Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.613
Filtrar
1.
World J Diabetes ; 15(6): 1070-1073, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38983803

RESUMEN

In this editorial, we commented on the article published in the recent issue of the World Journal of Diabetes. Diabetic cardiomyopathy (DCM) is characterized by myocardial fibrosis, ventricular hypertrophy and diastolic dysfunction in diabetic patients, which can cause heart failure and threaten the life of patients. The pathogenesis of DCM has not been fully clarified, and it may involve oxidative stress, inflammatory stimulation, apoptosis, and autophagy. There is lack of effective therapies for DCM in the clinical practice. Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques, and exhibit definite cardiovascular protective effects. Studies have shown that statins also have anti-inflammatory and antioxidant effects. We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and anti-inflammatory effects of macrophage polarization on diabetic myocardium, and thereby improving DCM.

2.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38993144

RESUMEN

Quinoa (Chenopodium quinoa Willd) is widely regarded as a versatile pseudo-cereal native to the Andes Mountains in South America. It has gained global recognition as a superfood due to its rich nutritional profile. While quinoa grains are well-known, there is an undiscovered potential in quinoa greens, such as sprouts, leaves, and microgreens. These verdant parts of quinoa are rich in a diverse array of essential nutrients and bioactive compounds, including proteins, amino acids, bioactive proteins, peptides, polyphenols, and flavonoids. They have powerful antioxidant properties, combat cancer, and help prevent diabetes. Quinoa greens offer comparable or even superior benefits when compared to other sprouts and leafy greens, yet they have not gained widespread recognition. Limited research exists on the nutritional composition and biological activities of quinoa greens, underscoring the necessity for thorough systematic reviews in this field. This review paper aims to highlight the nutritional value, bioactivity, and health potential of quinoa greens, as well as explore their possibilities within the food sector. The goal is to generate interest within the research community and promote further exploration and wider utilization of quinoa greens in diets. This focus may lead to new opportunities for enhancing health and well-being through innovative dietary approaches.

4.
Sci Rep ; 14(1): 15292, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961134

RESUMEN

Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system and a leading cause of neurological disability in young adults. Clinical presentation and disease course are highly heterogeneous. Typically, disease progression occurs over time and is characterized by the gradual accumulation of disability. The risk of developing MS is driven by complex interactions between genetic and environmental factors, including the gut microbiome. How the commensal gut microbiota impacts disease severity and progression over time remains unknown. In a longitudinal study, disability status and associated clinical features in 58 MS patients were tracked over 4.2 ± 0.98 years, and the baseline fecal gut microbiome was characterized via 16S amplicon sequencing. Progressor status, defined as patients with an increase in Expanded Disability Status Scale (EDSS), were correlated with features of the gut microbiome to determine candidate microbiota associated with risk of MS disease progression. We found no overt differences in microbial community diversity and overall structure between MS patients exhibiting disease progression and non-progressors. However, a total of 41 bacterial species were associated with worsening disease, including a marked depletion in Akkermansia, Lachnospiraceae, and Oscillospiraceae, with an expansion of Alloprevotella, Prevotella-9, and Rhodospirillales. Analysis of the metabolic potential of the inferred metagenome from taxa associated with progression revealed enrichment in oxidative stress-inducing aerobic respiration at the expense of microbial vitamin K2 production (linked to Akkermansia), and a depletion in SCFA metabolism (linked to Oscillospiraceae). Further, as a proof of principle, statistical modeling demonstrated that microbiota composition and clinical features were sufficient to predict disease progression. Additionally, we found that constipation, a frequent gastrointestinal comorbidity among MS patients, exhibited a divergent microbial signature compared with progressor status. These results demonstrate a proof of principle for the utility of the gut microbiome for predicting disease progression in MS in a small well-defined cohort. Further, analysis of the inferred metagenome suggested that oxidative stress, vitamin K2, and SCFAs are associated with progression, warranting future functional validation and mechanistic study.


Asunto(s)
Progresión de la Enfermedad , Microbioma Gastrointestinal , Esclerosis Múltiple , Humanos , Microbioma Gastrointestinal/genética , Esclerosis Múltiple/microbiología , Esclerosis Múltiple/patología , Masculino , Femenino , Adulto , Estudios Longitudinales , Heces/microbiología , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , ARN Ribosómico 16S/genética
5.
Mol Neurobiol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38977622

RESUMEN

Patients with hemorrhagic stroke have high rates of morbidity and mortality, and drugs for prevention are very limited. Mendelian randomization (MR) analysis can increase the success rate of drug development by providing genetic evidence. Previous MR analyses only analyzed the role of individual drug target genes in hemorrhagic stroke; therefore, we used MR analysis to systematically explore the druggable genes for hemorrhagic stroke. We sequentially performed summary-data-based MR analysis and two-sample MR analysis to assess the associations of all genes within the database with intracranial aneurysm, intracerebral hemorrhage, and their subtypes. Validated genes were further analyzed by colocalization. Only genes that were positive in all three analyses and were druggable were considered desirable genes. We also explored the mediators of genes affecting hemorrhagic stroke incidence. Finally, the associations of druggable genes with other cardiovascular diseases were analyzed to assess potential side effects. We identified 56 genes that significantly affected hemorrhagic stroke incidence. Moreover, TNFSF12, SLC22A4, SPARC, KL, RELT, and ADORA3 were found to be druggable. The inhibition of TNFSF12, SLC22A4, and SPARC can reduce the risk of intracranial aneurysm, subarachnoid hemorrhage, and intracerebral hemorrhage. Gene-induced hypertension may be a potential mechanism by which these genes cause hemorrhagic stroke. We also found that blocking these genes may cause side effects, such as ischemic stroke and its subtypes. Our study revealed that six druggable genes were associated with hemorrhagic stroke, and the inhibition of TNFSF12, SLC22A4, and SPARC had preventive effects against hemorrhagic strokes.

6.
Nat Mater ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977883

RESUMEN

Despite the potential of oral immunotherapy against food allergy, adverse reactions and loss of desensitization hinder its clinical uptake. Dysbiosis of the gut microbiota is implicated in the increasing prevalence of food allergy, which will need to be regulated to enable for an effective oral immunotherapy against food allergy. Here we report an inulin gel formulated with an allergen that normalizes the dysregulated ileal microbiota and metabolites in allergic mice, establishes allergen-specific oral tolerance and achieves robust oral immunotherapy efficacy with sustained unresponsiveness in food allergy models. These positive outcomes are associated with enhanced allergen uptake by antigen-sampling dendritic cells in the small intestine, suppressed pathogenic type 2 immune responses, increased interferon-γ+ and interleukin-10+ regulatory T cell populations, and restored ileal abundances of Eggerthellaceae and Enterorhabdus in allergic mice. Overall, our findings underscore the therapeutic potential of the engineered allergen gel as a suitable microbiome-modulating platform for food allergy and other allergic diseases.

7.
Cancer Lett ; : 217085, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964733

RESUMEN

LncRNA plays a crucial role in cancer progression and targeting, but it has been difficult to identify the critical lncRNAs involved in colorectal cancer (CRC) progression. We identified FAM83H-AS1 as a tumor-promoting associated lncRNA using 21 pairs of stage IV CRC tissues and adjacent normal tissues. In vitro and in vivo experiments revealed that knockdown of FAM83H-AS1 in CRC cells inhibited tumor proliferation and metastasis, and vice versa. m6A modification is critical for FAM83H-AS1 RNA stability through the writer METTL3 and the readers IGF2BP2/IGFBP3. PTBP1-an RNA binding protein-is responsible for the FAM83H-AS1 function in CRC. T4 (1770-2440nt) and T5 (2440-2743nt) on exon 4 of FAM83H-AS1 provide a platform for PTBP1 RRM2 interactions. Our results demonstrated that m6A modification dysregulated the FAM83H-AS1 oncogenic role by phosphorylated PTBP1 on its RNA splicing effect. In patient-derived xenograft models, ASO-FAM83H-AS1 significantly suppressed the growth of gastrointestinal (GI) tumors, not only CRC but also GC and ESCC. The combination of ASO-FAM83H-AS1 and oxaliplatin/cisplatin significantly suppressed tumor growth compared with treatment with either agent alone. Notably, there was pathological complete response in all these three GI cancers. Our findings suggest that FAM83H-AS1 targeted therapy would benefit patients primarily receiving platinum-based therapy in GI cancers.

8.
Biomed Pharmacother ; 177: 117065, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971010

RESUMEN

Metabolic diseases are a group of disorders caused by metabolic abnormalities, including obesity, diabetes, non-alcoholic fatty liver disease, and more. Increasing research indicates that, beyond inherent metabolic irregularities, the onset and progression of metabolic diseases are closely linked to alterations in the gut microbiota, particularly gut bacteria. Additionally, fecal microbiota transplantation (FMT) has demonstrated effectiveness in clinically treating metabolic diseases, notably diabetes. Recent attention has also focused on the role of gut viruses in disease onset. This review first introduces the characteristics and influencing factors of gut viruses, then summarizes their potential mechanisms in disease development, highlighting their impact on gut bacteria and regulation of host immunity. We also compare FMT, fecal filtrate transplantation (FFT), washed microbiota transplantation (WMT), and fecal virome transplantation (FVT). Finally, we review the current understanding of gut viruses in metabolic diseases and the application of FVT in treating these conditions. In conclusion, FVT may provide a novel and promising treatment approach for metabolic diseases, warranting further validation through basic and clinical research.

9.
Sci Total Environ ; 947: 174568, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38977093

RESUMEN

The relationship between co-exposure to multiple metals and gestational diabetes mellitus (GDM) and the mechanisms involved are poorly understood. In this nested case-control study, 228 GDM cases and 456 matched controls were recruited, and biological samples were collected at 12-14 gestational weeks. The urinary concentrations of 10 metals and 8-hydroxydeoxyguanosine (8-OHdG) as well as the serum levels of malondialdehyde (MDA) and advanced glycation end products (AGEs) were determined to assess the association of metals with GDM risk and the mediating effects of oxidative stress. Urinary Ti concentration was significantly and positively associated with the risk of GDM (odds ratio [OR]:1.45, 95 % confidence interval [CI]: 1.12, 1.88), while Mn and Fe were negatively associated with GDM risk (OR: 0.67, 95 % CI: 0.50, 0.91 or OR: 0.61, 95 % CI: 0.47, 0.80, respectively). A significant negative association was observed between Mo and GDM risk, specifically in overweight and obese pregnant women. Bayesian kernel machine regression showed a significant negative joint effect of the mixture of 10 metals on GDM risk. The adjusted restricted cubic spline showed a protective role of Mn and Fe in GDM risk (P < 0.05). A significant negative association was observed between essential metals and GDM risk in quantile g-computation analysis (P < 0.05). Mediation analyses showed a mediating effect of MDA on the association between Ti and GDM risk, with a proportion of 8.7 % (P < 0.05), and significant direct and total effects on Ti, Mn, and Fe. This study identified Ti as a potential risk factor and Mn, Fe, and Mo as potential protective factors against GDM, as well as the mediating effect of lipid oxidation.

10.
World J Clin Cases ; 12(17): 3188-3193, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38898863

RESUMEN

BACKGROUND: Low grade serous carcinoma of the ovary (LGSOC) is a rare type of epithelial ovarian cancer with a low incidence rate. The origin of ovarian cancer has always been a hot topic in gynecological oncology research, and some scholars believe that the origin of ovarian malignant tumors is the fallopian tubes. Primary fallopian tube cancer is the lowest incidence of malignant tumors in the female reproductive system. There are only a few reports in the literature, but the mortality rate is very high. But in clinical practice, fallopian tube cancer is very common, but in most cases, it is classified as ovarian cancer. CASE SUMMARY: We report a 54 years old postmenopausal woman who was hospitalized with a lower abdominal mass and underwent surgical treatment. The final pathological confirmation was low-grade serous carcinoma of the right ovary and low-grade serous carcinoma of the left fallopian tube. No special treatment was performed after the surgery, and the patient was instructed to undergo regular follow-up without any signs of disease progression. CONCLUSION: The prognosis of LGSOC is relatively good, over 80% of patients still experience disease recurrence.

11.
Opt Lett ; 49(12): 3500-3503, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875655

RESUMEN

Neural network (NN)-based equalizers have been widely applied for dealing with nonlinear impairments in intensity-modulated direct detection (IM/DD) systems due to their excellent performance. However, the computational complexity (CC) is a major concern that limits the real-time application of NN-based receivers. In this Letter, we propose, to our knowledge, a novel weight-adaptive joint mixed-precision quantization and pruning approach to reduce the CC of NN-based equalizers, where only integer arithmetic is taken into account instead of floating-point operations. The NN connections are either directly cutoff or represented by a proper number of quantization bits by weight partitioning, leading to a hybrid compressed sparse network that computes much faster and consumes less hardware resources. The proposed approach is verified in a 50-Gb/s 25-km pulse amplitude modulation (PAM)-4 IM/DD link using a directly modulated laser (DML) in the C-band. Compared with the traditional fully connected NN-based equalizer operated with standard floating-point arithmetic, about 80% memory can be saved at a minimum network size without degrading the system performance. Quantization is also shown to be more suitable to over-parameterized NN-based equalizers compared with NNs selected at a minimum size.

12.
Adv Sci (Weinh) ; : e2402709, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889334

RESUMEN

Visual observation and therapeutic intervention against tumors hold significant appeal for tumor treatment, particularly in meeting the demands of intraoperative navigation. From a clinical perspective, the naked-eye visualization of tumors provides a direct and convenient approach to identifying tumors and navigating during surgery. Nevertheless, there is an ongoing need to develop effective solutions in this frontier. Genetically engineered microorganisms are promising as living therapeutics for combatting malignant tumors, leveraging precise tumor targeting and versatile programmed functionalities. Here, genetically modified Escherichia coli (E. coli) MG1655 bacterial cells are introduced, called MelaBac cells, designed to express tyrosinase continuously. This bioengineered melanogenesis produces melanin capable of pigmenting both subcutaneous CT26 xenografts and chemically induced colorectal cancer (CRC). Additionally, MelaBac cells demonstrate the initiation of photonic hyperthermia therapy and immunotherapy against tumors, offering promising selective therapeutic interventions with high biocompatibility.

13.
J Clin Immunol ; 44(7): 155, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922539

RESUMEN

PURPOSE: Moesin (MSN) deficiency is a recently reported combined immunodeficiency, and few cases have been reported to date. We describe a Chinese patient with a novel mutation causing MSN deficiency and a novel phenotype. METHODS: Clinical and immunological data were collected. Whole-exome sequencing was performed to identify gene mutations. MSN protein expression and T cell proliferation and activation were determined by flow cytometry. Cell migration was confirmed with a Transwell assay. Autoantibody levels were analyzed using antigen microarrays. RESULTS: The patient was a 10-year-old boy who presented with recurrent fever, oral ulcers and dermatomyositis-like symptoms, such as periorbital edema, facial swelling, elevated creatine kinase levels, and abnormal electromyography and muscle biopsy results. Epstein-Barr virus (EBV) DNA was detected in the serum, cells and tissues of this patient. He further developed nasal-type NK/T-cell lymphoma. A novel hemizygous mutation (c.68 A > G, p.N23S) in the MSN gene was found. The immunological phenotype of this patient included persistent decreases in T and B lymphocyte counts but normal immunoglobulin IgG levels. The patient had attenuated MSN protein expression and impaired T-cell proliferation and migration. The proportions of Tfh cells and CD21low B cells in the patient were higher than those in the controls. Moreover, 82 IgG and 102 IgM autoantibodies were more abundant in the patient than in the healthy controls. CONCLUSIONS: The novel mutation N23S is pathogenic and leads to a severe clinical phenotype. EBV infection, tumor, and dermatomyositis-like autoimmune symptoms may be associated with MSN deficiency, further expanding the understanding of the disease.


Asunto(s)
Dermatomiositis , Infecciones por Virus de Epstein-Barr , Proteínas de Microfilamentos , Mutación , Humanos , Masculino , Infecciones por Virus de Epstein-Barr/diagnóstico , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/inmunología , Dermatomiositis/genética , Dermatomiositis/diagnóstico , Dermatomiositis/inmunología , Niño , Proteínas de Microfilamentos/genética , Mutación/genética , Herpesvirus Humano 4 , Secuenciación del Exoma , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/diagnóstico , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Fenotipo , Linfocitos T/inmunología
14.
Plants (Basel) ; 13(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38931053

RESUMEN

The occurrence of maize diseases is frequent but challenging to manage. Traditional identification methods have low accuracy and complex model structures with numerous parameters, making them difficult to implement on mobile devices. To address these challenges, this paper proposes a corn leaf disease recognition model SNMPF based on convolutional neural network ShuffleNetV2. In the down-sampling module of the ShuffleNet model, the max pooling layer replaces the deep convolutional layer to perform down-sampling. This improvement helps to extract key features from images, reduce the overfitting of the model, and improve the model's generalization ability. In addition, to enhance the model's ability to express features in complex backgrounds, the Sim AM attention mechanism was introduced. This mechanism enables the model to adaptively adjust focus and pay more attention to local discriminative features. The results on a maize disease image dataset demonstrate that the SNMPF model achieves a recognition accuracy of 98.40%, representing a 4.1 percentage point improvement over the original model, while its size is only 1.56 MB. Compared with existing convolutional neural network models such as EfficientNet, MobileViT, EfficientNetV2, RegNet, and DenseNet, this model offers higher accuracy and a more compact size. As a result, it can automatically detect and classify maize leaf diseases under natural field conditions, boasting high-precision recognition capabilities. Its accurate identification results provide scientific guidance for preventing corn leaf disease and promote the development of precision agriculture.

15.
Adv Mater ; : e2406135, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38869350

RESUMEN

Wide operation temperature is the crucial objective for an energy storage system that can be applied under harsh environmental conditions. For lithium-sulfur batteries, the "shuttle effect" of polysulfide intermediates will aggravate with the temperature increasing, while the reaction kinetics decreases sharply as the temperature decreasing. In particular, sulfur reaction mechanism at low temperatures seems to be quite different from that at room temperature. Here, through in situ Raman and electrochemical impedance spectroscopy studies, the newly emerged platform at cryogenic temperature corresponds to the reduction process of Li2S8 to Li2S4, which will be another rate-determining step of sulfur conversion reaction, in addition to the solid-phase conversion process of Li2S4 to Li2S2/Li2S at low temperatures. Porous bismuth vanadate (BiVO4) spheres are designed as sulfur host material, which achieve the rapid snap-transfer-catalytic process by shortening lithium-ion transport pathway and accelerating the targeted rate-determining steps. Such promoting effect greatly inhibits severe "shuttle effect" at high temperatures and simultaneously improves sulfur conversion efficiency in the cryogenic environment. The cell with the porous BiVO4 spheres as the host exhibits excellent rate capability and cycle performance under wide working temperatures.

16.
Ying Yong Sheng Tai Xue Bao ; 35(4): 867-876, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884221

RESUMEN

To investigate the correlation between carbon and oxygen isotope compositions of plant cellulose and climatic factors as well as plant physiological indices on the southeastern margin of the Qinghai-Tibet Plateau, we examined plant species in eight sampling sites with similar latitudes and different longitudes in this region. Through the characteristics of δ13C and δ18O values, fractionation values (Δ13C and Δ18O) in leaf cellulose, we discussed water use efficiency (WUE) and the environmental factors, the variation of carbon and oxygen isotopes in the southeastern margin of the Qinghai-Tibet Plateau with elevation and longitude, and revealed the indication degrees of isotopic signals to different environments and vegetation physiology. By using the semi-quantitative model of carbon and oxygen dual isotopes, we investigated the physiological adaptation mechanisms of plants to varying environmental conditions. The results demonstrated that both Δ13C and Δ18O of cellulose decreased with increasing elevation and longitude, and Δ13C was more influenced by longitude, while Δ18O was more susceptible to elevation variation. Additionally, Δ13C and Δ18O were significantly and positively correlated with temperature (TEM), precipitation (PRE), potential evapotranspiration (PET), and relative humidity (RH). PRE was the dominant meteorological factor driving the variation of Δ13C, while RH was the dominant meteorological factor influencing Δ18O variation. In contrast to Δ13C, WUE showed a stronger correlation with elevation than with longitude, which increased as elevation and longitude increased. According to the carbon-oxygen model, plant stomatal conductance (gs) and photosynthetic capacity (Amax) decreased with increasing precipitation and relative humidity, while the values increased with increasing elevation and longitude. The combined analysis of carbon and oxygen isotopes of organic matters would yield additional environmental and gas exchange information for studies on climate tracing and vegetation physiology studies on the southeastern margin of the Qinghai-Tibet Plateau.


Asunto(s)
Isótopos de Carbono , Ecosistema , Isótopos de Oxígeno , Isótopos de Oxígeno/análisis , China , Isótopos de Carbono/análisis , Clima , Altitud , Plantas/metabolismo , Plantas/clasificación , Fenómenos Fisiológicos de las Plantas , Tibet , Celulosa/metabolismo , Celulosa/análisis
17.
Chem Commun (Camb) ; 60(54): 6893-6896, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38874564

RESUMEN

Solution plasma-Co(OH)2 interaction significantly boosts nitrogen fixation and achieves a high concentration of NOx- at 9.42 mmol L-1. This surpasses the nitrogen content requirement of 7.67 mmol L-1 for commercial nutrient solutions, offering a sustainable approach for nitrogen fixation from nitrogen, water and electricity.

18.
Nat Immunol ; 25(6): 969-980, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38831104

RESUMEN

Rare genetic variants in toll-like receptor 7 (TLR7) are known to cause lupus in humans and mice. UNC93B1 is a transmembrane protein that regulates TLR7 localization into endosomes. In the present study, we identify two new variants in UNC93B1 (T314A, located proximally to the TLR7 transmembrane domain, and V117L) in a cohort of east Asian patients with childhood-onset systemic lupus erythematosus. The V117L variant was associated with increased expression of type I interferons and NF-κB-dependent cytokines in patient plasma and immortalized B cells. THP-1 cells expressing the variant UNC93B1 alleles exhibited exaggerated responses to stimulation of TLR7/-8, but not TLR3 or TLR9, which could be inhibited by targeting the downstream signaling molecules, IRAK1/-4. Heterozygous mice expressing the orthologous Unc93b1V117L variant developed a spontaneous lupus-like disease that was more severe in homozygotes and again hyperresponsive to TLR7 stimulation. Together, this work formally identifies genetic variants in UNC93B1 that can predispose to childhood-onset systemic lupus erythematosus.


Asunto(s)
Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico , Receptor Toll-Like 7 , Lupus Eritematoso Sistémico/genética , Humanos , Animales , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Ratones , Niño , Femenino , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Masculino , Edad de Inicio , Variación Genética , FN-kappa B/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Adolescente , Células THP-1 , Interferón Tipo I/metabolismo
19.
Transl Vis Sci Technol ; 13(6): 4, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38864819

RESUMEN

Purpose: This study aimed to investigate the prevalence of myopia and determine the association between physical activity and risk of myopia among primary school students in Tianjin, China. Methods: A cross-sectional study was conducted among subjects from nine primary schools. All of the subjects underwent visual acuity and spherical equivalent (SE) with noncycloplegic autorefraction measurement. Myopia was defined as an SE refraction ≤-0.50D and an uncorrected visual acuity <5.0 in either eye. Physical activity was measured via the Physical Activity Questionnaire for Children. Data were analyzed using the Pearson χ2 test and binary logistic regression. Stratification analysis by sex was also performed. Results: A total of 2976 participants (1408 boys and 1568 girls) aged six to 12 years (mean age 8.82 years) were included in this study. The overall prevalence of myopia was 52.92%. When stratified according to physical activity, myopia prevalence significantly decreased with increasing physical activity levels (χ2 trend test = 127.63, P < 0.001). In the binary logistic regression analysis, after adjusting for age, sex, and school region, the odds ratio for the association between physical activity and myopia was 0.762 (95% confidence interval, 0.675-0.862, P < 0.001). When stratified by sex, the significant statistical association between physical activity and myopia both can be found in two groups (P < 0.05). Conclusions: Higher levels of physical activity were independently associated with decreased risk of myopia. The significant reverse statistical association between physical activity and myopia can be found in male or female groups. Translational Relevance: Taking part in physical activities may be an effective way to reduce the prevalence of myopia.


Asunto(s)
Ejercicio Físico , Miopía , Humanos , Estudios Transversales , Masculino , Femenino , Miopía/epidemiología , Prevalencia , China/epidemiología , Niño , Estudiantes/estadística & datos numéricos , Instituciones Académicas , Refracción Ocular/fisiología , Factores de Riesgo , Agudeza Visual/fisiología , Encuestas y Cuestionarios
20.
Exp Neurol ; 379: 114844, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830500

RESUMEN

Spinal cord injury (SCI) is a serious trauma of the central nervous system. The clearance of myelin debris is a critical step in the functional recovery following spinal cord injury (SCI). Recent studies have begun to reveal critical roles for professional phagocytes in the central nervous system, microglia, and their receptors in the control of myelin debris in neurodegenerative disease. Repeated trans-spinal magnetic stimulation (rTSMS) has been demonstrated as a noninvasive SCI treatment that enhances tissue repair and functional recovery. In this study, we investigated the role and molecular mechanism of rTSMS on microglial phagocytosis of myelin debris in a rat SCI model. In our studies, we found that rTSMS significantly promoted the motor function recovery of SCI rats associated with the inhibition the neuroinflammation and glia scar formation. Immunofluorescence results further showed that the rTSMS promotes the clearance of myelin debris by microglia in vivo and in vitro. Additionally, receptor-associated protein (RAP), a Low-density lipoprotein receptor-related protein-1 (LRP-1) inhibitor, could cancel the accelerated microglial phagocytosis of myelin debris after rTSMS in vitro experiments. Simultaneously, Elisa's results and western blotting respectively showed that rTSMS significantly decreased the levels of soluble LRP-1(sLRP-1) and the LRP-1 splicing enzyme of ADAM17. In conclusion, rTSMS could promote the clearance of myelin debris by microglia through LRP-1 to improve the functional recovery of SCI rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...