Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Exp Bot ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829390

RESUMEN

The interactions of insect vector-virus-plant have important ecological and evolutionary implications. The constant struggle of plants against viruses and insect vectors has driven the evolution of multiple defense strategies in the host as well as counter-defense strategies in the viruses and insect vectors. Cotton leaf curl Multan virus (CLCuMuV) is a major causal agent of cotton leaf curl disease in Asia and is exclusively transmitted by the whitefly Bemisia tabaci. Here, we report that plants infected with CLCuMuV and its betasatellite, cotton leaf curl Multan betasatellite (CLCuMuB) enhance the performance of B. tabaci vector, and ßC1 encoded by CLCuMuB plays an important role in begomovirus-whitefly-tobacco tripartite interactions. We showed that CLCuMuB ßC1 suppresses the jasmonic acid signaling pathway by interacting with the subtilisin-like protease 1.7 (NtSBT1.7) protein, thereby enhancing whitefly performance on tobacco plants. Further studies revealed that in the wild type plants, NtSBT1.7 could process tobacco preprohydroxyproline-rich systemin B (NtpreproHypSysB). After CLCuMuB infection, CLCuMuB ßC1 could interfere with the processing of NtpreproHypSysB by NtSBT1.7, thereby impairing plant defenses against whitefly. These results contribute to our understanding of the tripartite interactions among virus, plant, and whitefly, thus offering ecological insights into the spread of vector insect populations and the prevalence of viral diseases.

2.
Biomed Pharmacother ; 176: 116931, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870630

RESUMEN

The lysine-specific demethylase 1 (KDM1A) is reported to be a regulator in learning and memory. However, the effect of KDM1A in oxycodone rewarding memory has yet to be studied. In our study, rewarding memory was assessed by using conditioned place preference (CPP) in male mice. Next generation sequencing and chromatin immunoprecipitation-PCR were used to explore the molecular mechanisms. Oxycodone significantly decreased PP1α mRNA and protein levels in hippocampal neurons. Oxycodone significantly increased KDM1A and H3K4me1 levels, while significantly decreased H3K4me2 levels in a time- and dose-dependent manner. Behavioral data demonstrated that intraperitoneal injection of ORY-1001 (KDM1A inhibitor) or intra-hippocampal injection of KDM1A siRNA/shRNA blocked the acquisition and expression of oxycodone CPP and facilitated the extinction of oxycodone CPP. The decrease of PP1α was markedly blocked by the injection of ORY-1001 or KDM1A siRNA/shRNA. Oxycodone-induced enhanced binding of CoRest with KDM1A and binding of CoRest with the PP1α promoter was blocked by ORY-1001. The level of H3K4me2 demethylation was also decreased by the treatment. The results suggest that oxycodone-induced upregulation of KDM1A via demethylation of H3K4me2 promotes the binding of CoRest with the PP1α promoter, and the subsequent decrease in PP1α expression in hippocampal neurons may contribute to oxycodone reward.


Asunto(s)
Epigénesis Genética , Histona Demetilasas , Oxicodona , Animales , Masculino , Epigénesis Genética/efectos de los fármacos , Ratones , Oxicodona/farmacología , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Recompensa , Condicionamiento Psicológico/efectos de los fármacos , Ratones Endogámicos C57BL , Histonas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Memoria/efectos de los fármacos
4.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2178-2187, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812233

RESUMEN

This paper aims to explore the effect of Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern on cerebral ischemic injury and angiogenesis in the rat model of acute cerebral infarction. SD rats were randomized into 6 groups: sham group, model group, low-, medium-, and high-dose(5.13, 10.26, and 20.52 g·kg~(-1), respectively) Xuming Decoction groups, and butylphthalide(0.06 g·kg~(-1)) group. After the successful establishment of the rat model by middle cerebral artery occlusion(MCAO), rats in the sham and model groups were administrated with distilled water and those in other groups with corresponding drugs for 7 consecutive days. After the neurological function was scored, all the rats were sacrificed, and the brain tissue samples were collected. The degree of cerebral ischemic injury was assessed by the neurological deficit score and staining with 2,3,5-triphenyltetrazolium chloride. Hematoxylin-eosin staining was performed to observe the pathological changes in the brain. Transmission electron microscopy was employed to observe the ultrastructures of neurons and microvascular endothelial cells(ECs) on the ischemic side of the brain tissue. Immunofluorescence assay was employed to detect the expression of von Willebrand factor(vWF) and hematopoietic progenitor cell antigen CD34(CD34) in the ischemic brain tissue. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of Runt-related transcription factor 1(RUNX1), vascular endothelial growth factor(VEGF), angiopoietin-1(Ang-1), angiopoietin-2(Ang-2), and VEGF receptor 2(VEGFR2) in the ischemic brain tissue. The results showed that compared with the sham group, the model group showed increased neurological deficit score and cerebral infarction area(P<0.01), pathological changes, and damaged ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Furthermore, the modeling up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.05 or P<0.01). Compared with the model group, high-dose Xuming Decoction and butylphthalide decreased the neurological deficit score and cerebral infarction area(P<0.01) and alleviated the pathological changes and damage of the ultrastructure of neurons and microvascular ECs in the ischemic brain tissue. Moreover, they up-regulated the mRNA levels of RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01) and the protein levels of vWF, CD34, RUNX1, VEGF, Ang-1, Ang-2, and VEGFR2(P<0.01). The results suggest that Xuming Decoction in the Records of Proved Prescriptions, Ancient and Modern can promote the angiogenesis and collateral circulation establishment to alleviate neurological dysfunction of the ischemic brain tissue in MCAO rats by regulating the RUNX1/VEGF pathway.


Asunto(s)
Isquemia Encefálica , Infarto Cerebral , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Medicamentos Herbarios Chinos/farmacología , Infarto Cerebral/tratamiento farmacológico , Infarto Cerebral/metabolismo , Infarto Cerebral/genética , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/genética , Humanos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Angiopoyetina 2/genética , Angiopoyetina 2/metabolismo , Angiogénesis
5.
World J Urol ; 42(1): 328, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38753087

RESUMEN

BACKGROUND AND PURPOSE: Extrachromosomal circular DNAs (eccDNAs) have been recognized for their significant involvement in numerous biological processes. Nonetheless, the existence and molecular characteristics of eccDNA in the peripheral blood of patients diagnosed with clear cell renal cell carcinoma (ccRCC) have not yet been reported. Our aim was to identify potentially marked plasma eccDNAs in ccRCC patients. METHODS AND MATERIALS: The detection of plasma eccDNA in ccRCC patients and healthy controls was performed using the Tn5-tagmentation and next-generation sequencing (NGS) method. Comparisons were made between ccRCC patients and healthy controls regarding the distribution of length, gene annotation, pattern of junctional nucleotide motif, and expression pattern of plasma eccDNA. RESULTS: We found 8,568 and 8,150 plasma eccDNAs in ccRCC patients and healthy controls, respectively. There were no statistical differences in the length distribution, gene annotation, and motif signature of plasma eccDNAs between the two groups. A total of 701 differentially expressed plasma eccDNAs were identified, and 25 plasma eccDNAs with potential diagnostic value for ccRCC have been successfully screened. These up-regulated plasma eccDNAs also be indicated to originate from the genomic region of the tumor-associated genes. CONCLUSION: This work demonstrates the characterization of plasma eccDNAs in ccRCC and suggests that the up-regulated plasma eccDNAs could be considered as a promising non-invasive biomarker in ccRCC.


Asunto(s)
Carcinoma de Células Renales , ADN Circular , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/sangre , Carcinoma de Células Renales/diagnóstico , ADN Circular/sangre , ADN Circular/genética , Neoplasias Renales/sangre , Neoplasias Renales/genética , Masculino , Persona de Mediana Edad , Femenino , Anciano
6.
Heliyon ; 10(10): e31380, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803927

RESUMEN

Objective: Our aim was to develop and validate a nomogram for predicting the in-hospital 14-day (14 d) and 28-day (28 d) survival rates of patients with coronavirus disease 2019 (COVID-19). Methods: Clinical data of patients with COVID-19 admitted to the Renmin Hospital of Wuhan University from December 2022 to February 2023 and the north campus of Shanghai Ninth People's Hospital from April 2022 to June 2022 were collected. A total of 408 patients from Renmin Hospital of Wuhan University were selected as the training cohort, and 151 patients from Shanghai Ninth People's Hospital were selected as the verification cohort. Independent variables were screened using Cox regression analysis, and a nomogram was constructed using R software. The prediction accuracy of the nomogram was evaluated using the receiver operating characteristic (ROC) curve, C-index, and calibration curve. Decision curve analysis was used to evaluate the clinical application value of the model. The nomogram was externally validated using a validation cohort. Result: In total, 559 patients with severe/critical COVID-19 were included in this study, of whom 179 (32.02 %) died. Multivariate Cox regression analysis showed that age >80 years [hazard ratio (HR) = 1.539, 95 % confidence interval (CI): 1.027-2.306, P = 0.037], history of diabetes (HR = 1.741, 95 % CI: 1.253-2.420, P = 0.001), high APACHE II score (HR = 1.083, 95 % CI: 1.042-1.126, P < 0.001), sepsis (HR = 2.387, 95 % CI: 1.707-3.338, P < 0.001), high neutrophil-to-lymphocyte ratio (NLR) (HR = 1.010, 95 % CI: 1.003-1.017, P = 0.007), and high D-dimer level (HR = 1.005, 95 % CI: 1.001-1.009, P = 0.028) were independent risk factors for 14 d and 28 d survival rates, whereas COVID-19 vaccination (HR = 0.625, 95 % CI: 0.440-0.886, P = 0.008) was a protective factor affecting prognosis. ROC curve analysis showed that the area under the curve (AUC) of the 14 d and 28 d hospital survival rates in the training cohort was 0.765 (95 % CI: 0.641-0.923) and 0.814 (95 % CI: 0.702-0.938), respectively, and the AUC of the 14 d and 28 d hospital survival rates in the verification cohort was 0.898 (95 % CI: 0.765-0.962) and 0.875 (95 % CI: 0.741-0.945), respectively. The calibration curves of 14 d and 28 d hospital survival showed that the predicted probability of the model agreed well with the actual probability. Decision curve analysis (DCA) showed that the nomogram has high clinical application value. Conclusion: In-hospital survival rates of patients with COVID-19 were predicted using a nomogram, which will help clinicians in make appropriate clinical decisions.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 355-364, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660836

RESUMEN

OBJECTIVE: To investigate the relationship between IGF2BP3 gene expression and prognosis in patients with acute myeloid leukemia (AML). METHODS: High throughput transcriptome sequencing was performed on bone marrow primary leukemia cells from 27 patients with AML in our center, the relationship between IGF2BP3 expression levels and clinical characteristics were analyzed and verify the samples from patients with newly treated AML and refractory AML. The expression level of IGF2BP3 gene were analyzed in 20 healthy subjects and 26 patients with AML. The expression of IGF2BP3 in two anthracycline-resistant cell lines (HL60/ADR, K562/ADR) was detected by RT-qPCR and Western blot, and the expression difference of IGF2BP3 was compared with that in sensitive cells (HL60, K562). The relationship between the expression level of IGF2BP3 in patients with AML and prognostic were analyzed through data analysis of 746 patients with AML, and the prognostic value of IGF2BP3 in AML was analyzed by multivariate Cox regression analysis. RESULTS: In the bone marrow primary leukemia cells of 27 AML patients in our center, the expression level of IGF2BP3 in patients with refractory AML was significantly higher than that in chemotherapy sensitive patients (P =0.0343). The expression of IGF2BP3 in leukemia patients with extramedullary infiltration (EMI) was significantly higher than that in AML patients without extramedullary infiltration (P =0.0049). Compared with healthy subjects (n=20), IGF2BP3 expression in AML patients (n=26) was higher (P =0.0009). The expression of IGF2BP3 mRNA in the anthracycline resistant cell lines (HL60/ADR, K562/ADR) was significantly higher than that in the sensitive cell lines (K562/ADR vs K562,P =0.0430; HL60/ADR vs HL60, P =0.7369). Western blot results showed that the expression of IGF2BP3 protein in mycin resistant cells was significantly higher than that in sensitive cells (P < 0.001). qPCR results showed that the expression level of IGF2BP3 mRNA in refractory AML patients was significantly higher than that in patients with chemotherapy sensitive (P =0.002). High expression of IGF2BP3 was associated with poor prognosis in AML (P < 0.05) in 3 large sample cohorts of AML patients. Univariate and multivariate prognostic analyses demonstrated that high expression of IGF2BP3 was significantly associated with shorter event-free survival (EFS, HR=1.887, P =0.024) and overall survival (OS, HR=1.619, P =0.016). CONCLUSION: The high expression of IGF2BP3 gene may be an important factor in the poor prognosis of AML, suggesting that IGF2BP3 gene may be a new molecular marker for the clinical prognosis evaluation and treatment strategy of AML.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas de Unión al ARN , Humanos , Leucemia Mieloide Aguda/genética , Pronóstico , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Expresión Génica , Células HL-60 , Células K562 , Resistencia a Antineoplásicos , Línea Celular Tumoral
8.
BMC Psychiatry ; 24(1): 331, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689265

RESUMEN

BACKGROUND: To examine the factor structure and psychometric properties of the Patient Health Questionnaire for Adolescents (PHQ-A) in Chinese children and adolescents with major depressive disorder (MDD). METHODS: A total of 248 MDD patients aged between 12 and 18 years were recruited and evaluated by the Patient Health Questionnaire for Adolescents (PHQ-A), the Center for Epidemiological Survey Depression Scale (CES-D), the Mood and Feelings Questionnaire (MFQ), and the improved Clinical Global Impression Scale, Severity item (iCGI-S). Thirty-one patients were selected randomly to complete the PHQ-A again one week later. Confirmatory factor analysis (CFA) was used to test the construct validity of the scale. Reliability was evaluated by Macdonald Omega coefficient. Pearson correlation coefficient was used to assess the item-total correlation and the correlation of PHQ-A with CES-D and MFQ respectively. Spearman correlation coefficient was used to assess test-retest reliability. The optimal cut-off value, sensitivity, and specificity of the PHQ-A were achieved by estimating the Receiver Operating Characteristics (ROC) curve. RESULTS: CFA reported adequate loadings for all items, except for item 3. Macdonald Omega coefficient of the PHQ-A was 0.87. The Spearman correlation coefficient of the test-retest reliability was 0.70. The Pearson correlation coefficients of the PHQ-A with CES-D and MFQ were 0.87 and 0.85, respectively (p < 0.01). By taking the iCGI-S as the remission criteria for MDD, the optimal cut-off value, sensitivity and specificity of the PHQ-A were 7, 98.7%, 94.7% respectively. CONCLUSION: The PHQ-A presented as a unidimensional construct and demonstrated satisfactory reliability and validity among the Chinese children and adolescents with MDD. A cut-off value of 7 was suggested for remission.


Asunto(s)
Trastorno Depresivo Mayor , Psicometría , Humanos , Adolescente , Masculino , Femenino , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/psicología , Reproducibilidad de los Resultados , Niño , China , Análisis Factorial , Cuestionario de Salud del Paciente , Encuestas y Cuestionarios/normas , Escalas de Valoración Psiquiátrica/normas , Sensibilidad y Especificidad , Pueblo Asiatico/psicología , Pueblos del Este de Asia
9.
Free Radic Biol Med ; 218: 166-177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582229

RESUMEN

BACKGROUND: Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS: We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS: Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS: We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.


Asunto(s)
Autofagia , Metilación de ADN , Dioxigenasas , Modelos Animales de Enfermedad , Epigénesis Genética , Hepatocitos , Enfermedad del Hígado Graso no Alcohólico , Hidrolasas Diéster Fosfóricas , Regiones Promotoras Genéticas , Pirofosfatasas , Animales , Humanos , Masculino , Ratones , Autofagia/genética , Tetracloruro de Carbono/toxicidad , Dieta Alta en Grasa/efectos adversos , Dioxigenasas/genética , Dioxigenasas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
10.
Redox Biol ; 71: 103109, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452521

RESUMEN

Cardiac fibrosis is a major public health problem worldwide, with high morbidity and mortality, affecting almost all patients with heart disease worldwide. It is characterized by fibroblast activation, abnormal proliferation, excessive deposition, and abnormal distribution of extracellular matrix (ECM) proteins. The maladaptive process of cardiac fibrosis is complex and often involves multiple mechanisms. With the increasing research on cardiac fibrosis, redox has been recognized as an important part of cardiac remodeling, and an imbalance in redox homeostasis can adversely affect the function and structure of the heart. The metabolism of metal ions is essential for life, and abnormal metabolism of metal ions in cells can impair a variety of biochemical processes, especially redox. However, current research on metal ion metabolism is still very limited. This review comprehensively examines the effects of metal ion (iron, copper, calcium, and zinc) metabolism-mediated redox homeostasis on cardiac fibrosis, outlines possible therapeutic interventions, and addresses ongoing challenges in this rapidly evolving field.


Asunto(s)
Proteínas de la Matriz Extracelular , Humanos , Fibrosis , Proteínas de la Matriz Extracelular/metabolismo , Homeostasis , Oxidación-Reducción , Iones
11.
World J Gastrointest Endosc ; 16(2): 55-63, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38464818

RESUMEN

BACKGROUND: Colorectal polyps (CPs) are frequently occurring abnormal growths in the colorectum, and are a primary precursor of colorectal cancer (CRC). The triglyceride-glucose (TyG) index is a novel marker that assesses metabolic health and insulin resistance, and has been linked to gastrointestinal cancers. AIM: To investigate the potential association between the TyG index and CPs, as the relation between them has not been documented. METHODS: A total of 2537 persons undergoing a routine health physical examination and colonoscopy at The First People's Hospital of Kunshan, Jiangsu Province, China, between January 2020 and December 2022 were included in this retrospective cross-sectional study. After excluding individuals who did not meet the eligibility criteria, descriptive statistics were used to compare characteristics between patients with and without CPs. Logistic regression analyses were conducted to determine the associations between the TyG index and the prevalence of CPs. The TyG index was calculated using the following formula: Ln [triglyceride (mg/dL) × glucose (mg/dL)/2]. The presence and types of CPs was determined based on data from colonoscopy reports and pathology reports. RESULTS: A nonlinear relation between the TyG index and the prevalence of CPs was identified, and exhibited a curvilinear pattern with a cut-off point of 2.31. A significant association was observed before the turning point, with an odds ratio (95% confidence interval) of 1.70 (1.40, 2.06), P < 0.0001. However, the association between the TyG index and CPs was not significant after the cut-off point, with an odds ratio (95% confidence interval) of 0.57 (0.27, 1.23), P = 0.1521. CONCLUSION: Our study revealed a curvilinear association between the TyG index and CPs in Chinese individuals, suggesting its potential utility in developing colonoscopy screening strategies for preventing CRC.

12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 90-95, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38387905

RESUMEN

OBJECTIVE: To investigate the efficacy and safety of Venetoclax combined with CACAG regimen in treatment of patients with refractory/relapse acute myeloid leukemia(R/R AML). METHODS: The study was a singlecenter prospective clinical trial. The enrolled patients met the criteria for R/R AML. Treatment included Azacidine(75 mg/m2,d 1-7), Ara-C (75-100 mg/m2, q12h, d 1-5), Aclacinomycin(20 mg d1,d3,d5), Chidamide(30 mg d1,d4), Venetoclax(100 mg d1, 200 mg d2, 400 mg d3-d14, in combination with Triazole Drug, reduced to 100 mg/d), and granulocyte colony-stimulating factor (300 µg /d until neutrophil recovery). The primary endpoint of observation was overall response rate after 1 course of treatment. RESULTS: A total of 19 patients were enrolled from January 2022 to April 2023. After 1 course of treatmen, the overall response rate was 81.3%(13/16), the CR rate was 68.8%(11/16), and the PR was 12.5%(2/16). Among the 11 patients who got CR/CRi, 8 cases achieved CRm (minimal residual disease negative CR) and 3 cases did not. As of March 27, 2023, the median follow-up time was 111(19-406) days. The six-month overall survival and progression-free survival rates were both 55.7%, the 1-year overall survival and progression-free survival rates were 46.4% and 47.7%, respectively. In addition, compared with the non-CRm group, CRm patients had a better PFS (377 days vs 111 days, P =0.046). Treatment-related adverse events were mainly 3-4 degrees of bone marrow suppression, complicated by various degrees of infection(n=12), hypokalemia(n=12) and hypocalcemia (n=10) and elevated liver enzymes (n=8), of which 3/4 degrees accounted for 47.4%(9/19). CONCLUSION: The Venetoclax combined with CACAG regimen is an effective salvage therapy for patients with R/R AML, with high remission rate and safety profile.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Leucemia Mieloide Aguda , Sulfonamidas , Humanos , Estudios Prospectivos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/etiología , Citarabina , Recurrencia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
13.
Mol Ther ; 32(4): 878-889, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38311850

RESUMEN

Cardiac fibrosis, a crucial pathological characteristic of various cardiac diseases, presents a significant treatment challenge. It involves the deposition of the extracellular matrix (ECM) and is influenced by genetic and epigenetic factors. Prior investigations have predominantly centered on delineating the substantial influence of epigenetic and epitranscriptomic mechanisms in driving the progression of fibrosis. Recent studies have illuminated additional avenues for modulating the progression of fibrosis, offering potential solutions to the challenging issues surrounding fibrosis treatment. In the context of cardiac fibrosis, an intricate interplay exists between m6A epitranscriptomic and epigenetics. This interplay governs various pathophysiological processes: mitochondrial dysfunction, mitochondrial fission, oxidative stress, autophagy, apoptosis, pyroptosis, ferroptosis, cell fate switching, and cell differentiation, all of which affect the advancement of cardiac fibrosis. In this comprehensive review, we meticulously analyze pertinent studies, emphasizing the interplay between m6A epitranscriptomics and partial epigenetics (including histone modifications and noncoding RNA), aiming to provide novel insights for cardiac fibrosis treatment.


Asunto(s)
Cardiopatías , Humanos , Adenina , Epigénesis Genética , Fibrosis
14.
Cell Signal ; 115: 111035, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38182067

RESUMEN

BACKGROUND AND AIM: Mitochondrial quality control (MQC) plays a significant role in the progression of liver fibrosis, with key processes such as mitochondrial fission, fusion, mitophagy and biogenesis maintaining mitochondrial homeostasis. To understand the molecular mechanisms underlying epigenetic regulation of mitochondrial quality control in liver fibrosis, with the aim of uncovering novel therapeutic targets for treating, mitigating, and potentially reversing liver fibrosis, in light of the most recent advances in this field. METHODS: We searched PubMed, Web of Science, and Scopus for published manuscripts using terms "mitochondrial quality control" "mitochondrial fission" "mitochondrial fusion" "mitochondrial biogenesis" "mitophagy" "liver fibrosis" "epigenetic regulation" "DNA methylation" "RNA methylation" "histone modification" and "non-coding RNA". Manuscripts were collated, studied and carried forward for discussion where appropriate. RESULTS: Mitochondrial fission, fusion, biogenesis, and mitophagy regulate the homeostasis of mitochondria, and the imbalance of mitochondrial homeostasis can induce liver fibrosis. Epigenetic regulation, including DNA methylation, RNA methylation, histone modifications, and non-coding RNAs, plays a significant role in regulating the processes of mitochondrial homeostasis. CONCLUSION: Mitochondrial quality control and epigenetic mechanisms are intricately linked to the pathogenesis of liver fibrosis. Understanding these molecular interactions provides insight into potential therapeutic strategies. Further research is necessary to translate these findings into clinical applications, with a focus on developing epigenetic drugs to ameliorate liver fibrosis by modulating MQC and epigenetic pathways.


Asunto(s)
Epigénesis Genética , Cirrosis Hepática , Humanos , Cirrosis Hepática/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Metilación de ADN/genética , ARN no Traducido/metabolismo , Dinámicas Mitocondriales
15.
Int J Biol Macromol ; 254(Pt 1): 127593, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898244

RESUMEN

Cardiac fibroblasts play a pivotal role in cardiac fibrosis by transformation of fibroblasts into myofibroblasts, which synthesis and secrete a large number of extracellular matrix proteins. Ultimately, this will lead to cardiac wall stiffness and impaired cardiac performance. The epigenetic regulation and fate reprogramming of cardiac fibroblasts has been advanced considerably in recent decades. Non coding RNAs (microRNAs, lncRNAs, circRNAs) regulate the functions and behaviors of cardiac fibroblasts, including proliferation, migration, phenotypic transformation, inflammation, pyroptosis, apoptosis, autophagy, which can provide the basis for novel targeted therapeutic treatments that abrogate activation and inflammation of cardiac fibroblasts, induce different death pathways in cardiac fibroblasts, or make it sensitive to established pathogenic cells targeted cytotoxic agents and biotherapy. This review summarizes our current knowledge in this field of ncRNAs function in epigenetic regulation and fate determination of cardiac fibroblasts as well as the details of signaling pathways contribute to cardiac fibrosis. Moreover, we will comment on the emerging landscape of lncRNAs and circRNAs function in regulating signal transduction pathways, gene translation processes and post-translational regulation of gene expression in cardiac fibroblast. In the end, the prospect of cardiac fibroblasts targeted therapy for cardiac fibrosis based on ncRNAs is discussed.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Epigénesis Genética , ARN Circular/metabolismo , ARN no Traducido/genética , Fibrosis , MicroARNs/genética , MicroARNs/metabolismo , Fibroblastos/metabolismo , Cardiotónicos/metabolismo , Inflamación/patología
16.
Trends Endocrinol Metab ; 35(2): 164-175, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37949734

RESUMEN

Cardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function. Moreover, lipids can exert diverse effects on cardiac fibrosis through different signaling pathways. In this review, we provide a brief overview of aberrant cardiac lipid metabolism and recent progress in pharmacological research targeting lipid metabolism alterations in cardiac fibrosis.


Asunto(s)
Cardiomiopatías , Miocardio , Humanos , Miocardio/metabolismo , Metabolismo de los Lípidos , Reprogramación Metabólica , Miocitos Cardíacos/metabolismo , Cardiomiopatías/metabolismo , Fibrosis , Lípidos
17.
Neurosci Bull ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973720

RESUMEN

Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy (TLE). We postulated that kainic acid (KA)-Induced status epilepticus triggers microglia-dependent inflammation, leading to neuronal damage, a lowered seizure threshold, and the emergence of spontaneous recurrent seizures (SRS). Extensive evidence from our laboratory suggests that dextromethorphan (DM), even in ultra-low doses, has anti-inflammatory and neuroprotective effects in many animal models of neurodegenerative disease. Our results showed that administration of DM (10 ng/kg per day; subcutaneously via osmotic minipump for 4 weeks) significantly mitigated the residual effects of KA, including the frequency of SRS and seizure susceptibility. In addition, DM-treated rats showed improved cognitive function and reduced hippocampal neuronal loss. We found suppressed microglial activation-mediated neuroinflammation and decreased expression of hippocampal gp91phox and p47phox proteins in KA-induced chronic TLE rats. Notably, even after discontinuation of DM treatment, ultra-low doses of DM continued to confer long-term anti-seizure and neuroprotective effects, which were attributed to the inhibition of microglial NADPH oxidase 2 as revealed by mechanistic studies.

18.
Cell Rep ; 42(11): 113385, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37938975

RESUMEN

PRMT1 plays a vital role in breast tumorigenesis; however, the underlying molecular mechanisms remain incompletely understood. Herein, we show that PRMT1 plays a critical role in RNA alternative splicing, with a preference for exon inclusion. PRMT1 methylome profiling identifies that PRMT1 methylates the splicing factor SRSF1, which is critical for SRSF1 phosphorylation, SRSF1 binding with RNA, and exon inclusion. In breast tumors, PRMT1 overexpression is associated with increased SRSF1 arginine methylation and aberrant exon inclusion, which are critical for breast cancer cell growth. In addition, we identify a selective PRMT1 inhibitor, iPRMT1, which potently inhibits PRMT1-mediated SRSF1 methylation, exon inclusion, and breast cancer cell growth. Combination treatment with iPRMT1 and inhibitors targeting SRSF1 phosphorylation exhibits an additive effect of suppressing breast cancer cell growth. In conclusion, our study dissects a mechanism underlying PRMT1-mediated RNA alternative splicing. Thus, PRMT1 has great potential as a therapeutic target in breast cancer treatment.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama , Humanos , Femenino , Metilación , Empalme Alternativo/genética , Transformación Celular Neoplásica/genética , ARN/metabolismo , Neoplasias de la Mama/genética , Exones/genética , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
19.
iScience ; 26(10): 107931, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37810250

RESUMEN

Dysregulated lipid metabolism occurs in pathological processes characterized by cell proliferation and migration. Nonetheless, the mechanism of increased mitochondrial lipid oxidation is poorly appreciated in diabetic cardiac fibrosis, which is accompanied by enhanced fibroblast proliferation and migration. Herein, increased WTAP expression promotes cardiac fibroblast proliferation and migration, contributing to diabetic cardiac fibrosis. Knockdown of WTAP suppresses mitochondrial lipid oxidation, fibroblast proliferation and migration to ameliorate diabetic cardiac fibrosis. Mechanistically, WTAP-mediated m6A methylation of AR induced its degradation, dependent on YTHDF2. Additionally, AR directly interacts with mitochondrial lipid oxidation enzyme Decr1; overexpression of AR-suppressed Decr1-mediates mitochondrial lipid oxidation, inhibiting cardiac fibroblast proliferation and migration. Knockdown of AR produced the opposite effect. Clinically, increased WTAP and YTHDF2 levels correlate with decreased AR expression in human DCM heart tissue. We describe a mechanism wherein WTAP boosts higher mitochondrial lipid oxidation, cardiac fibroblast proliferation, and migration by enhancing AR methylation in a YTHDF2-dependent manner.

20.
Immunol Lett ; 263: 14-24, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37689315

RESUMEN

OBJECTIVE: Efferocytosis dysfunction contributes to the progression and rupture of atherosclerotic plaques. Efferocytosis is crucially modulated by intracytoplasmic Ca2+, and mitochondrial calcium uniporter (MCU) complex proteins serve as key channels for regulating Ca2+ concentration. Therefore, it was speculated that MCU may affect the development of atherosclerosis (AS) by regulating efferocytosis. In the present study, we aimed to investigate whether MCU could affect foam cell formation by regulating efferocytosis. METHODS: We stimulated primary macrophages (Møs) using oxidized low-density lipoprotein (ox-LDL) to mimic the atherosclerotic microenvironment and treated them with Ru360, an MCU-specific inhibitor, and UNC1062, an inhibitor of efferocytosis. Additionally, we conducted double staining to determine the Mø efferocytosis rate. We measured the expression of MCU complexes and efferocytosis-associated proteins using western blotting (WB) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. In addition, we separately detected the Ca2+ level in the cytoplasm and mitochondria (MT) using Fluo-4 AM and Rhod-2 methods. We separately determined the reactive oxygen species (ROS) level in cytoplasm and MT using dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescent probing method and Mito-SOXTM superoxide indicator staining. Additionally, we conducted the enzyme-linked immunosorbent assay (ELISA) to detect the production of interleukin-6 (IL-6), interleukin-18 (IL-18), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α). Oil Red O staining was performed to measure cytoplasmic lipid levels. RESULTS: Ru360 attenuated ox-LDL-induced efferocytosis dysfunction, and attenuated the upregulation of MCU and MCUR1 induced by ox-LDL, and meanwhile attenuated the downregulation of MCUb induced by ox-LDL. Ru360 attenuated the decrease of intracytoplasmic Ca2+ concentration induced by ox- LDL, Ru360 also attenuated the ROS production induced by ox- LDL, attenuated the release of IL-6, IL-18, IL-1ß, and TNF-α induced by ox- LDL, and attenuated the increase of intracytoplasmic lipid content induced by ox-LDL. UNC1062 attenuated the effects of Ru360 in reducing inflammatory cytokines and intracytoplasmic lipid content. CONCLUSIONS: In this study, we found that MCU inhibition modulated intracytoplasmic Ca2+ concentration, improved impaired Mø efferocytosis, and reduced ROS generation. Macrophage efferocytosis removed apoptotic cells and prevented the release of inflammatory factor and foam cell formation, and this can be a potential new therapeutic target for alleviating atherosclerosis.


Asunto(s)
Aterosclerosis , Interleucina-18 , Animales , Ratones , Especies Reactivas de Oxígeno/metabolismo , Interleucina-18/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Modelos Animales de Enfermedad , Macrófagos/metabolismo , Lipoproteínas LDL/farmacología , Lipoproteínas LDL/metabolismo , Aterosclerosis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...