Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.230
Filtrar
1.
Animals (Basel) ; 14(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38998044

RESUMEN

Litter size is a significant economic trait during animal reproduction. This current study attempted to decipher whether MTHFR promotes the apoptosis of granulosa cells (GCs) and inhibits their proliferation by investigating the effects of the MTHFR gene using flow cytometry and a Cell Counting Kit-8 (CCK-8) assay. MTHFR is linked with ovarian follicle development in the reproductive performance of 104 female New Zealand rabbits. We observed that MTHFR could regulate the mRNA of follicular development-related genes (TIMP1, CITED1, FSHR, GHR, HSD17B1, and STAR) with a qRT-PCR, and we observed the protein expression of CITED1 and GHR using a western blot (WB) analysis. The dual luciferase activity assays helped identify the core promoter region of the MTHFR gene, and the polymorphism of the MTHFR promoter region was studied using Sanger sequencing. The results indicated four single nucleotide polymorphisms (SNPs) within the core promoter region, among which the g.-680C>A locus was significantly associated with both the total and alive litter sizes. Additionally, the CC genotype was associated with the largest total and alive litter sizes, compared to the CA and AA genotypes (p < 0.05). In conclusion, this study investigated the effects of MTHFR on ovarian granulosa cells and its association with selected reproductive parameters in rabbits. The results provide a theoretical foundation for the use of MTHFR as a molecular marker in rabbits.

2.
Nat Commun ; 15(1): 5923, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004634

RESUMEN

Respiratory syncytial virus (RSV) is an enveloped, filamentous, negative-strand RNA virus that causes significant respiratory illness worldwide. RSV vaccines are available, however there is still significant need for research to support the development of vaccines and therapeutics against RSV and related Mononegavirales viruses. Individual virions vary in size, with an average diameter of ~130 nm and ranging from ~500 nm to over 10 µm in length. Though the general arrangement of structural proteins in virions is known, we use cryo-electron tomography and sub-tomogram averaging to determine the molecular organization of RSV structural proteins. We show that the peripheral membrane-associated RSV matrix (M) protein is arranged in a packed helical-like lattice of M-dimers. We report that RSV F glycoprotein is frequently observed as pairs of trimers oriented in an anti-parallel conformation to support potential interactions between trimers. Our sub-tomogram averages indicate the positioning of F-trimer pairs is correlated with the underlying M lattice. These results provide insight into RSV virion organization and may aid in the development of RSV vaccines and anti-viral targets.


Asunto(s)
Microscopía por Crioelectrón , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión , Proteínas de la Matriz Viral , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/ultraestructura , Humanos , Virus Sincitial Respiratorio Humano/química , Multimerización de Proteína , Virión/metabolismo , Virión/ultraestructura , Virión/química , Tomografía con Microscopio Electrónico , Virus Sincitiales Respiratorios/química , Modelos Moleculares , Infecciones por Virus Sincitial Respiratorio/virología , Animales
3.
Biomed Pharmacother ; 177: 117046, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981241

RESUMEN

Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3ß inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3ß pathway.

4.
J Psychiatr Res ; 177: 75-81, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981411

RESUMEN

Delusion is an important feature of schizophrenia, which may stem from cognitive biases. Working memory (WM) is the core foundation of cognition, closely related to delusion. However, the knowledge of neural mechanisms underlying the relationship between WM and delusion in schizophrenia is poorly investigated. Two hundred and thirty patients with schizophrenia (dataset 1: n = 130; dataset 2: n = 100) were enrolled and scanned for an N-back WM task. We constructed the WM-related whole-brain functional connectome and conducted Connectome-based Predictive Modelling (CPM) to detect the delusion-related networks and built the correlation model in dataset 1. The correlation between identified networks and delusion severity was tested in a separate, heterogeneous sample of dataset 2 that mainly includes early-onset schizophrenia. The identified delusion-related network has a strong correlation with delusion severity measured by the NO.20 item of SAPS in dataset 1 (r = 0.433, p = 2.7 × 10-7, permutation-p = 0.035), and can be validated in the same dataset by using another delusion measurement, that is, the P1 item of PANSS (r = 0.362, p = 0.0005). It can be validated in another independent dataset 2 (NO.20 item of SAPS for r = 0.31, p = 0.0024, P1 item of PANSS for r = 0.27, p = 0.0074). The delusion-related network comprises the connections between the default mode network (DMN), cingulo-opercular network (CON), salience network (SN), subcortical, sensory-somatomotor network (SMN), and visual networks. We successfully established correlation models of individualized delusion based on the WM-related functional connectome and showed a strong correlation between delusion severity and connections within the DMN, CON, SMN, and subcortical network.

5.
Sensors (Basel) ; 24(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39001155

RESUMEN

Electrocardiography (ECG) has emerged as a ubiquitous diagnostic tool for the identification and characterization of diverse cardiovascular pathologies. Wearable health monitoring devices, equipped with on-device biomedical artificial intelligence (AI) processors, have revolutionized the acquisition, analysis, and interpretation of ECG data. However, these systems necessitate AI processors that exhibit flexible configuration, facilitate portability, and demonstrate optimal performance in terms of power consumption and latency for the realization of various functionalities. To address these challenges, this study proposes an instruction-driven convolutional neural network (CNN) processor. This processor incorporates three key features: (1) An instruction-driven CNN processor to support versatile ECG-based application. (2) A Processing element (PE) array design that simultaneously considers parallelism and data reuse. (3) An activation unit based on the CORDIC algorithm, supporting both Tanh and Sigmoid computations. The design has been implemented using 110 nm CMOS process technology, occupying a die area of 1.35 mm2 with 12.94 µW power consumption. It has been demonstrated with two typical ECG AI applications, including two-class (i.e., normal/abnormal) classification and five-class classification. The proposed 1-D CNN algorithm performs with a 97.95% accuracy for the two-class classification and 97.9% for the five-class classification, respectively.


Asunto(s)
Algoritmos , Electrocardiografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador , Electrocardiografía/métodos , Humanos , Inteligencia Artificial , Dispositivos Electrónicos Vestibles
6.
Opt Lett ; 49(13): 3806-3809, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38950276

RESUMEN

Current non-confocal non-line-of-sight (NLOS) imaging faces the problems of low resolution and limited scene adaptability. We propose a non-confocal NLOS imaging method based on spherical-slice transform from spatial and temporal frequency to space and time. Simulation and experimental results show that the proposed method has high-resolution reconstruction without artifact interference, shape distortion, and position offset. Furthermore, it has strong scene adaptability. After GPU acceleration, the reconstruction time of the proposed method can be reduced to several hundred milliseconds for the PF32 photon array camera with 32 × 32 detection units. In the future, the proposed method has great potential for application in real-time NLOS imaging systems.

7.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(6): 538-543, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-38952094

RESUMEN

Objective To investigate the expression levels of lncRNA H19 in ulcerative colitis (UC) patients and its role in UC. Methods Colonic mucosa and serum samples were collected from 25 UC patients and 25 healthy individuals at the General Hospital of Xizang Military Region. The expression levels of lncRNA H19 were detected, and the receiver operating characteristic (ROC) curve analysis was performed using serum samples. An in vitro inflammatory model was established in HT29 colorectal cells under lipopolysaccharide (LPS) stimulation, and the expression levels of lncRNA H19 were observed in HT29 cells through fluorescence quantitative PCR. HT29 cells with downregulated lncRNA H19 was constructed using lentivirus-mediated shRNA. The effect of lncRNA H19 on cell survival was analyzed through MTT assay. Cell apoptosis was detected by flow cytometry, and the protein expression levels of apoptosis and autophagy markers were analyzed through Western blot. After treatment with rapamycin, the survival of HT29 cells was observed by MTT assay. Results lncRNA H19 was highly expressed in the colonic mucosa and serum samples of UC patients with the ROC area being 0.786. Following LPS stimulation, the expression levels of lncRNA H19 was significantly increased in a time-dependent manner. Downregulation of lncRNA H19 can promote cell survival, inhibit cell apoptosis and increase autophagy level in HT29 cells. Treatment with rapamycin significantly increased the cell survival rate. Conclusion Knock-down of lncRNA H19 increases autophagy levels, inhibits LPS-induced apoptosis and promotes the survival of colon cells.


Asunto(s)
Apoptosis , Autofagia , Colitis Ulcerosa , Lipopolisacáridos , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Autofagia/genética , Lipopolisacáridos/farmacología , Colitis Ulcerosa/genética , Colitis Ulcerosa/metabolismo , Células HT29 , Masculino , Femenino , Persona de Mediana Edad , Adulto , Técnicas de Silenciamiento del Gen
8.
Cancer Lett ; 598: 217104, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38969163

RESUMEN

Results of measurable residual disease (MRD)-testing by next-generation sequencing (NGS) correlate with relapse risk in adults with B-cell acute lymphoblastic leukemia (ALL) receiving chemotherapy or an allotransplant from a human leukocyte antigen (HLA)-identical relative or HLA-matched unrelated donor. We studied cumulative incidence of relapse (CIR) and survival prediction accuracy using a NGS-based MRD-assay targeting immunoglobulin genes after 2 courses of consolidation chemotherapy cycles in 93 adults with B-cell ALL most receiving HLA-haplotype-matched related transplants. Prediction accuracy was compared with MRD-testing using multi-parameter flow cytometry (MPFC). NGS-based MRD-testing detected residual leukemia in 28 of 65 subjects with a negative MPFC-based MRD-test. In Cox regression multi-variable analyses subjects with a positive NGS-based MRD-test had a higher 3-year CIR (Hazard Ratio [HR] = 3.37; 95 % Confidence Interval [CI], 1.34-8.5; P = 0.01) and worse survival (HR = 4.87 [1.53-15.53]; P = 0.007). Some data suggest a lower CIR and better survival in NGS-MRD-test-positive transplant recipients but allocation to transplant was not random. Our data indicate MRD-testing by NGS is more accurate compared with testing by MPFC in adults with B-cell ALL in predicting CIR and survival. (Registered in the Beijing Municipal Health Bureau Registration N 2007-1007 and in the Chinese Clinical Trial Registry [ChiCTR-OCH-10000940 and ChiCTROPC-14005546]).

9.
Acta Pharmacol Sin ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987389

RESUMEN

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

11.
J Immunol Res ; 2024: 3145695, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983273

RESUMEN

Background: This work focused on investigating the role of programmed death ligand 2 (PD-L2) in the progression of breast cancer by utilizing breast cancer specimens and cells. Materials and Methods: The serum levels of soluble PD-L2 (sPD-L2) in breast cancer patients and healthy individuals were analyzed by means of the enzyme-linked immunosorbent assay, and the PD-L2 levels within 416 resected breast cancer specimens were assessed through immunohistochemistry. Concurrently, in vitro cell experiments and in vivo animal experiments were carried out to analyze the relationship between PD-L2 and the invasion and migration of breast cancer. Results: The concentration of sPD-L2 in breast cancer patients significantly increased compared to that in the control groups. Additionally, breast cancer patients with high concentrations of sPD-L2 had higher Ki67 values (≥30%) and tumor grades. PD-L2 was expressed in 79.09% of the cancer samples, which exhibited a positive correlation with the progesterone receptor (PR) and the human epidermal growth factor receptor 2 (HER2). Furthermore, we discovered that knockdown of PD-L2 inhibited the migratory and invasive abilities of both MCF-7 and MDA-MB231 cells. Conclusion: Our findings demonstrated that knockdown of PD-L2 suppressed tumor growth, providing novel insights into important biological functions.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Progresión de la Enfermedad , Proteína 2 Ligando de Muerte Celular Programada 1 , Humanos , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Animales , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Ratones , Línea Celular Tumoral , Persona de Mediana Edad , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Adulto , Proliferación Celular , Células MCF-7 , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica , Anciano , Inmunohistoquímica , Clasificación del Tumor , Biomarcadores de Tumor/metabolismo , Modelos Animales de Enfermedad , Receptores de Progesterona/metabolismo , Técnicas de Silenciamiento del Gen
12.
Cell Rep ; 43(7): 114453, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38985677

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infection, a major cause of hospital- and community-acquired pneumonia, still has a high mortality rate. Extracellular vesicles (EVs), as crucial mediators of intercellular communication, have a significant impact on infectious diseases. However, the role of EVs from alveolar macrophages (AMs) in MRSA pneumonia remains unclear. We report that AMs phagocytose MRSA and release more EVs in mice with MRSA pneumonia. EVs from AMs harboring phagocytosed MRSA exhibit significant proinflammatory effects and induce necroptosis by delivering tumor necrosis factor α (TNF-α) and miR-146a-5p. Mechanically, the upregulated miR-146a-5p in these EVs enhances the phosphorylation of RIPK1, RIPK3, and MLKL by targeting TNF receptor-associated factor 6 (TRAF6), thereby promoting TNF-α-induced necroptosis. The combination of a TNF-α antagonist and an miR-146a-5p antagomir effectively improves the outcomes of mice with MRSA pneumonia. Overall, we reveal the pronecrotic effect of EVs from MRSA-infected AMs and provide a promising target for the prevention and treatment of MRSA pneumonia.

13.
Cell Commun Signal ; 22(1): 355, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978049

RESUMEN

BACKGROUND: FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is a common mutation type in acute myeloid leukemia (AML) and is usually associated with poor patient prognosis. With advancements in molecular diagnostics and the development of tyrosine kinase inhibitors (TKI), the overall survival (OS) of AML patients with FLT3-ITD mutations has been prolonged to some extent, but relapse and drug resistance are still substantial challenges. Ningetinib is a novel TKI against various kinases in relation to tumour pathogenesis and is undergoing clinical trials of lung cancer. In this study, we explored the antitumor activity of ningetinib against AML with FLT3 mutations both in vivo and in vitro. METHODS: Cell proliferation assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutations to validate the antileukemic activity of ningetinib in vitro. Immunoblot assays were used to verify the effect of ningetinib on the FLT3 protein and downstream pathways. Molecular docking and CETSA were used to validate the interaction of ningetinib with target proteins. The survival benefit of ningetinib in vivo was assessed in Ba/F3-FLT3-ITD-, MOLM13, Ba/F3-FLT3-ITD-F691L-, MOLM13-FLT3-ITD-F691L-induced leukemia mouse models. We also used patient-derived primary cells to determine the efficacy of ningetinib. RESULTS: Ningetinib inhibited cell proliferation, blocked the cell cycle, induced apoptosis and bound FLT3 to inhibit its downstream signaling pathways, including the STAT5, AKT and ERK pathways, in FLT3-ITD AML cell lines. In the mouse models with FLT3-ITD and FLT3-ITD-F691L mutation, ningetinib showed superior anti-leukemia activity to existing clinical drugs gilteritinib and quizartinib, significantly prolongating the survival of mice. In addition, ningetinib exhibited activity against patient-derived primary cells harboring FLT3-ITD mutations. CONCLUSION: Overall, our study confirmed the therapeutic role of ningetinib in AML with FLT3-ITD mutations, providing a potential new option for clinically resistant patients.


Asunto(s)
Proliferación Celular , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda , Inhibidores de Proteínas Quinasas , Tirosina Quinasa 3 Similar a fms , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Humanos , Animales , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular/efectos de los fármacos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Apoptosis/efectos de los fármacos , Mutación , Transducción de Señal/efectos de los fármacos
14.
J Transl Med ; 22(1): 635, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978048

RESUMEN

BACKGROUND: Circadian rhythm (CR) disturbance is intricately associated with Parkinson's disease (PD). However, the involvement of CR-related mechanisms in the pathogenesis and progression of PD remains elusive. METHODS: A total of 141 PD patients and 113 healthy participants completed CR-related clinical examinations in this study. To further investigate the CR-related mechanisms in PD, we obtained datasets (GSE7621, GSE20141, GSE20292) from the Gene Expression Omnibus database to identify differentially expressed genes between PD patients and healthy controls and further selected CR-related genes (CRRGs). Subsequently, the least absolute shrinkage and selection operator (LASSO) followed by logistic algorithms were employed to identify the hub genes and construct a diagnostic model. The predictive performance was evaluated by area under the curve (AUC), calibration curve, and decision curve analyses in the training set and external validation sets. Finally, RT‒qPCR and Western blotting were conducted to verify the expression of these hub genes in blood samples. In addition, Pearson correlation analysis was utilized to validate the association between expression of hub genes and circadian rhythm function. RESULTS: Our clinical observational study revealed that even early-stage PD patients exhibited a higher likelihood of experiencing sleep disturbances, nocturnal hypertension, reverse-dipper blood pressure, and reduced heart rate variability compared to healthy controls. Furthermore, 4 CR-related hub genes (AGTR1, CALR, BRM14, and XPA) were identified and subsequently incorporated as candidate biomarkers to construct a diagnostic model. The model showed satisfactory diagnostic performance in the training set (AUC = 0.941), an external validation set GSE20295 (AUC = 0.842), and our clinical centre set (AUC = 0.805). Additionally, the up-regulation of CALR, BRM14 and the down-regulation of AGTR1, XPA were associated with circadian rhythm disruption. CONCLUSION: CR disturbance seems to occur in the early stage of PD. The diagnostic model based on CR-related genes demonstrated robust diagnostic efficacy, offering novel insights for future clinical diagnosis of PD and providing a foundation for further exploration into the role of CR-related mechanisms in the progression of PD.


Asunto(s)
Ritmo Circadiano , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Ritmo Circadiano/genética , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Curva ROC , Regulación de la Expresión Génica , Perfilación de la Expresión Génica , Modelos Biológicos , Bases de Datos Genéticas
15.
J Clin Invest ; 134(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950288

RESUMEN

Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.


Asunto(s)
Cardiomiopatía Dilatada , Mutación del Sistema de Lectura , Ratones Noqueados , Miocitos Cardíacos , Organoides , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/metabolismo , Modelos Animales de Enfermedad , Contracción Miocárdica/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Organoides/metabolismo , Organoides/patología
16.
Int J Mol Med ; 54(2)2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38963019

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a prevalent and deadly malignancy of the digestive tract. Recent research has identified long non­coding RNAs (lncRNAs) as crucial regulators in the pathogenesis of ESCC. These lncRNAs, typically exceeding 200 nucleotides, modulate gene expression through various mechanisms, including the competing endogenous RNA (ceRNA) pathway and RNA­protein interactions. The current study reviews the multifaceted roles of lncRNAs in ESCC, highlighting their involvement in processes such as proliferation, migration, invasion, epithelial­mesenchymal transition, cell cycle progression, resistance to radiotherapy and chemotherapy, glycolysis, apoptosis, angiogenesis, autophagy, tumor growth, metastasis and the maintenance of cancer stem cells. Specific lncRNAs like HLA complex P5, LINC00963 and non­coding repressor of NFAT have been shown to enhance resistance to radio­ and chemotherapy by modulating pathways such as AKT signaling and microRNA interaction, which promote cell survival and proliferation under therapeutic stress. Furthermore, lncRNAs like family with sequence similarity 83, member A antisense RNA 1, zinc finger NFX1­type containing 1 antisense RNA 1 and taurine upregulated gene 1 are implicated in enhancing invasive and proliferative capabilities of ESCC cells through the ceRNA mechanism, while interactions with RNA­binding proteins further influence cancer cell behavior. The comprehensive analysis underscores the potential of lncRNAs as biomarkers for prognosis and therapeutic targets in ESCC, suggesting avenues for future research focused on elucidating the detailed molecular mechanisms and clinical applications of lncRNAs in ESCC management.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante , ARN Largo no Codificante/genética , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/terapia , Animales , Transición Epitelial-Mesenquimal/genética , Proliferación Celular/genética
17.
Chem Biodivers ; : e202401210, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007531

RESUMEN

Four novel Mesona chinensis Benth polysaccharides were isolated using aqueous alcohol precipitation. Their molecular weights were determined using high-performance gel permeation chromatography: MA1 (2.3 kDa), MA2 (80.5 kDa), MA3 (180.9 kDa), and MA4 (635.2 kDa), and their compositions were analyzed using GC-MS. The polysaccharides were mainly D-glucose, D-galactose, L-Rhamnose, D-arabinose, D-xylose, and D-mannose. The structural characteristics were further analyzed using infrared spectrophotometry and were identified as a type of pyrrhic sugar. An insulin-induced insulin resistance model of HepG2 cells and oleic acid-induced fat accumulation model of insulin were established to evaluate the hypolipidemic effects. Three Bacteroides spp. [Bacteroides thetaiotaomicron (BT), B. ovatus (BO), and B. cellulosilyticus (BC)] that were negatively correlated with lipid-lowering activity were used to evaluate the lipid-lowering activity of polysaccharides. The Bacteroides metabolites of MA1 and MA2 exhibited hypolipidemic effects and antioxidant activities and could potentially be used as lipid-lowering supplements.

18.
J Clin Transl Hepatol ; 12(7): 625-633, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38993511

RESUMEN

Background and Aims: The role of platelet autophagy in cirrhotic thrombocytopenia (CTP) remains unclear. This study aimed to investigate the impact of platelet autophagy in CTP and elucidate the regulatory mechanism of hydrogen sulfide (H2S) on platelet autophagy. Methods: Platelets from 56 cirrhotic patients and 56 healthy individuals were isolated for in vitro analyses. Autophagy markers (ATG7, BECN1, LC3, and SQSTM1) were quantified using enzyme-linked immunosorbent assay, while autophagosomes were visualized through electron microscopy. Western blotting was used to assess the autophagy-related proteins and the PDGFR/PI3K/Akt/mTOR pathway following treatment with NaHS (an H2S donor), hydroxocobalamin (an H2S scavenger), or AG 1295 (a selective PDGFR-α inhibitor). A carbon tetrachloride-induced cirrhotic BALB/c mouse model was established. Cirrhotic mice with thrombocytopenia were randomly treated with normal saline, NaHS, or hydroxocobalamin for 15 days. Changes in platelet count and aggregation rate were observed every three days. Results: Cirrhotic patients with thrombocytopenia exhibited significantly decreased platelet autophagy markers and endogenous H2S levels, alongside increased platelet aggregation, compared to healthy controls. In vitro, NaHS treatment of platelets from severe CTP patients elevated LC3-II levels, reduced SQSTM1 levels, and decreased platelet aggregation in a dose-dependent manner. H2S treatment inhibited PDGFR, PI3K, Akt, and mTOR phosphorylation. In vivo, NaHS significantly increased LC3-II and decreased SQSTM1 expressions in platelets of cirrhotic mice, reducing platelet aggregation without affecting the platelet count. Conclusions: Diminished platelet autophagy potentially contributes to thrombocytopenia in cirrhotic patients. H2S modulates platelet autophagy and functions possibly via the PDGFR-α/PI3K/Akt/mTOR signaling pathway.

19.
PeerJ ; 12: e17582, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006025

RESUMEN

Background: Disruptions in calcium homeostasis are associated with a wide range of diseases, and play a pivotal role in the development of cancer. However, the construction of prognostic models using calcium extrusion-related genes in colon adenocarcinoma (COAD) has not been well studied. We aimed to identify whether calcium extrusion-related genes serve as a potential prognostic biomarker in the COAD progression. Methods: We constructed a prognostic model based on the expression of calcium extrusion-related genes (SLC8A1, SLC8A2, SLC8A3, SLC8B1, SLC24A2, SLC24A3 and SLC24A4) in COAD. Subsequently, we evaluated the associations between the risk score calculated by calcium extrusion-related genes and mutation signature, immune cell infiltration, and immune checkpoint molecules. Then we calculated the immune score, stromal score, tumor purity and estimate score using the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm. The response to immunotherapy was assessed using tumor immune dysfunction and exclusion (TIDE). Finally, colorectal cancer cells migration, growth and colony formation assays were performed in RKO cells with the overexpression or knockdown SLC8A3, SLC24A2, SLC24A3, or SLC24A4. Results: We found that patients with high risk score of calcium extrusion-related genes tend to have a poorer prognosis than those in the low-risk group. Additionally, patients in high-risk group had higher rates of KRAS mutations and lower MUC16 mutations, implying a strong correlation between KRAS and MUC16 mutations and calcium homeostasis in COAD. Moreover, the high-risk group showed a higher infiltration of regulatory T cells (Tregs) in the tumor microenvironment. Finally, our study identified two previously unreported model genes (SLC8A3 and SLC24A4) that contribute to the growth and migration of colorectal cancer RKO cells. Conclusions: Altogether, we developed a prognostic risk model for predicting the prognosis of COAD patients based on the expression profiles of calcium extrusion-related genes, Furthermore, we validated two previously unreported tumor suppressor genes (SLC8A3 and SLC24A4) involved in colorectal cancer progression.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Pronóstico , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/mortalidad , Adenocarcinoma/genética , Adenocarcinoma/patología , Adenocarcinoma/inmunología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Calcio/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Masculino , Femenino , Mutación
20.
J Inflamm Res ; 17: 4525-4548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006493

RESUMEN

Purpose: Necroptosis, a monitored form of inflammatory cell death, contributes to coronary heart disease (CHD) progression. This study examined the potential of using necroptosis genes as diagnostic markers for CHD and sought to elucidate the underlying roles. Methods: Through bioinformatic analysis of GSE20680 and GSE20681, we first identified the differentially expressed genes (DEGs) related to necroptosis in CHD. Hub genes were identified using least absolute shrinkage and selection operator (LASSO) regression and random forest analysis after studying immune infiltration and transcription factor-miRNA interaction networks according to the DEGs. Quantitative polymerase chain reaction and immunohistochemistry were used to further investigate hub gene expression in vivo, for which a diagnostic model was constructed and the predictive efficacy was validated. Finally, the CHD group was categorized into high- and low-score groups in accordance with the single-sample gene set enrichment analysis (ssGSEA) score of the necroptosis genes. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, GSEA, and further immune infiltration analyses were performed on the two groups to explore the possible roles of hub genes. Results: Based on the results of the LASSO regression and random forest analyses, four genes were used to construct a diagnostic model to establish a nomogram. Additionally, an extensive analysis of all seventeen necroptosis genes revealed notable distinctions in expression between high-risk and low-risk groups. Evaluation of immune infiltration revealed that neutrophils, monocytes, B cells, and activated dendritic cells were highly distributed in the peripheral blood of patients with CHD. Specifically, the high CHD score group exhibited greater neutrophil and monocyte infiltration. Conversely, the high-score group showed lower infiltration of M0 and M2 macrophages, CD8+ T, plasma, and resting mast cells. Conclusion: TLR3, MLKL, HMGB1, and NDRG2 may be prospective biomarkers for CHD diagnosis. These findings offer plausible explanations for the role of necroptosis in CHD progression through immune infiltration and inflammatory response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...