Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.184
Filtrar
1.
Med Int (Lond) ; 4(6): 57, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092009

RESUMEN

Glucose transporter type 1 deficiency syndrome (GLUT1-DS) is a rare metabolic encephalopathy with a wide variety of clinical phenotypes. In the present study, 15 patients diagnosed with GLUT1-DS were selected, all of whom had obvious clinical manifestations and complete genetic testing. Their clinical data and genetic reports were collated. All patients were provided with a ketogenic diet (KD) and an improvement in their symptoms was observed during a follow-up period of up to 1 year. The results revealed that the 15 cases had clinical symptoms, such as convulsions or dyskinesia. Although none had a cerebrospinal fluid/glucose ratio <0.4, the genetic report revealed that all had the solute carrier family 2 member 1 gene variant, and their clinical symptoms basically improved following the use of the KD. GLUT1-DS is a genetic metabolic disease that causes a series of neurological symptoms due to glucose metabolism disorders in the brain. Low glucose levels in cerebrospinal fluid and genetic testing are key diagnostic criteria, and the KD is a highly effective treatment option. By summarizing and analyzing patients with GLUT1-DS, summarizing clinical characteristics and expanding their gene profile, the findings of the present study may be of clinical significance for the early recognition and diagnosis of the disease, so as to conduct early treatment and shorten the duration of brain energy deficiency. This is of utmost importance for improving the prognosis and quality of life of affected children.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39128853

RESUMEN

The relative efficacy of various mind-body exercises in the treatment of depressive symptoms remains uncertain. We examined the optimal modalities (Tai Chi, qigong, yoga) and dose of mind-body exercise to improve depressive symptoms in adults. A systematic search of six electronic databases for randomized controlled trials on the relationship between exercise and depression was carried out, encompassing data from their inception up to November 2023. Pairwise analyses, network analyses and dose-response meta-analyses using random-effects models were performed to analyse the effect of exercise on depression. Forty studies were included. Results showed that Yoga [standardised mean difference (SMD) = -0.55; 95% confidence interval (CI): (-0.76, -0.35)] was the most effective form of exercise for improving depressive symptoms, followed by Qigong (SMD = -0.52; 95%CI: -0.92, -0.11) and Tai Chi exercise (SMD = -0.42; 95%CI: -0.71, -0.13). In addition, a non-linear dose-response relationship was found between overall mind-body exercise dose and depression levels and a significant response was observed after 260 METs-min. Our study examined the effectiveness of different types of mind-body exercise in improving depression and found that yoga may be the most effective adjunctive intervention. There was a non-linear dose-response relationship between total exercise and depression levels. However, caution should be exercised in interpreting and applying these results.

3.
Front Microbiol ; 15: 1412503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109205

RESUMEN

"Green-covering and red-heart" Guanyin Tuqu (GRTQ), as a type of special fermentation starter, is characterized by the "green-covering" formed on the surface of Guanyin Tuqu (SQ) and the "red-heart" in the center of Guanyin Tuqu (CQ). However, the mechanisms that promote temporal succession in the GRTQ microbial ecology and the formation of "green-covering and red-heart" characteristics remain unclear. Herein, we correlated the temporal profiles of microbial community succession with the main environmental variables (temperature, moisture, and acidity) and spatial position (center and surface) in GRTQ throughout fermentation. According to the results of high-throughput sequencing and culture-dependent methods, the microbial communities in the CQ and SQ demonstrated functional complementarity. For instance, the bacterial richness index of the CQ was greater than that of SQ, and the fungal richness index of the SQ was greater than that of CQ at the later stage of fermentation. Furthermore, Saccharomycopsis, Saccharomyces, Aspergillus, Monascus, Lactobacillus, Bacillus, Rhodanobacter, and Chitinophaga were identified as the dominant microorganisms in the center, while the surface was represented by Saccharomycopsis, Aspergillus, Monascus, Lactobacillus, Acetobacter, and Weissella. By revealing the physiological characteristics of core microorganisms at different spatial positions of GRTQ, such as Aspergillus clavatus and Monascus purpureus, as well as their interactions with environmental factors, we elucidated the color formation mechanism behind the phenomenon of "green" outside and "red" inside. This study provides fundamental information support for optimizing the production process of GRTQ.

4.
Clinics (Sao Paulo) ; 79: 100450, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39096855

RESUMEN

OBJECTIVE: The purpose of the present study was to examine the association of oxidative stress markers with sarcopenia in the general United States population under the age of 60. METHODS: We used the National Health and Nutrition Examination Survey data from 2011‒2014 and performed Restricted Cubic Spline (RCS) plots, weighted multivariable logistic regression analysis to calculate ratio ratios and 95% Confidence Intervals, and subgroup analysis based on age, sex, hypertension, diabetes mellitus, and body mass index stratification to determine the association of markers of oxidative stress with the prevalence of sarcopenia. RESULTS: The present analysis included a total of 8,782 participants. Firstly, the RCS plots showed a roughly L-shaped curve association of total bilirubin and serum iron with a prevalence of sarcopenia. Secondly, albumin was negatively and linearly associated with the risk of sarcopenia. Finally, with the increase in gamma-glutamyl transferase, the prevalence of sarcopenia showed a trend of first rising and then declining as a result of the iron increase. CONCLUSIONS: We demonstrated a nonlinear association between markers of oxidative stress and sarcopenia. The need to focus more on levels of oxidative stress in the body could provide better prevention strategies for sarcopenia.


Asunto(s)
Biomarcadores , Encuestas Nutricionales , Estrés Oxidativo , Sarcopenia , Humanos , Estrés Oxidativo/fisiología , Sarcopenia/epidemiología , Sarcopenia/sangre , Femenino , Masculino , Biomarcadores/sangre , Prevalencia , Persona de Mediana Edad , Adulto , Estados Unidos/epidemiología , Factores de Riesgo , Hierro/sangre , Índice de Masa Corporal , gamma-Glutamiltransferasa/sangre , Adulto Joven , Bilirrubina/sangre , Estudios Transversales , Factores de Edad , Factores Sexuales
5.
Front Nutr ; 11: 1388155, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070257

RESUMEN

Krill oil (KO), extracted from the Antarctic marine crustacean Euphausia superba, is a nutrient-dense substance that includes rich profiles of n-3 polyunsaturated fatty acids (n-3 PUFAs), phospholipids (PLs), astaxanthin (ASX), as well as vitamins A and E, minerals, and flavonoids. As a high-quality lipid resource, KO has been widely used as a dietary supplement for its health-protective properties in recent years. KO has various benefits, including antioxidative, anti-inflammatory, metabolic regulatory, neuroprotective, and gut microbiome modulatory effects. Especially, the antioxidant and anti-inflammatory effects make KO have potential in skin care applications. With increasing demands for natural skin anti-aging solutions, KO has emerged as a valuable nutraceutical in dermatology, showing potential for mitigating the effects of skin aging and enhancing overall skin health and vitality. This review provides an overview of existing studies on the beneficial impact of KO on the skin, exploring its functional roles and underlying mechanisms through which it contributes to dermatological health and disease management.

6.
Transl Androl Urol ; 13(6): 940-948, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38983470

RESUMEN

Background: Ureteral strictures (US) could lead to impaired kidney function, which was alleviated by ureteral reconstruction surgery. However, solitary kidney (SK) patients with US were more complicated to treat. This study aimed to evaluate the impact of reconstruction surgery on renal function based on estimated glomerular filtration rate (eGFR) in patients with SK. Methods: We retrospectively enrolled patients who underwent reconstruction surgery between April 2014 to March 2022. eGFR was measured pre- and postoperatively. The 'static renal function' was defined as a change in eGFR of 20% or less at the last follow-up, and the 'worsening renal function group' was defined as a decrease of greater than 20%. Results: A total of 61 SK patients were involved. The success rate of ureteral reconstruction surgery was 90.16% (55/61). The median follow-up time was 20.8 months (range, 3.7-109.2 months). The median eGFR was 65.5 (range, 15.1-99.9) and 65.3 (range, 3.8-123.4) mL/min/1.73 m2 at the baseline and the last follow-up. No statistically significant difference in eGFR was observed between the preoperative baseline and last follow-up visits (P=0.58). However, in patients with baseline renal dysfunction [chronic kidney disease (CKD) stage 3-5], the eGFR significantly improved at the last follow-up compared to the baseline (P=0.02). Three patients developed a 'worsening renal function' (4.92%). Besides, the systolic blood pressures (SBP) at follow-up significantly reduced compared to the preoperative baseline (P=0.002). Conclusions: Ureteral reconstruction surgery is an effective treatment to preserve renal function, which also achieves a high success rate and is associated with the reduction of SBP for SK patients with US.

7.
Expert Opin Investig Drugs ; : 1-6, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38980318

RESUMEN

INTRODUCTION: Guillain-Barré syndrome (GBS) is a monophasic immune neuropathic disorder characterized by acute paralysis. A significant portion of patients are left with residual deficits, which presents a considerable global healthcare challenge. The precise mechanisms underlying GBS pathogenesis are not fully elucidated. Recent studies have focused on postinfectious molecular mimicry and identified involvement of IgG autoantibodies and innate immune effectors in GBS. Intravenous immunoglobulins (IVIg) and plasma exchange (PE) are two established evidence-based immunomodulatory treatments for GBS, but a significant proportion of GBS patients fails to respond adequately to either therapy. This emphasizes an urgent need for novel and more potent treatments. AREAS COVERED: We discuss novel immunomodulatory therapies presently at different phases of preclinical and clinical investigation. Some drugs in development target pathophysiologic mechanisms such as IgG autoantibody catabolism and complement activation, which are relevant to GBS. EXPERT OPINION: There is an unmet need for more effective immune therapies for GBS. New immunomodulatory therapies under development may provide more potent options for GBS patients who do not respond to IVIg or PE. Future directions may include incorporating neuroprotective interventions based on evolving understanding of mechanisms underlying nerve injury and axonal degeneration.

8.
Front Public Health ; 12: 1390099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076413

RESUMEN

Metal-based nanoparticles have garnered significant usage across industries, spanning catalysis, optoelectronics, and drug delivery, owing to their diverse applications. However, their potential ecological toxicity remains a crucial area of research interest. This paper offers a comprehensive review of recent advancements in studying the ecotoxicity of these nanoparticles, encompassing exposure pathways, toxic effects, and toxicity mechanisms. Furthermore, it delves into the challenges and future prospects in this research domain. While some progress has been made in addressing this issue, there is still a need for more comprehensive assessments to fully understand the implications of metal-based nanoparticles on the environment and human well-being.


Asunto(s)
Nanopartículas del Metal , Humanos , Nanopartículas del Metal/toxicidad , Ecotoxicología , Exposición a Riesgos Ambientales/efectos adversos , Animales
9.
Nano Lett ; 24(29): 8887-8893, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38984749

RESUMEN

The synthesis of transition metal nitrides nanocrystals (TMNs NCs) has posed a significant challenge due to the limited reactivity of nitrogen sources at lower temperatures and the scarcity of available synthesis methods. In this study, we present a novel colloidal synthesis strategy for the fabrication of Cu3N nanorods (NRs). It is found that the trace oxygen (O2) plays an important role in the synthesis process. And a new mechanism for the formation of Cu3N is proposed. Subsequently, by employing secondary lateral epitaxial growth, the Cu3N-Cu2O heteronanostructures (HNs) can be prepared. The Cu3N NRs and Cu3N-Cu2O HNs were evaluated as precursor electrocatalysts for the CO2 reduction reaction (CO2RR). The Cu3N-Cu2O HNs demonstrate remarkable selectivity and stability with ethylene (C2H4) Faradaic efficiency (FE) up to 55.3%, surpassing that of Cu3N NRs. This study provides innovative insights into the reaction mechanism of colloidal synthesis of TMNs NCs and presents alternative options for designing cost-effective electrocatalysts to achieve carbon neutrality.

10.
Mar Drugs ; 22(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39057412

RESUMEN

The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic profiles of co-cultures involving Streptomyces sp. 2-85 and Cladosporium sp. 3-22-derived from marine sponges. Combining Global Natural Products Social (GNPS) Molecular Networking analysis with natural product database mining, 35 potential antimicrobial metabolites annotated were detected, 19 of which were exclusive to the co-culture, with a significant increase in production. Notably, the Streptomyces-Fungus interaction led to the increased production of borrelidin and the discovery of several analogs via molecular networking. In this study, borrelidin was first applied to combat Saprolegnia parasitica, which caused saprolegniosis in aquaculture. We noted its superior inhibitory effects on mycelial growth with an EC50 of 0.004 mg/mL and on spore germination with an EC50 of 0.005 mg/mL compared to the commercial fungicide, preliminarily identifying threonyl-tRNA synthetase as its target. Further analysis of the associated gene clusters revealed an incomplete synthesis pathway with missing malonyl-CoA units for condensation within this strain, hinting at the presence of potential compensatory pathways. In conclusion, our findings shed light on the metabolic changes of marine Streptomyces and fungi in co-culture, propose the potential of borrelidin in the control of aquatic diseases, and present new prospects for antifungal applications.


Asunto(s)
Técnicas de Cocultivo , Metabolómica , Poríferos , Streptomyces , Streptomyces/metabolismo , Streptomyces/genética , Poríferos/microbiología , Familia de Multigenes , Animales , Genómica/métodos , Productos Biológicos/farmacología , Organismos Acuáticos , Alcoholes Grasos
11.
Sci Rep ; 14(1): 16270, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-39009650

RESUMEN

Steroid-induced osteonecrosis of the femoral head (SONFH) is the predominant cause of non-traumatic osteonecrosis of the femoral head (ONFH). Impaired blood supply and reduced osteogenic activity of the femoral head are the key pathogenic mechanisms of SONFH. Fibroblast growth factor 23 (FGF23) levels are not only a biomarker for early vascular lesions caused by abnormal mineral metabolism, but can also act directly on the peripheral vascular system, leading to vascular pathology. The aim of this study was to observe the role of FGF23 on bone microarchitecture and vascular endothelium, and to investigate activation of pyroptosis in SONFH. Lipopolysaccharide (LPS) combined with methylprednisolone (MPS) was applied for SONFH mouse models, and adenovirus was used to increase or decrease the level of FGF23. Micro-CT and histopathological staining were used to observe the structure of the femoral head, and immunohistochemical staining was used to observe the vascular density. The cells were further cultured in vitro and placed in a hypoxic environment for 12 h to simulate the microenvironment of vascular injury during SONFH. The effect of FGF23 on osteogenic differentiation was evaluated using alkaline phosphatase staining, alizarin red S staining and expression of bone formation-related proteins. Matrigel tube formation assay in vitro and immunofluorescence were used to detect the ability of FGF23 to affect endothelial cell angiogenesis. Steroids activated the pyroptosis signaling pathway, promoted the secretion of inflammatory factors in SONFH models, led to vascular endothelial dysfunction and damaged the femoral head structure. In addition, FGF23 inhibited the HUVECs angiogenesis and BMSCs osteogenic differentiation. FGF23 silencing attenuated steroid-induced osteonecrosis of the femoral head by inhibiting the pyroptosis signaling pathway, and promoting osteogenic differentiation of BMSCs and angiogenesis of HUVECs in vitro.


Asunto(s)
Necrosis de la Cabeza Femoral , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos , Osteogénesis , Piroptosis , Piroptosis/efectos de los fármacos , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Animales , Necrosis de la Cabeza Femoral/inducido químicamente , Necrosis de la Cabeza Femoral/metabolismo , Necrosis de la Cabeza Femoral/patología , Ratones , Factores de Crecimiento de Fibroblastos/metabolismo , Osteogénesis/efectos de los fármacos , Humanos , Cabeza Femoral/patología , Cabeza Femoral/metabolismo , Modelos Animales de Enfermedad , Metilprednisolona/farmacología , Masculino , Lipopolisacáridos/toxicidad , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Diferenciación Celular , Esteroides/farmacología
12.
JCI Insight ; 9(15)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954463

RESUMEN

Solid organ transplantation remains the life-saving treatment for end-stage organ failure, but chronic rejection remains a major obstacle to long-term allograft outcomes and has not improved substantially. Tertiary lymphoid organs (TLOs) are ectopic lymphoid structures that form under conditions of chronic inflammation, and evidence from human transplantation suggests that TLOs regularly form in allografts undergoing chronic rejection. In this study, we utilized a mouse renal transplantation model and manipulation of the lymphotoxin αß/lymphotoxin ß receptor (LTαß/LTßR) pathway, which is essential for TLO formation, to define the role of TLOs in transplantation. We showed that intragraft TLOs are sufficient to activate the alloimmune response and mediate graft rejection in a model where the only lymphoid organs are TLOs in the allograft. When transplanted to recipients with a normal set of secondary lymphoid organs, the presence of graft TLOs or LTα overexpression accelerated rejection. If the LTßR pathway was disrupted in the donor graft, TLO formation was abrogated, and graft survival was prolonged. Intravital microscopy of renal TLOs demonstrated that local T and B cell activation in TLOs is similar to that observed in secondary lymphoid organs. In summary, we demonstrated that immune activation in TLOs contributes to local immune responses, leading to earlier allograft failure. TLOs and the LTαß/LTßR pathway are therefore prime targets to limit local immune responses and prevent allograft rejection. These findings are applicable to other diseases, such as autoimmune diseases or tumors, where either limiting or boosting local immune responses is beneficial and improves disease outcomes.


Asunto(s)
Rechazo de Injerto , Trasplante de Riñón , Receptor beta de Linfotoxina , Estructuras Linfoides Terciarias , Animales , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/genética , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Ratones , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Aloinjertos/inmunología , Ratones Endogámicos C57BL , Supervivencia de Injerto/inmunología , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Humanos , Trasplante Homólogo
13.
Toxicol In Vitro ; 99: 105875, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38857852

RESUMEN

OBJECTIVE: This study aims to investigate the functional interplay between transcription factor YY1 and nucleoporin 93 (NUP93) in regulating the malignancy of bladder cancer cells. METHODS: NUP93 expressions in bladder cancer tissues and normal counterparts were analyzed using a public dataset and clinical samples. NUP93 and Yin Yang 1 (YY1) mRNA expression and protein levels in T24 and RT4 cells were determined by Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. The effect of NUP93 knockdown on the proliferation, migration, and invasion capabilities of cells was evaluated. Concurrently, transcriptional regulation of NUP93 by YY1 was confirmed using a dual luciferase assay. The effect of NUP93 knockdown on tumorigenesis was evaluate in a subcutaneous xenograft mouse model. RESULTS: Elevated levels of NUP93 in bladder cancer tissues and cell lines were observed. Silencing NUP93 significantly suppressed glycolysis, impeded the growth, migration, invasion and tumor formation of bladder cancer cells. The transcription factor YY1 acted as a positive regulator to upregulate NUP93 expression. YY1 overexpression partially rescued the effects of NUP93 silencing on bladder cancer cells. CONCLUSION: Our results uncovered transcription factor YY1 as a positive regulator of NUP93 expression, and NUP93 serves as an oncogenic factor to sustain the malignancy of bladder cancer cells. These findings suggest that targeting the YY1-NUP93 axis could offer novel therapeutic strategies for bladder cancer treatment.


Asunto(s)
Movimiento Celular , Proliferación Celular , Ratones Desnudos , Proteínas de Complejo Poro Nuclear , Neoplasias de la Vejiga Urinaria , Factor de Transcripción YY1 , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo , Humanos , Animales , Línea Celular Tumoral , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica , Femenino , Ratones Endogámicos BALB C , Ratones
14.
Curr Res Food Sci ; 8: 100778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854501

RESUMEN

Lutein (Lut) and zeaxanthin (Zx) are promising healthy food ingredients; however, the low solubilities, stabilities, and bioavailabilities limit their applications in the food and beverage industries. A protein-based complex represents an efficient protective carrier for hydrophobic ligands, and its ligand-binding properties are influenced by the formulation conditions, particularly the pH level. This study explored the effects of various pH values (2.5-9.5) on the characteristics of whey protein isolate (WPI)-Lut/Zx complexes using multiple spectroscopic techniques, including ultraviolet-visible (UV-Vis), fluorescence, and Fourier transform infrared (FTIR) spectroscopies and dynamic light scattering (DLS). UV-Vis and DLS spectra revealed that Lut/Zx were present as H-aggregates in aqueous solutions, whereas WPI occurred as nanoparticles. The produced WPI-Lut/Zx complexes exhibited binding constants of 104-105 M-1, which gradually increased with increasing pH from 2.5 to 9.5. FTIR spectra demonstrated that pH variations and Lut/Zx addition caused detectable changes in the secondary WPI structure. Moreover, the WPI-Lut/Zx complexes effectively improved the physicochemical stabilities and antioxidant activities of Lut/Zx aggregates during long-term storage and achieved bioaccessibilities above 70% in a simulated gastrointestinal digestion process. The comprehensive data obtained in this study offer a basis for formulating strategies that can be potentially used in developing commercially available WPI complex-based xanthophyll-rich foods.

15.
PeerJ ; 12: e17417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827307

RESUMEN

Background: Osteoarthritis (OA) is a degenerative disease requiring additional research. This study compared gene expression and immune infiltration between lesioned and preserved subchondral bone. The results were validated using multiple tissue datasets and experiments. Methods: Differentially expressed genes (DEGs) between the lesioned and preserved tibial plateaus of OA patients were identified in the GSE51588 dataset. Moreover, functional annotation and protein-protein interaction (PPI) network analyses were performed on the lesioned and preserved sides to explore potential therapeutic targets in OA subchondral bones. In addition, multiple tissues were used to screen coexpressed genes, and the expression levels of identified candidate DEGs in OA were measured by quantitative real-time polymerase chain reaction. Finally, an immune infiltration analysis was conducted. Results: A total of 1,010 DEGs were identified, 423 upregulated and 587 downregulated. The biological process (BP) terms enriched in the upregulated genes included "skeletal system development", "sister chromatid cohesion", and "ossification". Pathways were enriched in "Wnt signaling pathway" and "proteoglycans in cancer". The BP terms enriched in the downregulated genes included "inflammatory response", "xenobiotic metabolic process", and "positive regulation of inflammatory response". The enriched pathways included "neuroactive ligand-receptor interaction" and "AMP-activated protein kinase signaling". JUN, tumor necrosis factor α, and interleukin-1ß were the hub genes in the PPI network. Collagen XI A1 and leucine-rich repeat-containing 15 were screened from multiple datasets and experimentally validated. Immune infiltration analyses showed fewer infiltrating adipocytes and endothelial cells in the lesioned versus preserved samples. Conclusion: Our findings provide valuable information for future studies on the pathogenic mechanism of OA and potential therapeutic and diagnostic targets.


Asunto(s)
Mapas de Interacción de Proteínas , Humanos , Perfilación de la Expresión Génica , Osteoartritis/genética , Osteoartritis/inmunología , Osteoartritis/patología , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/inmunología , Osteoartritis de la Rodilla/patología , Osteoartritis de la Rodilla/metabolismo , Masculino , Tibia/patología , Tibia/inmunología , Tibia/metabolismo , Regulación hacia Abajo , Femenino
16.
mLife ; 3(1): 101-109, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38827508

RESUMEN

Insertion sequences (ISs) promote the transmission of antimicrobial resistance genes (ARGs) across bacterial populations. However, their contributions and dynamics during the transmission of resistance remain unclear. In this study, we selected IS26 as a representative transposable element to decipher the relationship between ISs and ARGs and to investigate their transfer features and transmission trends. We retrieved 2656  translocatable  IS 26 -bounded  units with  ARGs (tIS26-bUs-ARGs) in complete bacterial genomes from the NCBI RefSeq database. In total, 124 ARGs spanning 12 classes of antibiotics were detected, and the average contribution rate of IS26 to these genes was 41.2%. We found that  IS 26 -bounded  units (IS26-bUs) mediated extensive ARG dissemination within the bacteria of the Gammaproteobacteria class, showing strong transfer potential between strains, species, and even phyla. The IS26-bUs expanded in bacterial populations over time, and their temporal expansion trend was significantly correlated with antibiotic usage. This wide dissemination could be due to the nonspecific target site preference of IS26. Finally, we experimentally confirmed that the introduction of a single copy of IS26 could lead to the formation of a composite transposon mediating the transmission of "passenger" genes. These observations extend our knowledge of the IS26 and provide new insights into the mediating role of ISs in the dissemination of antibiotic resistance.

17.
Appl Opt ; 63(13): 3695-3701, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38856556

RESUMEN

Ellipse fitting algorithms (EFAs) have been widely used in 3×3 coupler demodulation systems to reduce the requirement for symmetry of the 3×3 couplers. Based on the relative stability of the splitting ratio and phase difference after the establishment of the 3×3 coupler demodulation system, we solve the problem that EFA fails to work when the stimulating signal is small. Depending on the existence of a symmetry point about the origin, an additional phase shift judgment module is used to determine whether the Lissajous figure is larger than π rad. If the elliptical arc exceeds π rad, the EFA is executed. Otherwise, the previous parameters are used to correct the ellipse. Parameters are updated in real time to ensure high precision. The experimental results show that the total harmonic distortion (THD) of the ameliorated algorithm is improved by 1.28% compared to the EFA without the judgment module with a stimulus amplitude of 30 mV. The proposed scheme can effectively improve the dynamic range of the 3×3 coupler demodulation to reach 125.64 dB @ 1 kHz and 1% THD. The algorithm ensures the effective operation of the EFA under small phase shift conditions and improves the accuracy of phase demodulation.

18.
Adv Sci (Weinh) ; : e2309972, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937990

RESUMEN

Klebsiella pneumoniae, a major clinical pathogen known for causing severe infections, is attracting heightened attention due to its escalating antibiotic resistance. Phages are emerging as a promising alternative to antibiotics; however, their specificity to particular hosts often restricts their use. In this study, a collection of 114 phages is obtained and subjected to analysis against 238 clinical K. pneumoniae strains, revealing a spectrum of lytic behaviors. A correlation between putative tail protein clusters and lysis patterns leads to the discovery of six receptor-binding protein (RBP) clusters that determine host capsule tropism. Significantly, RBPs with cross-capsular lysis capabilities are identified. The newly-identified RBPs provide a toolbox for customizing phages to target diverse capsular types. Building on the toolbox, the engineered phages with altered RBPs successfully shifted and broadened their host capsule tropism, setting the stage for tunable phage that offer a precise and flexible solution to combat K. pneumoniae infections.

19.
J Therm Biol ; 122: 103881, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38870755

RESUMEN

Heat stress (HS) poses a substantial threat to animal growth and development, resulting in declining performance and economic losses. The intestinal system is susceptible to HS and undergoes intestinal hyperthermia and pathological hypoxia. Hypoxia-inducible factor-1α (HIF-1α), a key player in cellular hypoxic adaptation, is influenced by prolyl-4-hydroxylase 2 (PHD2) and heat shock protein 90 (HSP90). However, the comprehensive regulation of HIF-1α in the HS intestine remains unclear. This study aims to explore the impact of HS on pig intestinal mucosa and the regulatory mechanism of HIF-1α. Twenty-four Congjiang Xiang pigs were divided into the control and five HS-treated groups (6, 12, 24, 48, and 72 h). Ambient temperature and humidity were maintained in a thermally-neutral state (temperature-humidity index (THI) < 74) in the control group, whereas the HS group experienced moderate HS (78 < THI <84). Histological examination revealed villus exfoliation after 12 h of HS in the duodenum, jejunum, and ileum, with increasing damage as HS duration extended. The villus height to crypt depth ratio (V/C) decreased and goblet cell number increased with prolonged HS. Quantitative real-time PCR, Western blot, and immunohistochemistry analysis indicated increased expression of HIF-1α and HSP90 in the small intestine with prolonged HS, whereas PHD2 expression decreased. Further investigation in IPEC-J2 cells subjected to HS revealed that overexpressing PHD2 increased PHD2 mRNA and protein expression, while it decreases HIF-1α. Conversely, interfering with HSP90 expression substantially decreased both HSP90 and HIF-1α mRNA and protein levels. These results suggest that HS induces intestinal hypoxia with concomitant small intestinal mucosal damage. The expression of HIF-1α in HS-treated intestinal epithelial cells may be co-regulated by HSP90 and PHD2 and is possibly linked to intestinal hyperthermia and hypoxia.


Asunto(s)
Células Epiteliales , Proteínas HSP90 de Choque Térmico , Respuesta al Choque Térmico , Subunidad alfa del Factor 1 Inducible por Hipoxia , Intestino Delgado , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Porcinos , Intestino Delgado/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Procolágeno-Prolina Dioxigenasa/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Línea Celular
20.
Micromachines (Basel) ; 15(6)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38930673

RESUMEN

The ever-growing prominence and widespread acceptance of organic light-emitting diodes (OLEDs), particularly those employing thermally activated delayed fluorescence (TADF), have firmly established them as formidable contenders in the field of lighting technology. TADF enables achieving a 100% utilization rate and efficient luminescence through reverse intersystem crossing (RISC). However, the effectiveness of TADF-OLEDs is influenced by their high current density and limited device lifetime, which result in a significant reduction in efficiency. This comprehensive review introduces the TADF mechanism and provides a detailed overview of recent advancements in the development of host-free white OLEDs (WOLEDs) utilizing TADF. This review specifically scrutinizes advancements from three distinct perspectives: TADF fluorescence, TADF phosphorescence and all-TADF materials in host-free WOLEDs. By presenting the latest research findings, this review contributes to the understanding of the current state of host-free WOLEDs, employing TADF and underscoring promising avenues for future investigations. It aims to serve as a valuable resource for newcomers seeking an entry point into the field as well as for established members of the WOLEDs community, offering them insightful perspectives on imminent advancements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA