Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124762, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38959687

RESUMEN

Hydrogen sulfide (H2S) is a key factor in various biological processes such as plant grow and its response to environmental stress. Here, we develop a novel near-infrared (NIR) fluorescent probe for detecting hydrogen sulfide based on the regulatory NIR dye pKa values. After triggering the H2S substitution response, probe A with introducing the cyano moiety not only exhibits a significant near-infrared emission (Emax: 724 nm) response in physiological environments, but also shows a fast response, high selectivity, and sensitivity (LOD as 0.52 µM). In addition, probe A with low biological cytotoxicity is successfully used for imaging detection of cellular exogenous and endogenous hydrogen sulfide. More importantly, in situ imaging of probe A tracks the H2S fluctuations in the rice root system and its response to environmental stress. Hence, this work offers a new NIR fluorescence imaging monitoring tool for hydrogen sulfide in biological systems.

2.
J Hazard Mater ; 475: 134914, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885588

RESUMEN

Due to the highly toxic nature of mercury ions to living organisms, accurately detecting Hg2+ in water samples and biological systems is of great significance. In this study, we designed and synthesized a novel red-to-near-infrared Aggregation-Induced Emission (AIE) fluorescent probe (named as DS) based Fluorene derivatives on specifically for Hg2+ detection. Probe DS can visually identify Hg2+ through an red-to-near-infrared fluorescence enhancement change, characterized by a large Stokes shift (130 nm) and AIE feature. This probe offers a fast response, high selectivity and sensitivity. The Hg2+-induced deprotection reaction of the thioketal mechanism was thoroughly investigated using nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS) and density functional theory (DFT) calculation. Additionly, dynamic light scattering (DLS) results indicated that the aggregation states changes of the molecular play a crucial role in the AIE fluorescence response of probe DS toward Hg2+. The red-to-near-infrared response with AIE feature not only avoids the interference of auto-fluorescence signals in complex environments, but also reduces the fluorescence quenching caused by probe molecular aggregation. This makes probe DS highly suitable for high-quality imaging detection of Hg2+ in aqueous environments. Furthermore, probe DS demonstrates the capability for visual fluorescence detection of Hg2+ concentrations in water sample, plant roots and living cells.


Asunto(s)
Colorantes Fluorescentes , Mercurio , Mercurio/análisis , Mercurio/química , Colorantes Fluorescentes/química , Humanos , Espectrometría de Fluorescencia , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Fluorenos/química , Fluorenos/toxicidad , Células HeLa
3.
Chem Commun (Camb) ; 60(46): 5932-5935, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38757567

RESUMEN

A novel NIR fluorescent probe based on quinoline-conjugated benzo[cd]indol dual-salt for NADH was developed. This probe swiftly detects and responds sensitively to both endogenous and exogenous NADH alterations, enabling imaging of NADH fluctuations in type II diabetic and AD model cells.


Asunto(s)
Colorantes Fluorescentes , Mitocondrias , NAD , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , NAD/análisis , NAD/química , Mitocondrias/metabolismo , Mitocondrias/química , Humanos , Quinolinas/química , Rayos Infrarrojos , Imagen Óptica , Animales , Diabetes Mellitus Tipo 2
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124250, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38603958

RESUMEN

Hydrogen sulfide (H2S), as a biomarker signaling gas, is not only susceptible to food spoilage, but also plays a key function in many biological processes. In this work, an activated near infrared (NIR) H2S fluorescent probe was designed and synthesized with quinoline-conjugated Rhodols dye as fluorophore skeleton and a dinitrophenyl group as the responsive moiety. Due to the quenching effect of dinitrophenyl group and the closed-loop structure of Rhodols fluorophore, probe itself has a very weak absorption and fluorescence background signal. After the H2S-induced thiolysis reaction, the probe exhibits a remarkable colormetric change and NIR fluorescent enhancement response at 716 nm with large Stokes shift (116 nm), and possesses high sensing selectivity and sensitivity with a low detection limits of 330 nM. The response mechanism is systematically characterized by 1H NMR, MS and DFT calculations. The colorimetric change allows the probe to be used as a test strips to detect H2S in food spoilage, while NIR fluorescent response helps the probe monitor intracellular H2S.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Espectrometría de Fluorescencia , Sulfuro de Hidrógeno/análisis , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Humanos , Espectrometría de Fluorescencia/métodos , Xantonas/química , Límite de Detección
5.
J Fluoresc ; 33(4): 1413-1419, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36719610

RESUMEN

As one of the most toxic metals, Mercury ions cause serious environmental pollution and threaten the health of living organisms. Hence, we designed and synthesised a new near-infrared (NIR) ratiometric fluorescent probe toward monitoring of Hg2+ based on quinoline-fused rhodamine dye. Owing to the specific spirolactam ring-opening reaction, the probe exhibits a ratiometric fluorescent change after treatment of Hg2+ with increased emission in NIR and significantly reduced emission in visible region. The specific response mechanism and dual-channel fluorescence change allow the probe to have remarkable detection selectivity, fast response and high detection sensitivity. Moreover, with the properties of excellent cell permeability and low cytotoxicity, probe can be applied as detection tool for mercury ions with dual-channel ratiometric fluorescence imaging in living cell.


Asunto(s)
Colorantes Fluorescentes , Mercurio , Rodaminas , Microscopía Fluorescente , Iones
6.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364325

RESUMEN

Hydrogen sulfide (H2S) as small molecular signal messenger plays key functions in numerous biological processes. The imaging detection of intracellular hydrogen sulfide is of great significance. In this work, a ratiometric fluorescent probe BH based on an asymmetric BODIPY dye for detection of H2S was designed and synthesized. After the interaction with hydrogen sulfide, probe display colorimetric and ratiometric fluorescence response, with its maximum emission fluorescence wavelength red-shifted from 542 nm to 594 nm, which is attributed to the sequential nucleophilic reaction of H2S leading to enhanced molecular conjugation after ring formation of the BODIPY skeleton. A special response mechanism has been fully investigated by NMR titration and MS, so that the probe has excellent detection selectivity. Furthermore, probe BH has low cytotoxicity and fluorescence imaging experiments indicate that it can be used to monitor hydrogen sulfide in living cells.


Asunto(s)
Colorantes Fluorescentes , Sulfuro de Hidrógeno , Humanos , Colorantes Fluorescentes/química , Sulfuro de Hidrógeno/química , Células HeLa , Compuestos de Boro/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...