation(P<0.001), effect the nuclear morphology, block the G_0/G_1 cycle, and induce cell apoptosis in HeLa cells with a concentration-dependent manner. In addition, total saponins from Rhizoma Panacis Majoris up-regulated the expression of pro-apoptotic proteins Bax, cleaved caspase-9, and cleaved caspase-3, and autophagy-related protein p62(P<0.05), while down-regulated the expression of anti-apoptotic protein Bcl-2 and autophagy-related protein Beclin-1(P<0.01). Total saponins from Rhizoma Panacis Majoris could promote the expression of p-p38/p38, p-Jun N-terminal kinase(JNK)/JNK, p-PI3K/PI3K, p-Akt/Akt, p-mTOR/mTOR proteins in PI3K/Akt/mTOR and MAPK signaling pathways(P<0.05). In contrast, the effect on p-ERK/ERK expression was not obvious. Therefore, total saponins from Rhizoma Panacis Majoris may inhibit autophagy and promote apoptosis of HeLa cells through the activation of the PI3K/Akt/mTOR, c-JNK, and p38 MAPK signaling pathways, which indicates that total saponins from Rhizoma Panacis Majoris may have a potential role in cervical cancer treatment.


Asunto(s)
Apoptosis , Autofagia , Proliferación Celular , Rizoma , Saponinas , Neoplasias del Cuello Uterino , Humanos , Saponinas/farmacología , Saponinas/química , Células HeLa , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Autofagia/efectos de los fármacos , Rizoma/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Femenino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Supervivencia Celular/efectos de los fármacos
5.
Plant Physiol Biochem ; 215: 109020, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39128405

RESUMEN

Clubroot, a devastating soil borne disease affecting 30%∼50% of Brassicaceae crops worldwide, lacks effective control measures. In the present study, we explored the potential of melatonin (MT) and copper oxide nanoparticle (CuO-NPs) in mitigating clubroot severity in the Brassica rapa ssp. pekinensis. Following 18 h priming with MT, CuO-NPs, or both seeds were grown in controlled environment using synthetic potting mix. Inoculated with Plasmodiophora brassicae spores on 5th day, followed by a soil drench phyto-nano treatment with a week interval. Plants were assessed for various health and growth indices including disease, biometrics, photosynthesis, reactive oxygen species (ROS), antioxidant enzyme activity, hormones and genes expression at onset of secondary clubroot infection using established protocols. Statistical analysis employed ANOVA with Fisher's LSD for significance assessment (P < 0.05). Our results revealed that seed priming with both MT (50 µMol/L) and CuO-NPs (200 mg/L), followed by soil drenching significantly reduced clubroot incidence (38%) and disease index (57%), compared to control treatments. This synergistic effect was associated with enhanced plant growth (shoots: 48% and roots: 59%). Plants treated with both MT and CuO-NPs showed robust antioxidant defenses, significantly increased superoxide dismutase (SOD (25/29%)), catalase (CAT (83/55%)), and ascorbate peroxidase (APX (83/46%)) activity in both shoots/roots, respectively, compared to infected control. Notably, salicylic acid and jasmonic acid levels doubled in treated plants, while stress hormone abscisic acid (ABA) decreased by 80% in roots and 21% in shoots. Gene expression analysis corroborated these findings, showing that the combined treatment activated antioxidant defense genes (SOD, APX and CAT) by 1.9-7.2-fold and upregulated hormone signaling genes JAZ1 (7.8-fold), MYC2 (3.9-fold) and SABP2 (36-fold). Conversely, ABA biosynthesis genes (ABA1 and NCED1) were downregulated up to 7.2-fold, while plant resistance genes NPR1, PRB1 and PDF1.2 were dramatically increased by up to 6.3-fold compared to infected plants. Overall, our combined treatment approach significantly reduces clubroot severity in B. rapa via enhanced antioxidant defenses, improved ROS scavenging, coordinated hormonal regulation and increased pathogen response genes. This study offers promising strategy for developing effective control measures against clubroot in susceptible cruciferous crops.

6.
Molecules ; 29(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124898

RESUMEN

By allowing coal to be converted by microorganisms into products like methane, hydrogen, methanol, ethanol, and other products, current coal deposits can be used effectively, cleanly, and sustainably. The intricacies of in situ microbial coal degradation must be understood in order to develop innovative energy production strategies and economically viable industrial microbial mining. This review covers various forms of conversion (such as the use of MECoM, which converts coal into hydrogen), stresses, and in situ use. There is ongoing discussion regarding the effectiveness of field-scale pilot testing when translated to commercial production. Assessing the applicability and long-term viability of MECoM technology will require addressing these knowledge gaps. Developing suitable nutrition plans and utilizing lab-generated data in the field are examples of this. Also, we recommend directions for future study to maximize methane production from coal. Microbial coal conversion technology needs to be successful in order to be resolved and to be a viable, sustainable energy source.

7.
Biomater Sci ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073050

RESUMEN

Correction for 'Self-assembled methodologies for the construction of DNA nanostructures and biological applications' by Rui Ye et al., Biomater. Sci., 2024, https://doi.org/10.1039/d4bm00584h.

8.
ACS Appl Bio Mater ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968606

RESUMEN

Cerium oxide (CeO2-x) performs well in photothermal and catalytic properties due to its abundance of oxygen vacancies. Based on this, we designed a thermosensitive therapeutic nanoplatform to achieve continuous circular drug release in tumor. It can solve the limitation caused by insufficient substrate in the process of tumor treatment. Briefly, CeO2-x and camptothecin (CPT) were wrapped in an agarose hydrogel, which could be melted by the photothermal effect of CeO2-x. At the same time, the local temperature increase provided photothermal treatment, which could induce the apoptosis of tumor cell. After that, CPT was released to damage the DNA in tumor cells to realize chemical treatment. In addition, CPT could active nicotinamide adenine dinucleotide oxidase to react with O2 to increase the intracellular H2O2. After that, the exposed CeO2-x could catalyze H2O2 to generate cytotoxic reactive oxygen species for chemodynamic therapy. More importantly, CeO2-x could catalyze H2O2 to produce O2, which could combine with the catalytic action of CPT to construct a substrate self-cycling nanoenzyme system. Overall, this self-cycling nanoplatform released hypoxia in the tumor microenvironment and built a multimode tumor treatment, which achieved an ideal antitumor affect.

9.
Cancer Biol Med ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982978

RESUMEN

Gastric cancer (GC) ranks fifth in cancer incidence and fourth in cancer-related mortality worldwide. Reactive oxygen species (ROS) are highly oxidative oxygen-derived products that have crucial roles in cell signaling regulation and maintaining internal balance. ROS are closely associated with the occurrence, development, and treatment of GC. This review summarizes recent findings on the sources of ROS and the bidirectional regulatory effects on GC and discusses various treatment modalities for GC that are related to ROS induction. In addition, the regulation of ROS by natural small molecule compounds with the highest potential for development and applications in anti-GC research is summarized. The aim of the review is to accelerate the clinical application of modulating ROS levels as a therapeutic strategy for GC.

10.
Biomed Pharmacother ; 178: 117113, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067164

RESUMEN

The rhizome of Corydalis decumbens is a traditional Chinese medicine commonly utilized in the clinical treatment of acute ischemic stroke. Numerous phytochemical and biological investigations have demonstrated that protoberberine alkaloids from C. decumbens exhibit diverse pharmaceutical activities against various diseases. Sinometumine E (SE), a protoberberine alkaloid isolated from C. decumbens for the first time, is characterized by a complex 6/6/6/6/6/6 hexacyclic skeleton. In the current study, we investigated the protective effects of SE on endothelial cell injury and its angiogenesis effects in zebrafish. The results suggested that SE showed significant anti-ischemic effects on OGD/R-induced HBEC-5i and HUVECs cell ischemia/reperfusion injury model. Furthermore, it promoted angiogenesis in PTK787-induced, MPTP-induced, and atorvastatin-induced vessel injury models of zebrafish, while also suppressing hypoxia-induced locomotor impairment in zebrafish. Transcriptome sequencing analysis provided a sign that SE likely to promotes angiogenesis through the HIF-1/VEGF signaling pathway to exert anti-ischemic effects. Consistently, SE modulated several genes related to HIF-1/VEGF signal pathway, such as hif-1, vegf, vegfr-2, pi3k, erk, akt and plcγ. Molecular docking analysis revealed that VEGFR-2 exhibited high binding affinity with SE, and western blot analysis confirmed that SE treatment enhanced the expression of VEGFR-2. In conclusion, our study profiled the angiogenic activities of SE in vitro and in vivo. The key targets and related pathways involved in anti-ischemic effects of SE, shedding light on the pharmacodynamic components and mechanisms of Corydalis decumbens, and provides valuable insights for identifying effective substances for the treatment of ischemic stroke.

11.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012823

RESUMEN

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Asunto(s)
Neuronas , Optogenética , Silicio , Animales , Silicio/química , Neuronas/fisiología , Ratones , Optogenética/métodos , Calcio/metabolismo , Luz , Encéfalo/fisiología
12.
ACS Appl Mater Interfaces ; 16(30): 39287-39294, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39026183

RESUMEN

In recent years, the triboelectric-electromagnetic hybrid generator (TEHG) has been widely studied. However, the problems of unsteady output and high starting wind speed of traditional TEHG in the wind energy environment have not been effectively solved. This work introduces an innovative solution in the form of a steady output triboelectric-electromagnetic hybrid generator (SO-TEHG) with variable drag turbine blades. The SO-TEHG integrates the energy management circuit to output steady electric energy under random wind conditions. In addition, the integration of variable drag turbine blades with the triboelectric nanogenerator (TENG) reduces the wind speed threshold required for SO-TEHG activation. In comparison to the traditional turbine blades, which necessitate a minimum wind speed of 3 m/s, the SO-TEHG's innovative design allows it to commence power generation at a lower 2 m/s wind speed, producing an additional output of 50 V. This enhanced starting capability in mild breezes positions the SO-TEHG as an ideal power source for applications. In practical farmland settings, experimental results conclusively demonstrate the SO-TEHG's ability to successfully activate soil hygrothermographs and hydrogen sensors. As a steady power source driven by gentle winds, the SO-TEHG holds tremendous promise for advancing smart agriculture.

13.
Chem Soc Rev ; 53(15): 7939-7959, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38984392

RESUMEN

The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.

14.
Br J Clin Pharmacol ; 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054805

RESUMEN

AIMS: There is limited real-world data on cyclosporin A (CsA)-induced liver injury (CILI). This study aims to investigate the incidence, clinical classification and risk factors of CILI, thereby providing evidence to inform the treatment of CILI. METHODS: Inpatients receiving haematopoietic stem cell transplantation (HSCT) and treated with CsA were included. Patient information was collected to assess suspicious CILI by the Roussel Uclaf causality assessment method (RUCAM) scale. We evaluated the pattern and severity of CILI. The independent risk factors of CILI were identified by multivariable logistic regression. RESULTS: A total of 216 allogeneic HSCT (allo-HSCT) recipients were included in this study. The incidence of CILI was 15.3% (95% confidence interval [CI]: 10.4%-20.1%). Among these cases, 84.8% displayed a hepatocellular pattern, and 90.9% of CILI was of mild severity. Baseline alanine aminotransferase (ALT) level (OR = 1.030, 95% CI: 1.008-1.053, P = .008) and trough concentration level of CsA (OR = 1.007, 95% CI: 1.002-1.012, P = .009) were identified as independent risk factors for CILI. CONCLUSIONS: The incidence of CILI in allo-HSCT recipients is notably high. Recipients with elevated baseline ALT levels and higher exposure to CsA are more susceptible to developing CILI.

15.
J Med Virol ; 96(8): e29798, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39056244

RESUMEN

Antiretroviral therapy (ART) is an effective treatment for people living with HIV (PLHIVs), requiring an extended period to achieve immune reconstitution. Metabolic alterations induced by ART are crucial for predicting long-term therapeutic responses, yet comprehensive investigation through large-scale clinical studies is still lacking. Here, we collected plasma samples from 108 PLHIVs to the untargeted plasma metabolomics study, based on the longitudinal metabolomics design. Cross-sectional analyzes were performed at pre- and post-ART to explore the metabolic transformation induced by the therapy. Subsequently, delta values between pre- and post-ART measurements were calculated to quantify metabolic alterations. Then, the optimal set of metabolic traits and clinical signatures were further identified and applied to construct random forest model for predicting the future therapeutic responses to ART. We found distinct ART-induced metabolic transformation among PLHIVs. After confounder-adjustments, five metabolites exhibited significant associations with future immune response: tetracosatetraenoic acid (24:4n-6) (pre-ART) (odds ratio [OR]: 0.978, 95% confidence interval [CI]: 0.955~0.997), 1-(3,4-dihydroxyphenyl)-5-hydroxy-3-decanone (pre-ART) (OR: 1.298, 95% CI: 1.061~1.727), beta-PC-M6 (change) (OR: 0.967, 95% CI: 0.938~0.993), d-Galactaro-1,4-lactone (change) (OR: 1.032, 95% CI: 1.007~1.063), Annuionone C (change) (OR: 1.100, 95% CI: 1.030~1.190). The addition of plasma metabolites to clinical markers accurately predicted immune response to ART with an area under curve of 0.91. Notably, most disrupted metabolites were significantly correlated with blood lipids, suggesting that metabolic transformation might contribute to dyslipidemia among PLHIVs. This study highlights the distinct metabolic transformation post-ART among PLHIVs and reveals the potential role of metabolic transformation as key determinants of ART efficacy.


Asunto(s)
Infecciones por VIH , Metabolómica , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/sangre , Masculino , Femenino , Adulto , Estudios Transversales , Persona de Mediana Edad , Metaboloma/efectos de los fármacos , Fármacos Anti-VIH/uso terapéutico , Estudios Longitudinales , Plasma/química , Antirretrovirales/uso terapéutico , Biomarcadores/sangre , Terapia Antirretroviral Altamente Activa
16.
J Chem Phys ; 161(3)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39012813

RESUMEN

The structural parameters, electron localization functions, electron paramagnetic resonance (EPR) parameters, formation energies, and thermodynamic transition levels of various oxygen vacancy defects in amorphous silica are comprehensively and integrally investigated by using density functional theory. The trends of changes in the oxygen vacancy defect structure and electron localization induced by the increase in distance between defective silicon atoms are clearly identified. It is shown that the dimer configuration may be the potential structure of the Eδ' center. For the back-projected unpuckered configuration and the puckered configuration, whose EPR parameters are more consistent with the experimental values of the Eγ' center, the unpaired electron localized on the sp3 hybridized silicon atom is a common feature. Due to the three-coordinated oxygen atom in the forward-oriented configuration, the EPR parameters are closest to those of the Eα' center. Transformations of oxygen vacancy defects under different charge states are studied by sequentially adding and removing electrons. The thermodynamic transition level analysis reveals that the dimer and forward configurations may behave as deep traps for electron accumulation. The back-projected puckered fourfold-coordinated and fivefold-coordinated configurations are comparatively stable and may be able to function as shallow traps for electron transport. The neutral double unpuckered, neutral back-projected puckered fourfold-coordinated, and neutral back-projected unpuckered configurations are more likely to lose electrons during hole trapping. As the bias voltage is repeatedly changed, the defect density of the puckered configuration may reduce, while that of the dimer and unpuckered configuration may take an opposite trend.

17.
J Exp Biol ; 227(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39037123

RESUMEN

Offspring phenotypes can be affected by maternal testosterone and androstenedione (A4), which are considered a tool of mothers to adjust offspring to a fluctuating environment. Yet testosterone and A4 are very rapidly metabolized by developing avian embryos, suggesting that either the maternal testosterone and A4 have potent organizational effects on the embryos extremely early before being metabolized or it is the metabolites that evoke phenotypic variation in the offspring. One of the metabolites, etiocholanolone, increases substantially during early embryonic development and is a likely candidate for mediating maternal effects as it can promote erythropoiesis. To investigate and compare the effects of testosterone and A4 with the possible effects of etiocholanolone during prenatal embryonic development, we increased their levels in black-headed gull eggs (Larus ridibundus), and used sham-injected eggs as controls. This species usually has 3-egg clutches in which maternal androgen levels increase with the egg-laying sequence. We analysed embryonic heart rate, peri-hatching biometric traits, the ratio of white to red blood cells (W/R ratio) and bursa development. We found that testosterone and A4 treatment increased embryonic heart rate irrespective of egg-laying sequence and decreased bill length and W/R ratio, whereas etiocholanolone did not mimic these effects. Instead, etiocholanolone treatment decreased tarsus length and brain mass. Our finding that etiocholanolone does not mimic the effects induced by testosterone and A4 suggests that the embryonic metabolism of maternal testosterone and A4 can potentially diversify the function of these maternal androgens.


Asunto(s)
Andrógenos , Desarrollo Embrionario , Etiocolanolona , Testosterona , Animales , Andrógenos/farmacología , Andrógenos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Etiocolanolona/farmacología , Etiocolanolona/metabolismo , Testosterona/metabolismo , Testosterona/farmacología , Femenino , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo
18.
Light Sci Appl ; 13(1): 146, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951490

RESUMEN

Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.

19.
Front Endocrinol (Lausanne) ; 15: 1417007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952389

RESUMEN

Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.


Asunto(s)
Envejecimiento , Mitocondrias , Ovario , Humanos , Femenino , Mitocondrias/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Ovario/metabolismo , Ovario/fisiología , Animales , Antioxidantes/uso terapéutico , Oocitos/metabolismo , Oocitos/fisiología , Mitofagia/fisiología
20.
J Colloid Interface Sci ; 672: 715-723, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870762

RESUMEN

Heazlewoodite nickel sulfide (Ni3S2) is advocated as a promising nonnoble catalyst for electrochemical water splitting because of its unique structure configuration and high conductivity. However, the low active sites and strong sulfur-hydrogen bonds (S-Hads) formed on Ni3S2 surface greatly inhibit the desorption of Hads and reduce the hydrogen and oxygen evolution reaction (HER and OER) activity. Doping is a valid strategy to stimulate the intrinsic catalytic activity of pristine Ni3S2 via modifying the active site. Herein, the Ni foam supported Fe and Mo co-doped Ni3S2 electrocatalysts (Fe-MoS2/Ni3S2@NF) have been constructed using Keplerate polyoxomolybdate {Mo72F30} as precursor through a facile hydrothermal process. Experimental results certificate that Fe and Mo co-doping can effectively tune the local electronic structure, facilitate the interfacial electron transfer, and improve the intrinsic activity. Consequently, the Fe-MoS2/Ni3S2@NF display more excellent HER and OER activity than MoS2/Ni3S2@NF and bare Ni3S2@NF by delivering the 10 and 50 mA cm-2 current densities at ultra-low overpotentials of 74/175 and 80/160 mV for HER and OER. Moreover, when coupled in an alkaline electrolyzer, Fe-MoS2/Ni3S2@NF approached the current of 10 mA cm-2 under a cell voltage of 1.60 V and exhibit excellent stability. The strategy to realize tunable catalytic behaviors via foreign metal doping provides a new avenue to optimize the water splitting catalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA