Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 474
2.
BMC Cancer ; 24(1): 762, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38918690

BACKGROUND: Despite evidence supporting the high correlation of the novel platelet-to-albumin ratio (PAR) with survival in diverse malignancies, its prognostic relevance in nasopharyngeal carcinoma (NPC) remains underexplored. This study aimed to examine the link between PAR and overall survival (OS) in NPC and to establish a predictive model based on this biomarker. METHODS: We retrospectively assembled a cohort consisting of 858 NPC patients who underwent concurrent chemoradiotherapy (CCRT). Utilizing the maximally selected log-rank method, we ascertained the optimal cut-off point for the PAR. Subsequently, univariate and multivariate Cox proportional hazards models were employed to discern factors significantly associated with OS and to construct a predictive nomogram. Further, we subjected the nomogram's predictive accuracy to rigorous independent validation. RESULTS: The discriminative optimal PAR threshold was determined to be 4.47, effectively stratifying NPC patients into two prognostically distinct subgroups (hazard ratio [HR] = 0.53; 95% confidence interval [CI]: 0.28-0.98, P = 0.042). A predictive nomogram was formulated using the results from multivariate analysis, which revealed age greater than 45 years, T stage, N stage, and PAR score as independent predictors of OS. The nomogram demonstrated a commendable predictive capability for OS, with a C-index of 0.69 (95% CI: 0.64-0.75), surpassing the performance of the conventional staging system, which had a C-index of 0.56 (95% CI: 0.65-0.74). CONCLUSIONS: In the context of NPC patients undergoing CCRT, the novel nutritional-inflammatory biomarker PAR emerges as a promising, cost-efficient, easily accessible, non-invasive, and potentially valuable predictor of prognosis. The predictive efficacy of the nomogram incorporating the PAR score exceeded that of the conventional staging approach, thereby indicating its potential as an enhanced prognostic tool in this clinical setting.


Chemoradiotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Nomograms , Humans , Female , Male , Retrospective Studies , Middle Aged , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/blood , Nasopharyngeal Carcinoma/pathology , Chemoradiotherapy/methods , Prognosis , Nasopharyngeal Neoplasms/therapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/blood , Nasopharyngeal Neoplasms/pathology , Adult , Blood Platelets/pathology , Aged , Serum Albumin/analysis , Neoplasm Staging , Young Adult , Proportional Hazards Models , Platelet Count , Biomarkers, Tumor/blood
3.
Nat Commun ; 15(1): 5314, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38906879

The introduction of single-atom catalysts (SACs) into Fenton-like oxidation promises ultrafast water pollutant elimination, but the limited access to pollutants and oxidant by surface catalytic sites and the intensive oxidant consumption still severely restrict the decontamination performance. While nanoconfinement of SACs allows drastically enhanced decontamination reaction kinetics, the detailed regulatory mechanisms remain elusive. Here, we unveil that, apart from local enrichment of reactants, the catalytic pathway shift is also an important cause for the reactivity enhancement of nanoconfined SACs. The surface electronic structure of cobalt site is altered by confining it within the nanopores of mesostructured silica particles, which triggers a fundamental transition from singlet oxygen to electron transfer pathway for 4-chlorophenol oxidation. The changed pathway and accelerated interfacial mass transfer render the nanoconfined system up to 34.7-fold higher pollutant degradation rate and drastically raised peroxymonosulfate utilization efficiency (from 61.8% to 96.6%) relative to the unconfined control. It also demonstrates superior reactivity for the degradation of other electron-rich phenolic compounds, good environment robustness, and high stability for treating real lake water. Our findings deepen the knowledge of nanoconfined catalysis and may inspire innovations in low-carbon water purification technologies and other heterogeneous catalytic applications.

4.
NPJ Breast Cancer ; 10(1): 45, 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38871705

Human epidermal growth factor receptor 2-positive (HER2+) breast cancer (BC) patients are at a high risk of developing metastases in the brain. However, research focusing on treatment strategies for hormonal receptor positive (HR+), HER2+ BC patients with brain metastases (BM) remains limited. Thus, a multi-center, prospective trial was conducted in China. Women over the age of 18 who were naive to whole brain radiotherapy and had estrogen receptor (ER)/progesterone-receptor (PgR) positive, HER2+ BM were treated with palbociclib, fulvestrant, trastuzumab and pyrotinib, until disease progression or the development of intolerable side effects. The primary endpoint was objective response rate (ORR) in the central nervous system (CNS). This ongoing study is still recruiting participants and is registered with ClinicalTrials.gov (NCT04334330). This report presents the findings from an interim analysis. From December 4, 2020, to November 2, 2022, 15 patients were enrolled. Among the 14 patients who were evaluable for clinical response, the ORR was 35.7% (95% CI: 12.8-64.9%), with a CNS-ORR of 28.6% (95% CI: 8.4-58.1%). The median follow-up period was 6.3 months (range, 2.1-14.3 months), during which the median progression-free survival (PFS) was 10.6 months (95% CI: 4.3-16.9 months), and the median time to CNS progression was 8.5 months (95% CI: 5.9-11.1 months). The most common adverse event was diarrhea (93%), with 33% having grade 3 and 6.7% having grade 4. The study suggests that the combination of palbociclib, trastuzumab, pyrotinib and fulvestrant offers a promising chemo-free treatment strategy for HR+, HER2+ BC patients with BM.

5.
Clin Kidney J ; 17(6): sfae148, 2024 Jun.
Article En | MEDLINE | ID: mdl-38835511

Background: Patients with lupus podocytopathy show a high incidence of acute kidney injury (AKI) and relapse, but the risk factors and mechanisms were unclear. This study analysed the clinicopathological features and risk factors for AKI and relapse in lupus podocytopathy patients. Methods: The cohort of lupus podocytopathy was generated by screening the biopsies of patients with lupus nephritis (LN) from 2002 to 2022 and was divided into the mild glomerular lesion (MGL) and focal segmental glomerulosclerosis (FSGS) groups based on glomerular morphological characteristics. The acute (ATI) and chronic (CTI) tubulointerstitial lesions were semi-quantitatively scored. Logistic and Cox regressions were employed to identify the risk factors for AKI and relapse, respectively. Results: Among 6052 LN cases, 98 (1.6%) were diagnosed as lupus podocytopathy, with 71 in the MGL group and 27 in the FSGS group. All patients presented with nephrotic syndrome and 33 (34.7%) of them had AKI. Seventy-seven (78.6%) patients achieved complete renal response (CRR) within 12 weeks of induction treatment, in which there was no difference in the CRR rate between glucocorticoid monotherapy and combination therapy with glucocorticoids plus immunosuppressants. Compared with the MGL group, patients in the FSGS group had significantly higher incidences of hypertension and haematuria; in addition, they had higher Systemic Lupus Erythematosus Disease Activity Index 2000, ATI and CTI scores but a significantly lower CRR rate. Urinary protein ≥7.0 g/24 h and serum C3 ≤0.750 g/l were independent risk factors for AKI. During a median follow-up of 78 months, 57 cases (60.0%) had relapse and none reached the kidney endpoint. Failure to achieve CRR within 12 weeks, maintenance with glucocorticoid monotherapy and AKI at onset were independent risk factors for kidney relapse. Conclusions: In this study, histological subtypes of lupus podocytopathy were found to be associated with clinical features and treatment response. In addition, several risk factors associated with AKI occurrence and kidney relapse were identified.

6.
Breast ; 76: 103760, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38896982

PURPOSE: Pure mucinous breast cancer (PMC) is a rare histological type with a favourable prognosis. However, cases with recurrence have been reported and diagnosed in clinical practice. The mechanisms underlying PMC recurrence remain unknown. In this study, we aimed to identify the prognostic factors associated with PMC. MATERIALS AND METHODS: A total of 166 patients diagnosed with PMC were included. We compared the clinicopathological characteristics between patients with and without recurrence. The 21-gene assay was performed in 10 patients with recurrence and 20 TNM stage-matched patients without recurrence. Whole-exon sequencing was performed in 12 PMC primary tumours and four positive lymph nodes (LNs). RESULTS: Tumour size, lymph node status and TNM staging differed significantly between recurrent group and non-recurrent group. And the 21-gene recurrence scores did not differ significantly between recurrent group and its TNM stage-matched non-recurrent group. The most frequently mutated genes in the primary tumours of regional LN-positive PMCs were ADCY10 (3/6) and SHANK3 (3/6), and they more recurrently harboured gains of 15q23, 17q23.2 and 20p11.21, and loss of 21p11.2. And these alterations were not detected in primary tumours of regional LN-negative PMCs. CONCLUSION: TNM stage is an important prognostic factor in PMC. Although we revealed that regional LN-positive PMCs show increased occurrence of duplication variants at 15q23, 17q23.2 and 20p11.21, and deletion variants at 21p11.2. Further investigation, including multi-omics studies, are needed and may provide additional insights into the nature of PMC.

7.
Int J Biol Macromol ; : 133369, 2024 Jun 22.
Article En | MEDLINE | ID: mdl-38914394

In this study, an acidic polysaccharide (FVP-7 A) was isolated from Fucus vesiculosus by DEAE-Sepharose™ fast flow. The chemical composition, glycosidic bonds and in vitro fecal fermentation characteristics of FVP-7 A were studied. Results shown that FVP-7 A was a homogenous polysaccharide with average molecular weight of 30.94 kDa. Combined with FT-IR, monosaccharide composition, methylation and NMR analysis, the glycosidic bonds of FVP-7 A mainly composed of →4)-ß-D-Manp-(1→, →3)-α-L-Fucp-(1→, α-D-Manp-(1→, →3)-ß-D-Manp-(1 → and →4,6)-α-D-Manp-(1→. The zeta potential and atomic force microscopy images indicated that FVP-7 A could exist stably as a single chain-like structure in dilute solution. After gut fermentation, FVP-7 A was utilized and promoted multiple short-chain fatty acids production, especially acetic acid, butyric acid and valeric acid. For prebiotics, FVP-7 A significantly increased the relative abundance of short-chain fatty acids producing bacteria such as Bacteroides, Lachnospira, Faecalibacterium, Ruminococcus, Oscillospira and Dialister, and inhiited the growth of the harmful bacteria Shigella. These results indicated that FVP-7 A could be used as a potential dietary supplement to improve intestinal health.

8.
Virology ; 595: 110093, 2024 Jul.
Article En | MEDLINE | ID: mdl-38692134

Oncolytic virotherapy stands out as a burgeoning and promising therapeutic paradigm, harnessing the intrinsic cytotoxicity of oncolytic viruses for selective replication and dissemination within tumors. The primary mode of action revolves around the direct eradication of tumor cells. In our previous investigations, we formulated an oncolytic herpes simplex virus type 2 (OH2) and substantiated its anti-tumor efficacy both in vivo and in vitro. Subsequently, we embarked on a phase I/II clinical trial in China (NMPA, 2018L02743) and the USA (FDA, IND 27137) to assess OH2's safety, biodistribution, and anti-tumor activity as a standalone agent in patients with advanced solid tumors. In this investigation, our primary focus was to comprehend the influence of the major capsid protein VP5 of OH2 on its efficacy as an antitumor agent. Our findings underscore that the VP5 protein significantly amplifies OH2's oncolytic impact on A549 cells. Additionally, we observed that VP5 actively promotes the induction of apoptosis in A549 cells, both in vivo and in vitro. Through comprehensive transcriptional sequencing, we further authenticated that the VP5 protein triggers apoptosis-related signaling pathways and Gene Ontology (GO) terms in A549 cells. Moreover, we scrutinized differentially expressed genes in the p53-dependent apoptosis pathway and conducted meticulous in vitro validation of these genes. Subsequently, we delved deeper into unraveling the functional significance of the TP53I3 gene and conclusively affirmed that the VP5 protein induces apoptosis in A549 cells through the TP53I3 gene. These revelations illuminate the underlying mechanisms of OH2's antitumor activity and underscore the pivotal role played by the VP5 protein. The outcomes of our study harbor promising implications for the formulation of effective oncolytic virotherapy strategies in cancer treatment.


Apoptosis , Herpesvirus 2, Human , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Viruses/genetics , Oncolytic Viruses/physiology , A549 Cells , Oncolytic Virotherapy/methods , Animals , Herpesvirus 2, Human/physiology , Herpesvirus 2, Human/genetics , Capsid Proteins/genetics , Capsid Proteins/metabolism , Mice , Xenograft Model Antitumor Assays
9.
J Biomater Appl ; 39(2): 117-128, 2024 Aug.
Article En | MEDLINE | ID: mdl-38775351

The aim of this study is to explore the therapeutic effects of Mg-Sr-Ca containing bioactive glass nanoparticles sodium alginate hydrogel modified mineralized collagen scaffold (Mg-Sr-Ca-BGNs-SA-MC) on the repair of osteoporotic bone defect. During the study, Mg-Sr-Ca containing bioactive glass nanoparticles (Mg-Sr-Ca-BGNs) were synthesized using the sol-gel method, and the Mg-Sr-Ca-BGNs-SA-MC scaffold was synthesized by a simple method. The Mg-Sr-Ca-BGNs and the Mg-Sr-Ca-BGNs-SA-MC scaffold were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The elements of Mg, Sr, Ca and Si were effectively integrated into Mg-Sr-Ca-BGNs. SEM analysis revealed the presence of Mg-Sr-Ca-BGNs on the scaffold's surface. Furthermore, the cytotoxicity of the scaffolds were assessed using a live/dead assay. The result of the live/dead assay demonstrated that the scaffold materials were non-toxic to cell growth. More importantly, the in vivo study indicated that implanted scaffold promoted tissue regeneration and integration with newly formed bone. Overall, the Mg-Sr-Ca-BGNs-SA-MC scaffold is suitable for guided bone regeneration and beneficial to repair of osteoporotic bone defects.


Bone Regeneration , Collagen , Glass , Hydrogels , Nanoparticles , Strontium , Tissue Scaffolds , Tissue Scaffolds/chemistry , Animals , Collagen/chemistry , Bone Regeneration/drug effects , Nanoparticles/chemistry , Strontium/chemistry , Strontium/pharmacology , Hydrogels/chemistry , Glass/chemistry , Magnesium/chemistry , Calcium/chemistry , Biocompatible Materials/chemistry , Alginates/chemistry , Tissue Engineering , Rabbits
10.
J Food Sci ; 89(6): 3687-3699, 2024 Jun.
Article En | MEDLINE | ID: mdl-38767926

The vibrating superfine mill (VSM) is a machine that belongs to the micronization technique. In this study, VSM was employed to produce micronized tapioca starch by varying micronization times (15, 30, 45, and 60 min). The structural and physicochemical properties of the micronized starch were then examined. Scanning electron microscopy studies revealed that micronized starch was partially gelatinized, and the granule size dramatically increased when micronization time increased. X-ray diffraction patterns showed that the relative crystallinity was decreased from 24.67% (native) to 4.13% after micronization treatment for 15 min and slightly decreased after that. The solubility of micronized starch significantly increased as the micronization time increased, which was associated with the destruction of the starch crystalline structure. Differential scanning calorimetry investigations confirmed that micronized starch was "partly gelatinized," and the degree of gelatinization increased to 81.27% when the micronization time was 60 min. The weight-average molar mass was reduced by 15.0% (15 min), 30.9% (30 min), 55.7% (45 min), and 70.5% (60 min), respectively, indicating that the molecular structure was seriously degraded. The results demonstrated that the physicochemical changes of micronized starch granules were related to the destruction of the starch structure. These observations would provide details on micronized starch and its potential applications. PRACTICAL APPLICATION: These observations would provide details on micronized starch and its potential applications. Moreover, we believe that when the structures of starches were known, it is probable that the effect of VSM on the structural and physicochemical properties change of other starches might be predicted by adjusting the processing time.


Calorimetry, Differential Scanning , Manihot , Microscopy, Electron, Scanning , Solubility , Starch , X-Ray Diffraction , Starch/chemistry , Manihot/chemistry , Microscopy, Electron, Scanning/methods , Gelatin/chemistry , Particle Size , Food Handling/methods , Chemical Phenomena
11.
Ecol Evol ; 14(5): e11214, 2024 May.
Article En | MEDLINE | ID: mdl-38725828

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

12.
Molecules ; 29(10)2024 May 16.
Article En | MEDLINE | ID: mdl-38792203

Narrowband afterglow materials display interesting functions in high-quality anti-counterfeiting and multiplexed bioimaging. However, there is still a limited exploration of these afterglow materials, especially for those with a full width at half maxima (FWHM) around 30 nm. Here, we report the fabrication of narrowband organic/inorganic hybrid afterglow materials via energy transfer technology. Coronene (Cor) with a long phosphorescence feature and broad phosphorescence band is selected as the donor for energy transfer, and inorganic quantum dots (QDs) of CdSe/ZnS with a narrowband emission are used as acceptors. Upon doping into the organic matrix, the resultant three-component materials exhibit a narrowband afterglow with an afterglow lifetime of approximately 3.4 s and an FWHM of 31 nm. The afterglow wavelength of the afterglow materials can be controlled by the QDs. This work based on organic/inorganic hybrids provides a facile approach for developing multicolor and narrowband afterglow materials, as well as opens a new way for expanding the features of organic afterglow for multifunctional applications. It is expected to rely on narrowband afterglow emitters to solve the "spectrum congestion" problem of high-density information storage in optical anti-counterfeiting and information encryption.

13.
J Inflamm Res ; 17: 3353-3369, 2024.
Article En | MEDLINE | ID: mdl-38803689

Background: The C-reactive protein-albumin-lymphocyte (CALLY) score is a novel indicator associated with inflammation, immunity, and nutrition, utilized for cancer prognostic stratification. This study aimed to evaluate the integrated prognostic significance of the pre-treatment CALLY score and Epstein-Barr virus (EBV) DNA levels in nasopharyngeal carcinoma (NPC) patients and to develop prognostic models. Patients and Methods: A total of 1707 NPC patients from September 2015 to December 2017 were retrospectively enrolled. The cut-off point for the CALLY score, determined by maximum selected rank statistics, integrates with the published cut-off point for pre-EBV DNA to develop a comprehensive index. Subsequently, patients were randomly allocated in a 1:1 ratio into training and validation cohorts. Survival analysis was conducted using the Kaplan-Meier method with Log rank tests, and the Cox proportional hazards model was applied to identify independent prognostic factors for constructing predictive nomograms. The predictive ability of the nomograms were assessed through the concordance index (C-index), calibration curves, and decision curve analysis. Results: By integrating CALLY scores and EBV-DNA levels, patients were categorized into three risk clusters. Kaplan-Meier curves reveal significant differences in overall survival (OS), distant metastasis-free survival (DMFS), and locoregional relapse-free survival (LRRFS) outcomes among different risk groups (all P values < 0.05). Multivariate analysis revealed that CALLY-EBV DNA index serves as an independent prognostic factor for the OS, DMFS, and LRRFS. The prognostic nomograms based on the CALLY-EBV DNA index provided accurate predictions for 1-year, 3-year, and 5-year OS, DMFS, and LRRFS. Additionally, compared to the traditional TNM staging system, the nomograms exhibited enhanced discriminatory power, calibration capability, and clinical applicability. All results were in agreement with the validation cohort. Conclusion: The CALLY-EBV DNA index is an independent prognostic biomarker. The nomogram prediction models, constructed based on the CALLY-EBV DNA index, demonstrates superior predictive performance compared to the traditional TNM staging.

14.
Food Chem ; 448: 139135, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38569405

The impacts of enzymatically produced acylglycerol and glycerin monostearate on the characteristics of gelatin-stabilized omega-3 emulsions and microcapsules were investigated. Tuna oil was enzymatically produced and the resulting acylglycerol was mixed with tuna oil at 12.5% (w/w) to prepare a novel oil phase. This oil phase was stabilized by gelatin to prepare oil-in-water emulsions and subsequent microcapsules via complex coacervation. The tuna oil with glycerin monostearate (GMS) at 1 and 2% (w/w) were used as controls. Results showed that both acylglycerol and GMS significantly reduced the emulsion droplet size and zeta potential, while increasing the viscoelasticity and stability. The diacylglycerol/monoacylglycerol were involved in the oil/water interfacial layer formation by lowering interfacial tension and increasing droplet surface hydrophobicity. Overall, the changed emulsion properties promoted the complex coacervation and contributed to the formation of microcapsules with improved oxidative stability. Therefore, enzymatically produced acylglycerol can develop high-quality stable omega-3 microencapsulated novel food ingredients.


Capsules , Emulsions , Fatty Acids, Omega-3 , Fish Oils , Gelatin , Emulsions/chemistry , Capsules/chemistry , Gelatin/chemistry , Fatty Acids, Omega-3/chemistry , Fish Oils/chemistry , Animals , Particle Size , Glycerol/chemistry , Tuna , Glycerides/chemistry , Hydrophobic and Hydrophilic Interactions , Biocatalysis
15.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Article En | MEDLINE | ID: mdl-38679241

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Antihypertensive Agents , Attention Deficit Disorder with Hyperactivity , Behavior, Animal , Captopril , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Rats, Inbred SHR , Animals , Gastrointestinal Microbiome/drug effects , Pregnancy , Attention Deficit Disorder with Hyperactivity/drug therapy , Attention Deficit Disorder with Hyperactivity/chemically induced , Female , Antihypertensive Agents/pharmacology , Captopril/pharmacology , Male , Rats , Behavior, Animal/drug effects , Labetalol/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Hypertension, Pregnancy-Induced/chemically induced , Dopamine/metabolism
16.
Article En | MEDLINE | ID: mdl-38628818

Purpose: Results from studies of extended capecitabine after the standard adjuvant chemotherapy in early stage triple-negative breast cancer (TNBC) were inconsistent, and only low-dose capecitabine from the SYSUCC-001 trial improved disease-free survival (DFS). Adjustment of the conventional adjuvant chemotherapy doses affect the prognosis and may affect the efficacy of subsequent treatments. This study investigated whether the survival benefit of the SYSUCC-001 trial was affected by dose adjustment of the standard adjuvant chemotherapy or not. Patients and Methods: We reviewed the adjuvant chemotherapy regimens before the extended capecitabine in the SYSUCC-001 trial. Patients were classified into "consistent" (standard acceptable dose) and "inconsistent" (doses lower than acceptable dose) dose based on the minimum acceptable dose range in the landmark clinical trials. Cox proportional hazards model was used to investigate the impact of dose on the survival outcomes. Results: All 434 patients in SYSUCC-001 trial were enrolled in this study. Most of patients administered the anthracycline-taxane regimen accounted for 88.94%. Among patients in the "inconsistent" dose, 60.8% and 47% received lower doses of anthracycline and taxane separately. In the observation group, the "inconsistent" dose of anthracycline and taxane did not affect DFS compared with the "consistent" dose. Moreover, in the capecitabine group, the "inconsistent" anthracycline dose did not affect DFS compared with the "consistent" dose. However, patients with "consistent" taxane doses benefited significantly from extended capecitabine (P=0.014). The sufficient dose of adjuvant taxane had a positive effect of extended capecitabine (hazard ratio [HR] 2.04; 95% confidence interval [CI] 1.02 to 4.06). Conclusion: This study found the dose reduction of adjuvant taxane might negatively impact the efficacy of capecitabine. Therefore, the reduction of anthracycline dose over paclitaxel should be given priority during conventional adjuvant chemotherapy, if patients need dose reduction and plan for extended capecitabine.

17.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1429-1437, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621926

This study aims to explore the mechanism of aqueous extract of Strychni Semen(SA) in relieving pain in the rat model of rheumatoid arthritis(RA) via Toll-like receptor 4(TLR4)/tumor necrosis factor-α(TNF-α)/matrix metalloproteinase-9(MMP-9) signaling pathway. Firstly, the main chemical components of Strychni Semen were searched against TCMSP, TCMID, ETCM, and related literature, and the main targets of the chemical components were retrieved from TargetNet and SwissTargetPrediction. The main targets of RA and pain were searched against GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). Venny 2.1.0 was used to obtain the common targets shared by Strychni Semen, RA, and pain, and STRING and Cytoscape 3.6.1 were used to build the protein-protein interaction network. Then, molecular docking was carried out in AutoDock Vina. Finally, the rat model of type Ⅱ collagen-induced arthritis(CIA) was established. The up-down method and acetone method were employed to examine the mechanical pain threshold and cold pain threshold of rats, and the pain-relieving effect of SA on CIA rats was evaluated comprehensively. Hematoxylin-eosin(HE) staining was employed to evaluate the histopathological changes of joints in CIA rats. The expression levels of key target proteins was determined by immunohistochemistry and Western blot, and the mRNA levels of key targets were determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). The results of network prediction showed that Strychni Semen may act on the TLR4/TNF-α/MMP-9 signaling pathway to exert the pain-relieving effect. The results of molecular docking showed that brucine, the main active component of SA, had strong binding ability to TLR4, TNF-α, and MMP-9. The results of animal experiments showed that SA improved the mechanical and cold pain sensitivity(P<0.05, P<0.01) and reduced the joint histopathological score of CIA rats(P<0.01). In addition, medium and high doses of SA down-regulated the protein and mRNA levels of TNF-α, TLR4, and MMP-9(P<0.05,P<0.01). In conclusion, SA alleviated the mechanical pain sensitivity, cold pain sensitivity, and joint histopathological changes in CIA rats by inhibiting the over activation of TLR4/TNF-α/MMP-9 signaling pathway.


Arthritis, Rheumatoid , Tumor Necrosis Factor-alpha , Humans , Rats , Animals , Tumor Necrosis Factor-alpha/genetics , Matrix Metalloproteinase 9/genetics , Semen , Molecular Docking Simulation , Toll-Like Receptor 4/genetics , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Signal Transduction , Pain/drug therapy , RNA, Messenger
18.
World J Gastrointest Oncol ; 16(3): 659-669, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38577461

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of less than 10%, owing to its late-stage diagnosis. Early detection of pancreatic cancer (PC) can significantly increase survival rates. AIM: To identify the serum biomarker signatures associated with early-stage PDAC by serum N-glycan analysis. METHODS: An extensive patient cohort was used to determine a biomarker signature, including patients with PDAC that was well-defined at an early stage (stages I and II). The biomarker signature was derived from a case-control study using a case-cohort design consisting of 29 patients with stage I, 22 with stage II, 4 with stage III, 16 with stage IV PDAC, and 88 controls. We used multiparametric analysis to identify early-stage PDAC N-glycan signatures and developed an N-glycan signature-based diagnosis model called the "Glyco-model". RESULTS: The biomarker signature was created to discriminate samples derived from patients with PC from those of controls, with a receiver operating characteristic area under the curve of 0.86. In addition, the biomarker signature combined with cancer antigen 19-9 could discriminate patients with PDAC from controls, with a receiver operating characteristic area under the curve of 0.919. Glyco-model demonstrated favorable diagnostic performance in all stages of PC. The diagnostic sensitivity for stage I PDAC was 89.66%. CONCLUSION: In a prospective validation study, this serum biomarker signature may offer a viable method for detecting early-stage PDAC.

19.
Amino Acids ; 56(1): 11, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38319413

The organic anion-transporting polypeptide 1B3 and P-glycoprotein (P-gp) provide efficient directional transport (OATP1B3-P-gp) from the blood to the bile that serves as a key determinant of hepatic disposition of the drug. Unfortunately, there is still a lack of effective means to evaluate the disposal ability mediated by transporters. The present study was designed to identify a suitable endogenous biomarker for the assessment of OATP1B3-P-gp function in the liver. We established stably transfected HEK293T-OATP1B3 and HEK293T-P-gp cell lines. Results showed that azelaic acid (AzA) was an endogenous substrate for OATP1B3 and P-gp using serum pharmacology combined with metabolomics. There is a good correlation between the serum concentration of AzA and probe drugs of rOATP1B3 and rP-gp when rats were treated with their inhibitors. Importantly, after 5-fluorouracil-induced rat liver injury, the relative mRNA level and expression of rOATP1B3 and rP-gp were markedly down-regulated in the liver, and the serum concentration of AzA was significantly increased. These observations suggest that AzA is an endogenous substrate of both OATP1B3 and P-gp, and may serve as a potential endogenous biomarker for the assessment of the function of OATP1B3-P-gp for the prediction of changes in the pharmacokinetics of drugs transported by OATP1B3-P-gp in liver disease states.


Dicarboxylic Acids , Liver , Metabolomics , Animals , Humans , Rats , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Biomarkers , HEK293 Cells , Solute Carrier Organic Anion Transporter Family Member 1B3
...