Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Medicine (Baltimore) ; 103(25): e38658, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905392

RESUMEN

INTRODUCTION: Acute epiglottitis is not uncommon and it can cause high mortality due to airway obstruction. Acute epiglottitis complicated with cervical necrotizing fasciitis has rarely been reported, and it is also a life-threatening disease with a fatality rate of 7% to 50%. PATIENT CONCERNS: A 64-year-old woman presented to our hospital with chief complaints of sore throat and cervical swelling, long with foreign body sensation and hoarseness. Endoscopic laryngoscopy showed erythematous and swollen epiglottis with purulent secretions on the surface. Computed tomography (CT) scan showed swollen epiglottis and swelling of the neck with air- and fluid-containing necrotizing tissue. DIAGNOSES: The diagnosis was acute epiglottitis and abscess complicated with cervical necrotizing fasciitis. INTERVENTIONS: With the patient in awake condition, airway access was established by performing intubation with adjunctive use of gum elastic bougie, followed by surgical debridement under general anesthesia; a flap was used for skin coverage and intravenous piperacillin-tazobactam was administered. OUTCOMES: The patient was discharged without complications. CONCLUSION: Gum elastic bougie is a usable tool in difficult intubation. Adequate pre-anesthesia evaluation, patient sedation, and gentle manipulation assured the intubation success in this case.


Asunto(s)
Absceso , Epiglotitis , Fascitis Necrotizante , Intubación Intratraqueal , Humanos , Femenino , Fascitis Necrotizante/etiología , Fascitis Necrotizante/terapia , Fascitis Necrotizante/complicaciones , Persona de Mediana Edad , Epiglotitis/complicaciones , Epiglotitis/terapia , Intubación Intratraqueal/métodos , Absceso/etiología , Absceso/terapia , Enfermedad Aguda , Cuello , Desbridamiento/métodos , Laringoscopía/métodos , Antibacterianos/uso terapéutico , Antibacterianos/administración & dosificación , Tomografía Computarizada por Rayos X/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-38607192

RESUMEN

Objective: This study investigated the effect of high-quality nursing care combined with psychological intervention on the stress response and postoperative negative emotions of patients undergoing general anesthesia for surgery. Methods: From January 2019 to January 2020, the researchers chose 90 patients who received general anesthesia at Liaocheng People's Hospital for this study. The patients were divided into control and study groups, each with 45 patients. There were no significant demographic differences between the 2 groups. The control group received standard care, while the study group received high-quality nursing care and psychological intervention. The researchers compared the clinical measures provided to both groups to assess their effectiveness. Results: After the intervention, the study group reported improved surgical stress indicators compared to the control group, with higher scores on the SF-36 health survey and higher satisfaction with nursing care. The study group had lower scores on anxiety and depression scales and showed better body temperature conditions during and after the operation. Discussion: The study found that comprehensive nursing care and psychological interventions effectively reduced postoperative stress indicators and improved social functioning, somatic health, role limitations, and cognitive abilities. Psychological support, including counseling, cognitive-behavioral techniques, relaxation strategies, and stress management, effectively decreased anxiety and depression levels. These interventions provided coping mechanisms and emotional support to enhance overall well-being. Effective interdisciplinary collaboration may have also contributed to the positive outcomes observed. However, the study's limitations include its specific population sample and observational design, which could introduce bias. Future studies should use randomized controlled trials with larger sample sizes for more reliable results. Conclusion: High-quality nursing care combined with psychological interventions for patients undergoing general anesthesia successfully enhanced nursing satisfaction and alleviated patient stress and negative emotions. The method is worthy of promotion and application.

3.
Front Pharmacol ; 15: 1384227, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38601465

RESUMEN

Objective: In humans, aging is associated with increased susceptibility to most age-related diseases. Phloretic acid (PA), a naturally occurring compound found in Ginkgo biloba and Asparagus, exhibits has potential as an anti-aging agent and possesses antioxidant, anti-inflammatory, and immunomodulatory properties. This study aimed to investigate the effects of PA on longevity and stress resistance in Caenorhabditis elegans (C.elegans) and the mechanisms that underlie its effects. Methods: First, we examined the effects of PA on lifespan and healthspan assay, stress resistance and oxidative analysis, lipofuscin levels. Second, we examined the insulin/insulin-like pathway, mitochondria, autophagy-related proteins, and gene expression to explain the possible mechanism of PA prolonging lifespan. Results: Our findings demonstrated that PA dose-dependently extended the C.elegans lifespan, with 200 µM PA showing the greatest effect and increased the C.elegans lifespan by approximately 16.7%. PA enhanced motility and the pharyngeal pumping rate in senescent C.elegans while reducing the accumulation of aging pigments. Further investigations revealed that daf-16, skn-1, and hsf-1 were required for mediating the lifespan extension effect of PA in C.elegans since its impact was suppressed in mutant strains lacking these genes. This suggests that PA activates these genes, leading to the upregulation of downstream genes involved in stress response and senescence regulation pathways. Furthermore, PA did not extend the lifespan of the RNAi atg-18 and RNAi bec-1 but it attenuated SQST-1 accumulation, augmented autophagosome expression, upregulated autophagy-related gene expression, and downregulated S6K protein levels. These findings suggest that the potential life-extending effect of PA also involves the modulation of the autophagy pathway. Conclusion: These findings results highlight the promising anti-aging effects of PA and warrant further investigation into its pharmacological mechanism and medicinal development prospects.

4.
Front Cell Infect Microbiol ; 14: 1358063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533380

RESUMEN

Objective: Alcoholic liver disease (ALD) is a liver damage disease caused by long-term heavy drinking. Currently, there is no targeted pharmaceutical intervention available for the treatment of this disease. To address this, this paper evaluates the efficacy and safety of probiotic preparation in treating ALD through conducting a meta-analysis, and provides a valuable insight for clinical decision-making. Methods: A systematic search was conducted across databases, including PubMed, Embase, Web of Science, Cochrane Library, CNKI, VIP, Wanfang, and CBM from the inception dates to October 15, 2023, to identify clinical randomized controlled trials on probiotic preparations in the treatment of ALD. After the literature underwent screening, data extraction, and quality assessment, RevMan 5.3 and Stata 14.2 were employed for data analysis and processing. Results: A total of 9 randomized controlled trials fulfilled the inclusion criteria. The results of the meta-analysis showed that probiotic preparation could significantly improve the liver function of patients with alcoholic liver disease compared with the control group. Probiotic intervention led to a significant reduction in the levels of alanine aminotransferase (MD=-13.36,95%CI:-15.80,-10.91;P<0.00001),aspartate aminotransferase (MD=-16.99,95%CI:-20.38,-13.59;P<0.00001),γ-glutamyl transpeptidase (MD=-18.79,95% CI:-28.23,-9.34; P<0.0001). Concurrently, the level of serum albumin (MD=0.19,95% CI:0.02,0.36;P=0.03) was increased. Furthermore, probiotic intervention could also modulate the composition of intestinal flora in patients with alcoholic liver disease, leading to an augmentation in Bifidobacteria and a reduction in Escherichia coli. However, in patients with alcoholic liver disease, probiotic intervention showed no significant effects on total bilirubin (MD=-0.01,95% CI:-0.17,0.15;P=0.91), tumor necrosis factor-α (MD=0.03,95% CI:-0.86,0.92;P=0.94) and interleukin-6 (MD=-5.3,95% CI:-16.04,5.45;P=0.33). Conclusion: The meta-analysis indicates that probiotics can improve liver function in alcoholic liver disease, reduce inflammatory responses, regulate intestinal flora, which have potential value in the treatment of alcoholic liver disease. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023472527.


Asunto(s)
Hepatopatías Alcohólicas , Probióticos , Humanos , Probióticos/uso terapéutico , Resultado del Tratamiento
5.
BMC Anesthesiol ; 24(1): 85, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424486

RESUMEN

BACKGROUND: Flash visual evoked potential (FVEP) is a critical method for monitoring intraoperative visual function during neurosurgery. A new benzodiazepine drug called remimazolam has recently been used for general anesthesia. However, the impact of remimazolam on FVEP remains unclear. Therefore, we aimed to investigate how remimazolam, in comparison to propofol, when combined with 0.6% sevoflurane anesthesia, affects the FVEP waveform during pituitary adenoma resection. METHODS: Overall, 36 patients undergoing pituitary adenoma resection under general anesthesia were randomly assigned to either the remimazolam group (Group R) or the propofol group (Group P) in a prospective, randomized, controlled, non-inferiority trial. For anesthesia induction, a bolus of 0.2 mg/kg remimazolam or 2 mg/kg propofol was intravenously infused for approximately one minute. The anesthesia was maintained by continuous infusion of either remimazolam (0.7-1.0 mg/kg/h) or propofol (4-6 mg/kg/h), in combination with 0.6% sevoflurane, aimed at sustaining the bispectral index (BIS) within the range of 40-60. The primary outcome was the N75-P100 amplitude of FVEP recorded at approximately 20 min after intubation (T0). 10% of the amplitude at T0 in group P was defined as the non-inferiority margin (δ). Confidence interval testing was used to evaluate the non-inferiority hypothesis. The secondary outcomes covered the P100 latency of FVEP, electroretinogram (ERG) b wave amplitude, demographic characteristics, hemodynamics, and occurrence of adverse events. RESULTS: The BIS index during anesthesia was comparable between the groups at the same measured time points (P > 0.05). The N75-P100 amplitude at T0 in group R was 7.64 ± 1.36 µV, while it was 6.96 ± 0.95 µV in group P (P = 0.09), with a mean difference of 0.68 µV (95% CI, -0.11 µV to 1.48 µV). The δ was set at 0.7 and the lower limit of the 95% CI exceeded the -δ. Both remimazolam and propofol had little effect on ERG b-wave amplitudes. At the designated time points, FVEP amplitude and P100 latency displayed no appreciable variation between the two groups (P > 0.05). Furthermore, there were no significant differences in the incidence of adverse events related to anesthesia, needle electrodes, or surgery between the two groups (P > 0.05). CONCLUSION: Our findings suggest that remimazolam-0.6% sevoflurane is non-inferior to propofol-0.6% sevoflurane for general anesthesia, based on the FVEP N75-P100 amplitude. The electrophysiological data obtained in both groups indicate that reproducible and stable FVEP and ERG waveforms can be acquired at set time points. Therefore, for reliable FVEP monitoring, remimazolam-0.6% sevoflurane appears to be a safe and effective protocol in general anesthesia. TRIALS REGISTRATION: This study was registered on chictr.org.cn (ChiCTR2200056803, 17/02/2022).


Asunto(s)
Neoplasias Hipofisarias , Propofol , Humanos , Anestesia General , Benzodiazepinas , Potenciales Evocados Visuales , Neoplasias Hipofisarias/cirugía , Propofol/farmacología , Estudios Prospectivos , Sevoflurano
6.
Exp Gerontol ; 175: 112145, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36921677

RESUMEN

D-chiro-inositol (DCI) is an isomer of inositol, abundant in many foods, such as beans and buckwheat, with insulin-sensitizing, anti-inflammatory, and antioxidant effects. DCI has been used to relieve insulin resistance in diabetes and polycystic ovary syndrome in combination with inositol or D-pinitol. Here, we investigated the effect of DCI on aging and stress resistance in C. elegans. We found that DCI could prolong the lifespan of C. elegans by up to 29.6 %. DCI significantly delayed the onset of neurodegenerative diseases in models of C. elegans. DCI decreased the accumulation of Aß1-42, alpha-synuclein, and poly-glutamine, the pathological causes of Alzheimer's, Parkinson's, and Huntington's diseases, respectively. DCI significantly increased the stress resistances against pathogens, oxidants and heat shock. Moreover, D-chiro-inositol reduced the content of ROS and malondialdehyde by increasing the total antioxidant capacity and the activity of superoxide dismutase and catalase. Above effects of DCI requires the transcription factors FOXO/DAF-16 and Nrf-2/SKN-1. DCI also increased the expression of downstream genes regulated by FOXO/DAF-16 and Nrf-2/SKN-1. In conclusion, DCI enhanced the antioxidant capacity and healthy lifespan of C. elegans by activating DAF-16, SKN-1, and HSF-1. Our results showed that DCI could be a promising antiaging agent that is worth further research on the mechanism and health supplemental application of DCI.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Longevidad , Proteínas de Caenorhabditis elegans/genética , Estrés Oxidativo , Transducción de Señal , Factores de Transcripción Forkhead/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción/metabolismo
7.
Front Pharmacol ; 13: 931886, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36071837

RESUMEN

Aging is associated with the increased risk of most age-related diseases in humans. Complanatoside A (CA) is a flavonoid compound isolated from the herbal medicine Semen Astragali Complanati. CA was reported to have potential anti-inflammatory and anti-oxidative activities. In this study, we investigated whether CA could increase the stress resistance capability and life span of Caenorhabditis elegans. Our results showed that CA could extend the longevity of C. elegans in a dosage-dependent manner, while 50 µM of CA has the best effect and increased the life span of C. elegans by about 16.87%. CA also improved the physiological functions in aging worms, such as enhanced locomotor capacity, and reduced the accumulation of the aging pigment. CA could also reduce the accumulation of toxic proteins (α-synuclein and ß-amyloid) and delay the onset of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, in models of C. elegans. Further investigation has revealed that CA requires DAF-16/FOXO, SKN-1, and HSF-1 to extend the life span of C. elegans. CA could increase the antioxidation and detoxification activities regulated by transcription factor SKN-1 and the heat resistance by activating HSF-1 that mediated the expression of the chaperone heat shock proteins. Our results suggest that CA is a potential antiaging agent worth further research for its pharmacological mechanism and development for pharmaceutical applications.

8.
Oxid Med Cell Longev ; 2022: 8986287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401930

RESUMEN

The traditional Chinese medicine Gastrodia elata (commonly called "Tianma" in Chinese) has been widely used in the treatment of rheumatism, epilepsy, paralysis, headache, and dizziness. Phenolic compounds, such as gastrodin, para-hydroxybenzyl alcohol (HBA), p-hydroxybenzaldehyde, and vanillin are the main bioactive components isolated from Gastrodia elata. These compounds not only are structurally related but also share similar pharmacological activities, such as antioxidative and anti-inflammatory activities, and effects on the treatment of aging-related diseases. Here, we investigated the effect of para-hydroxybenzyl alcohol (HBA) on neurodegenerative diseases and aging in models of Caenorhabditis elegans (C. elegans). Our results showed that HBA effectively delayed the progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease in models of C. elegans. In addition, HBA could increase the average lifespan of N2 worms by more than 25% and significantly improve the age-related physiological functions of worms. Moreover, HBA improved the survival rate of worms under stresses of oxidation, heat, and pathogenic bacteria. Further mechanistic investigation revealed that HBA could activate FOXO/DAF-16 and SKN-1 to regulate antioxidative and xenobiotic metabolism pathway. HBA could also activate HSF-1 to regulate proteostasis maintenance pathway, mitochondrial unfolded stress response, endoplasmic stress response and autophagy pathways. The above results suggest that HBA activated multiple cellular protective pathways to increase stress resistance and protect against aging and aging-related diseases. Overall, our study indicates that HBA is a potential candidate for future development of antiaging pharmaceutical application.


Asunto(s)
Proteínas de Caenorhabditis elegans , Gastrodia , Enfermedades Neurodegenerativas , Animales , Antioxidantes/farmacología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Gastrodia/metabolismo , Longevidad , Enfermedades Neurodegenerativas/tratamiento farmacológico
9.
Oxid Med Cell Longev ; 2022: 8878923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237385

RESUMEN

Age is the major risk factor for most of the deadliest diseases. Developing small molecule drugs with antiaging effects could improve the health of aged people and retard the onset and progress of aging-associated disorders. Bioactive secondary metabolites from medicinal plants are the main source for development of medication. Orientin is a water-soluble flavonoid monomer compound widely found in many medicinal plants. Orientin inhibits fat production, antioxidation, and anti-inflammatory activities. In this study, we explored whether orientin could affect the aging of C. elegans. We found that orientin improved heat, oxidative, and pathogenic stress resistances through activating stress responses, including HSF-1-mediated heat shock response, SKN-1-mediated xenobiotic and oxidation response, mitochondria unfolded responses, endoplasmic unfolded protein response, and increased autophagy activity. Orientin also could activate key regulators of the nutrient sensing pathway, including AMPK and insulin downstream transcription factor FOXO/DAF-16 to further improve the cellular health status. The above effects of orientin reduced the accumulation of toxic proteins (α-synuclein, ß-amyloid, and poly-Q) and delayed the onset of neurodegenerative disorders in AD, PD, and HD models of C. elegans and finally increased the longevity and health span of C. elegans. Our results suggest that orientin has promising antiaging effects and could be a potential natural source for developing novel therapeutic drugs for aging and its related diseases.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antioxidantes/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Flavonoides/farmacología , Factores de Transcripción Forkhead/metabolismo , Glucósidos/farmacología , Longevidad/efectos de los fármacos , Enfermedades Neurodegenerativas/prevención & control , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Autofagia/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Estrés Oxidativo/efectos de los fármacos , Plantas Medicinales/química , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Oxid Med Cell Longev ; 2021: 7656834, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616504

RESUMEN

Trigonelline is the main alkaloid with bioactivity presented in fenugreek, which was used in traditional medicine in Asian countries for centuries. It is reported that trigonelline has anti-inflammatory, anti-oxidant, and anti-pathogenic effects. We are wondering whether trigonelline have anti-aging effect. We found that 50 µM of trigonelline had the best anti-aging activity and could prolong the lifespan of Caenorhabditis elegans (C. elegans) by about 17.9%. Trigonelline can enhance the oxidative, heat, and pathogenic stress resistance of C. elegans. Trigonelline could also delay the development of neurodegenerative diseases, such as AD, PD, and HD, in models of C. elegans. Trigonelline could not prolong the lifespan of long-lived worms with loss-of-function mutations in genes regulating energy and nutrition, such as clk-1, isp-1, eat-2, and rsks-1. Trigonelline requires daf-16, hsf-1, and aak-2 to extend the lifespan of C. elegans. Trigonelline can also up-regulate the expression of daf-16 and hsf-1 targeted downstream genes, such as sod-3, gst-4, hsp-16.1, and hsp-12.6. Our results can be the basis for developing trigonelline-rich products with health benefits, as well as for further research on the pharmacological usage of trigonelline.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Envejecimiento/efectos de los fármacos , Alcaloides/administración & dosificación , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Longevidad/efectos de los fármacos , Enfermedades Neurodegenerativas/prevención & control , Extractos Vegetales/administración & dosificación , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Trigonella/química , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Respuesta al Choque Térmico/efectos de los fármacos , Estimación de Kaplan-Meier , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
Cell Calcium ; 93: 102327, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33316585

RESUMEN

Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/enzimología , Señalización del Calcio , Desarrollo Embrionario , Inositol 1,4,5-Trifosfato/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Defecación , Eliminación de Gen , Espacio Intracelular/metabolismo , Mutación/genética , Especificidad de Órganos , Fenotipo , Fosfotransferasas (Aceptor de Grupo Alcohol)/química
12.
Oxid Med Cell Longev ; 2020: 1293935, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733632

RESUMEN

Secoisolariciresinol diglucoside (SDG) is a phytoestrogen and rich in food flaxseed, sunflower seeds, and sesame seeds. Among the beneficial pharmacological activities of SDG on health, many are age related, such as anticancer, antidiabetes, antioxidant, and neuroprotective effects. Thus, we investigated if SDG had an effect on antiaging in Caenorhabditis elegans (C. elegans). Our results showed that SDG could extend the lifespan of C. elegans by up to 22.0%, delay age-related decline of body movement, reduce the lethality of heat and oxidative stress, alleviate dopamine neurodegeneration induced by 6-hydroxydopamine (6-OHDA), and decrease the toxicity of Aß protein in C. elegans. SDG could increase the expression of the downstream genes of DAF-16, DAF-12, NHR-80, and HSF-1 at mRNA level. SDG could not extend the lifespan of mutants from genes daf-16, hsf-1, nhr-80, daf-12, glp-1, eat-2, and aak-2. The above results suggested that SDG might enhance the stress resistance, delay the progression of aging-related diseases, and extend the lifespan of C. elegans via DAF-16 and HSF-1.


Asunto(s)
Butileno Glicoles/farmacología , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Glucósidos/farmacología , Longevidad/efectos de los fármacos , Factores de Transcripción/metabolismo , Envejecimiento/efectos de los fármacos , Animales , Butileno Glicoles/envenenamiento , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Progresión de la Enfermedad , Glucósidos/envenenamiento , Longevidad/genética , Estrés Oxidativo/efectos de los fármacos
13.
Oxid Med Cell Longev ; 2020: 6069354, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32832002

RESUMEN

Naringin is a dihydroflavonoid, which is rich in several plant species used for herbal medicine. It has a wide range of biological activities, including antineoplastic, anti-inflammatory, antiphotoaging, and antioxidative activities. So it would be interesting to know if naringin has an effect on aging and aging-related diseases. We examined the effect of naringin on the aging of Caenorhabditis elegans (C. elegans). Our results showed that naringin could extend the lifespan of C. elegans. Moreover, naringin could also increase the thermal and oxidative stress tolerance, reduce the accumulation of lipofuscin, and delay the progress of aging-related diseases in C. elegans models of AD and PD. Naringin could not significantly extend the lifespan of long-lived mutants from genes in insulin/IGF-1 signaling (IIS) and nutrient-sensing pathways, such as daf-2, akt-2, akt-1, eat-2, sir-2.1, and rsks-1. Naringin treatment prolonged the lifespan of long-lived glp-1 mutants, which have decreased reproductive stem cells. Naringin could not extend the lifespan of a null mutant of the fox-head transcription factor DAF-16. Moreover, naringin could increase the mRNA expression of genes regulated by daf-16 and itself. In conclusion, we show that a natural product naringin could extend the lifespan of C. elegans and delay the progression of aging-related diseases in C. elegans models via DAF-16.


Asunto(s)
Envejecimiento/efectos de los fármacos , Proteínas de Caenorhabditis elegans/efectos de los fármacos , Flavanonas/uso terapéutico , Factores de Transcripción Forkhead/metabolismo , Longevidad/efectos de los fármacos , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Modelos Animales de Enfermedad , Flavanonas/farmacología
14.
Med Sci Monit ; 26: e923681, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32572017

RESUMEN

BACKGROUND Sevoflurane was compared with propofol for general anesthesia maintenance in pediatric operations lasting less than 1 hour in terms of anesthetic effect and postoperative recovery. MATERIAL AND METHODS Children scheduled for inguinal hernia repair or hydrocele testis repair were randomly assigned to receive general anesthesia maintained with either sevoflurane (n=43) or propofol (n=43). The ilioinguinal nerve was blocked with 1% lidocaine (7 mg/kg) after intravenous administration of ketamine (2 mg/kg). At the end of the surgery in patients receiving sevoflurane, sevoflurane was stopped and a bolus of propofol of 1 mg/kg was administered. RESULTS Sevoflurane was associated with significantly less use of ketamine (35.1±10.6 mg) than was propofol (59.0±28.0 mg; P<0.001). In addition, sevoflurane was associated with a significantly shorter time in the post-anesthesia care unit (52.1±9.0 min) than was propofol (68.8±15.3 min; P<0.001). Propofol was associated with a significantly higher incidence of intraoperative body movement (33.3%) than was sevoflurane (13.5%; P=0.045). However, the 2 groups showed no important differences in other adverse events such as hypoxia, emergence agitation, and additional use of propofol. CONCLUSIONS In pediatric surgery lasting less than 1 hour, anesthesia maintained with sevoflurane was associated with significantly less use of ketamine, shorter postoperative recovery time, and less intraoperative body movement than was propofol.


Asunto(s)
Anestesia General/métodos , Propofol/uso terapéutico , Sevoflurano/uso terapéutico , Periodo de Recuperación de la Anestesia , Niño , Preescolar , Femenino , Hernia Inguinal/cirugía , Humanos , Lactante , Masculino , Periodo Posoperatorio , Método Simple Ciego , Hidrocele Testicular/cirugía
15.
Biogerontology ; 21(5): 669-682, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32506187

RESUMEN

Aging is related to the lowered overall functioning and increased risk for various age-related diseases in humans. Tectochrysin is a flavonoid compound and rich in a traditional Chinese Medicine Alpinia oxyphylla Miq., which has antioxidant, anti-inflammatory, anti-cancer, anti-bacterial, anti-diarrhea, hepatoprotective, and neuro-protective effects. Therefore, we tested if tectochrysin had an effect on aging in Caenorhabditis elegans (C. elegans). Our results showed that tectochrysin could extend the lifespan of C. elegans by up to 21.0%, delay the age-related decline of body movement, improve high temperature-stress resistance and anti-infection capacity, and protected worms against Aß1-42-induced toxicity. Tectochrysin could not extend the lifespan of the mutants from genes daf-2, daf-16, eat-2, aak-2, skn-1, and hsf-1. Tectochrysin could increase the expression of DAF-16 regulated genes. The extension of lifespan by tectochrysin requires FOXO/DAF-16 and HSF-1. Overall, our findings suggest that tectochrysin may have a potential effect on extending lifespan and age-related diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Flavonoides/farmacología , Longevidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo
16.
ACS Appl Mater Interfaces ; 12(11): 12982-12989, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-32078288

RESUMEN

Three-dimensional (3D) layered tin oxide quantum dots/graphene framework (SnO2 QDs@GF) were designed through anchoring SnO2 QD on the graphene surface under the hydrothermal reaction. SnO2 QDs@GF have a 3D skeleton with a large number of mesopores and ultrasmall SnO2 QDs with a large surface area. The unique design of this structure improves the specific area and promotes ion transport. The mechanically strong SnO2 QDs@GF can directly be used as the anode of lithium-ion batteries (LIBs); it displays a high reversible capacity (1300 mA h g-1 at 100 mA g-1), excellent rate performance (642 mA h g-1 at 2000 mA g-1), and superior cyclic stability (when the current density is 10 A g-1, the capacity loss is less than 2% after 5000 cycles). This novel synthetic method can further be expanded for the production of other quantum dots/graphene composites with a 3D structure as high-performance electrodes for LIBs.

17.
Biol Open ; 8(7)2019 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-31208998

RESUMEN

The lateral septal nucleus (LS) plays a critical role in emotionality, social behavior and feeding processes, through neural connections with the hippocampus and hypothalamus. We investigated the neural circuits of LS by using herpes simplex virus 1 strain H129 (H129) and pseudorabies virus stain Bartha (PRV). Virus H129 indicates that LS directly projects to some cerebral nuclei (nucleus accumbens, bed nuclei of the stria terminalis and amygdala), part of the hypothalamus (median preoptic, paraventricular, dorsomedial nucleus and lateral area), thalamus (medial habenula, the paraventricular, parataenial and reuniens nuclei, and the medial line nuclei) and the pontine central gray. Then the LS has secondary projections to the CA3 and CA1 field of the hippocampal formation, lateral and medial preoptic area, and the mammillary body. PRV tracing shows that LS are mainly receiving primary inputs from the amygdala, hippocampus, hypothalamic, thalamus, midbrain and hindbrain, and secondary inputs from dorsal and central linear nucleus raphe, the lateral part of the superior central nucleus raphe, the ventral anterior-lateral complex, the intermediodorsal nucleus, the central medial nucleus, the rhomboid nucleus, and the submedial nucleus of the thalamus. The neural circuit data revealed here could help to understand and further research on the function of LS.

18.
Oxid Med Cell Longev ; 2019: 5768953, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249646

RESUMEN

Aging is a complex life process, and a unified view is that metabolism plays key roles in all biological processes. Here, we determined the lipidomic profile of Caenorhabditis elegans (C. elegans) using ultraperformance liquid chromatography high-resolution mass spectrometry (UPLC-HRMS). Using a nontargeted approach, we detected approximately 3000 species. Analysis of the lipid metabolic profiles at young adult and ten-day-old ages among wild-type N2, glp-1 defective mutant, and double mutant daf-16;glp-1 uncovered significant age-related differences in the total amount of phosphatidylcholines (PC), sphingomyelins (SM), ceramides (Cer), diglycerides (DG), and triglycerides (TG). In addition, the age-associated lipid profiles were characterized by ratio of polyunsaturated (PUFA) over monounsaturated (MUFA) lipid species. Lipid metabolism modulation plays an important role in reproduction-regulated aging; to identify the variations of lipid metabolites during germ line loss-induced longevity, we investigated the lipidomic profiles of long-lived glp-1/notch receptor mutants, which have reproductive deficiency when grown at nonpermissive temperature. The results showed that there was some age-related lipid variation, including TG 40:2, TG 40:1, and TG 41:1, which contributed to the long-life phenotype. The longevity of glp-1 mutant was daf-16-dependent; the lipidome analysis of daf-16;glp-1 double mutant revealed that the changes of some metabolites in the glp-1 mutant were daf-16-dependent, while other metabolites displayed more complex epistatic patterns. We first conducted a comprehensive lipidome analysis to provide novel insights into the relationships between longevity and lipid metabolism regulated by germ line signals in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lípidos/análisis , Longevidad , Reproducción , Transducción de Señal , Animales , Caenorhabditis elegans/crecimiento & desarrollo
19.
Biochimie ; 160: 113-121, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30831151

RESUMEN

BACKGROUND: Increased DAN protein (Grem1, Grem2, Grem3, Cerberus, NBL1, SOST, and USAG1) levels are often associated with severe disease-states in adult kidneys. Grem1, SOST, and USAG1 have been demonstrated to be upregulated and play a critical role in the progression of diabetic nephropathy (DN); however, the expression and the role of other DAN family members in DN have not been reported yet. In this study, we investigated the expression and the role of Grem2 in the development of renal lesions in mice with type 2 DN. METHODS: Fourteen-week-old BTBRob/ob (a mouse model of type 2 diabetes mellitus) and control (BTBR, wild type) mice were evaluated for renal functional and structural biomarkers. Urine was collected for protein content assay, and renal tissues were harvested for molecular analysis with real-time PCR, Western blotting, and immunohistochemistry. In vitro studies, human podocytes were transfected with Grem2 plasmid and were evaluated for apoptosis (morphologic assay and Western blotting). To evaluate the Grem2-mediated downstream signaling, the phosphorylation status of Smad2/3 and Smad1/5/8 was assessed. To establish a causal relationship, the effect of SIS3 (an inhibitor for Samd2/3) and BMP-7 (an agonist for Smad1/5/8) was evaluated on Germ2-induced podocyte apoptosis. RESULTS: BTBRob/ob mice showed elevated urinary protein levels. Renal tissues of BTBRob/ob mice showed an increased expression of Grem2; both glomerular and tubular cells displayed enhanced Grem2 expression. In vitro studies, high glucose increased Grem2 expression in cultured human podocytes, whereas, Grem2 silencing partially protected podocyte from high glucose-induced apoptosis. Overexpression of Grem2 in podocytes not only increased Bax/Bcl2 expression ratio but also promoted podocyte apoptosis; moreover, an overexpression of Grem2 increased the phosphorylation of Smad2/3 and decreased the phosphorylation of Smad1/5/8; furthermore, SIS3 and BMP-7 attenuated Grem2-induced podocyte apoptosis. CONCLUSIONS: High glucose increases Grem2 expression in kidney cells. Grem2 mediates podocyte apoptosis through Smads.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/patología , Glucosa/farmacología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Podocitos/patología , Animales , Citocinas , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Femenino , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Masculino , Ratones , Ratones Obesos , Fosforilación , Podocitos/efectos de los fármacos , Podocitos/metabolismo , Transducción de Señal , Edulcorantes/farmacología , Regulación hacia Arriba
20.
Medicine (Baltimore) ; 97(51): e13776, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30572532

RESUMEN

Toxic effects of neoadjuvant chemotherapy (NC) on nervous, hepatorenal, and pulmonary systems might affect general anesthesia depth. This study aimed to evaluate the effects of NC on depth of total intravenous anesthesia.This prospective observational study enrolled 60 patients undergoing elective unilateral modified radical mastectomy during total intravenous anesthesia with propofol and remifentanil (January-June 2015; Liaocheng People's Hospital, China): the NC group (n = 30) received NC, while the control group (n = 30) did not. Propofol and remifentanil dosages were adjusted according to indexes of consciousness (IoC1: sedation; IoC2: analgesia) to control fluctuations of blood pressure and heart rate within 20% of baseline values. Parameters reflecting propofol/remifentanil dosages, intraoperative adverse events, and quality of anesthetic recovery were recorded.The duration of propofol infusion (1.3 ±â€Š0.4 vs 1.8 ±â€Š0.5 hours, P < .05), mean propofol dosage (8.0 ±â€Š1.0 vs 9.3 ±â€Š1.5 mg kg h, P < .05), and adjustment frequency of target-controlled remifentanil infusion (2.9 ±â€Š1.8 vs 4.4 ±â€Š2.6 times/surgery, P < .05) were significantly lower in the NC group than in the control group; adjustment frequency of target-controlled propofol infusion was also numerically lower (2.0 ±â€Š1.1 vs 2.7 ±â€Š1.5 times/surgery, P = .053). Duration of remifentanil infusion, mean remifentanil dosage, voluntary eye opening, extubation time, and recovery score were not significantly different between groups. The incidence of tachycardia was lower in the NC group than in the control group (7.1% vs 37.0%, P < .05), but there was no significant difference in the incidence of total adverse events between groups.NC can enhance the sensitivity of breast cancer patients to the anesthetic effect of propofol.


Asunto(s)
Anestesia Intravenosa/efectos adversos , Anestésicos Intravenosos/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Terapia Neoadyuvante , Propofol/administración & dosificación , Adulto , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/efectos adversos , Anestésicos Intravenosos/efectos adversos , Neoplasias de la Mama/cirugía , Estudios de Casos y Controles , Femenino , Humanos , Mastectomía Radical Modificada/métodos , Persona de Mediana Edad , Propofol/efectos adversos , Estudios Prospectivos , Remifentanilo/administración & dosificación , Remifentanilo/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA