Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.102
Filtrar
1.
Plant Sci ; : 112174, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960071

RESUMEN

Common flue-cured tobacco (Nicotiana tabacum L.) primarily accumulates nicotine, and its flue-cured leaves exhibit a lemon appearance. In contrast, a spontaneous cherry-red variant (CR60) primarily accumulates nornicotine, accompanied by distinctive red dapples on the cured leaves. In this study, suppression of conversion of nicotine to nornicotine by genome editing resulted in decreased nornicotine and N-acyl nornicotines (NacNNs), and the subsequent disappearance of red dapples in CR60. Conversely, overexpression of CYP82E4 increased nornicotine and NacNNs accumulation, inducing a red dapple phenotype in common tobacco. Notably, nicotine conversion triggered significant alterations in leaf total sugars, alkaloids, and nitrogens. Metabolome analyses using 1352 identified compounds indicated nicotine conversion dramatically affected the entire metabolic network and induced unique metabolic responses across diverse genetic backgrounds. Further WGCNA analysis revealed that nicotine conversion caused substantial contents variation of alkaloids, flavonoids and amino acids and derivatives in cured leaves. Overall, this research provides valuable insights into the mechanisms underlying red dapple formation in cherry-red tobacco, elucidating profound influence of nicotine conversion on entire metabolic network.

2.
J Plant Physiol ; 301: 154300, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38964046

RESUMEN

FLO2 is involved in grain development and storage substance synthesis in rice, and therefore can regulate grain size and quality. In this study, we identified 4 new flo2 allelic mutants with nonsense and frameshift mutation in the exon of 6, 10, 11 and 21 and 5 new flo2 allelic mutants with alternative splicing and frameshift mutation at the splicing site of intron 13, 14, 16 and 17. Compared with wild-type rice, the outer endosperm of flo2 mutants was transparent, and the inner endosperm was floury. Different mutation sites and types of FLO2 significantly decreased kernel width, thickness and weight to some extent. The contents of storage protein, starch, amylose and amylopectin showed significant decrease at different levels among 9 flo2 mutants. The expressions of most storage protein synthesis genes and starch synthesis-related genes were significantly down-regulated, and exhibited different ranges of variation among different flo2 mutants. This study could add helpful information for the roles of flo2 alleles in rice quality regulation and provide abundant germplasm resources for rice quality breeding.

3.
Brain Behav ; 14(7): e3621, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970239

RESUMEN

INTRODUCTION: Hepatic encephalopathy (HE) is a severe neuropsychiatric complication of liver diseases characterized by neuroinflammation. The efficacies of nonabsorbable rifaximin (RIF) and lactulose (LAC) have been well documented in the treatment of HE. [18F]PBR146 is a translocator protein (TSPO) radiotracer used for in vivo neuroinflammation imaging. This study investigated anti-neuroinflammation effect of RIF or/and LAC in chronic HE rats by [18F]PBR146 micro-PET/CT. METHODS: Bile duct ligation (BDL) operation induced chronic HE models, and this study included Sham+normal saline (NS), BDL+NS, BDL+RIF, BDL+LAC, and BDL+RIF+LAC groups. Behavioral assessment was performed to analyze the motor function, and fecal samples were collected after successfully established the chronic HE model (more than 28 days post-surgery). In addition, fecal samples collection and micro-PET/CT scans were performed sequentially. And we also collected the blood plasma, liver, intestinal, and brain samples after sacrificing the rats for further biochemical and pathological analyses. RESULTS: The RIF- and/or LAC-treated BDL rats showed similar behavioral results with Sham+NS group, while the treatment could not reverse the biliary obstruction resulting in sustained liver injury. The RIF or/and LAC treatments can inhibit IFN-γ and IL-10 productions. The global brain uptake values of [18F]PBR146 in BDL+NS group was significantly higher than other groups (p < .0001). The brain regions analysis showed that the basal ganglia, hippocampus, and cingulate cortex had radiotracer uptake differences among groups (all p < .05), which were consistent with the brain immunohistochemistry results. Sham+NS group was mainly enriched in Christensenella, Coprobacillus, and Pseudoflavonifractor. BDL+NS group was mainly enriched in Barnesiella, Alloprevotella, Enterococcus, and Enterorhabdus. BDL+RIF+LAC group was enriched in Parabacteroides, Bacteroides, Allobaculum, Bifidobacterium, and Parasutterella. CONCLUSIONS: RIF or/and LAC had anti-neuroinflammation in BDL-induced chronic HE rats with gut microbiota alterations. The [18F]PBR146 could be used for monitoring RIF or/and LAC treatment efficacy of chronic HE rats.


Asunto(s)
Encefalopatía Hepática , Lactulosa , Ratas Sprague-Dawley , Rifaximina , Animales , Encefalopatía Hepática/tratamiento farmacológico , Encefalopatía Hepática/diagnóstico por imagen , Encefalopatía Hepática/metabolismo , Rifaximina/farmacología , Ratas , Masculino , Lactulosa/farmacología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Modelos Animales de Enfermedad , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/diagnóstico por imagen , Fármacos Gastrointestinales/farmacología , Fármacos Gastrointestinales/administración & dosificación , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Radioisótopos de Flúor , Proteínas Portadoras , Receptores de GABA-A
4.
Insects ; 15(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38921158

RESUMEN

Insect development is intricately governed by hormonal signaling pathways, yet the pivotal upstream regulator that potentiates hormone activation remains largely elusive. The migratory locust, Locusta migratoria, exhibits population density-dependent phenotypic plasticity, encompassing traits such as flight capability, body coloration, and behavior. In this study, we elucidated a negative correlation between population density and ontogenetic development during the nymphal stage of locusts. We found that the level of density influences the developmental trajectory by modulating transcript abundance within the ecdysone signaling pathway, with knockdown of the prothoracicotropic hormone (PTTH) resulting in developmental delay. Transcriptomic analysis of locust brains across solitary and gregarious phases revealed significant differential expression of genes involved in various pathways, including protein synthesis, energy metabolism, hormonal regulation, and immunity. Notably, knockdown experiments targeting two energy regulators, adipokinetic hormone (AKH) and insulin-like polypeptide 1 (ilp1), failed to elicit changes in the developmental process in solitary locusts. However, knockdown of immunoglobulin (IG) significantly shortened the developmental time in higher-density populations. Collectively, our findings underscore the regulatory role of population density in determining developmental duration and suggest that an immune-related gene contributes to the observed differences in developmental patterns.

5.
Membranes (Basel) ; 14(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38921506

RESUMEN

The separation of a toluene/methanol/water ternary mixture is a difficult task due to the toluene/water and toluene/methanol azeotropes. In this article, low-energy pervaporation is proposed for the separation of the ternary azeotrope toluene-methanol-water. This work investigates the effects of feed temperature, feed flow rate, and vacuum on pervaporation and compares the energy consumption of pervaporation with that of distillation. The results showed that at the optimized flow rate of 50 L/h and a permeate side vacuum of 60 kPa at 50 °C, the water and methanol content in the permeate was about 63.2 wt.% and 36.8 wt.%, respectively, the water/ methanol separation factor was 24.04, the permeate flux was 510.7 g/m2·h, the water content in the feed out was reduced from 2.5 wt.% to less than 0.66 wt.%, and the dehydration of toluene methanol could be realized. Without taking into account the energy consumption of pumps and other power equipment, pervaporation requires an energy consumption of 43.53 kW·h to treat 1 ton of raw material, while the energy consumption of distillation to treat 1 ton of raw material is about 261.5 kW·h. Compared to the existing distillation process, the pervaporation process consumes much less energy (about one-sixth of the energy consumption of distillation). There is almost no effect on the surface morphology and chemical composition of the membrane before and after use. The method provides an effective reference for the dehydration of organic solvents from ternary mixtures containing toluene/methanol/water.

6.
MedComm (2020) ; 5(7): e606, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38919333

RESUMEN

We highlight the latest work of Qiu et al. on the core mechanism of ferroptosis induced by rare phospholipids with two polyunsaturated fatty acyl tails (PL-PUFA2s), which has been published in Cell. It has long been acknowledged that PLs containing one PUFA tail (PL-PUFA1s) serve as substrates for phospholipid peroxidation during the process of ferroptosis, owing to their susceptibility to oxidation and prevalence in vivo. However, the authors note that PL-PUFA2s, rather than PL-PUFA1s, represent critical lipid classes involved in the pro-ferroptosis process. Exogenous phosphatidylcholine-PUFA2s accumulate in mitochondria and combine with Complex I within the electron transport chain, thereby potentially resulting in an elevation of mitochondrial reactive oxygen species levels. Then, these mitochondrial peroxides prompt the substantial accumulation of peroxides within the endoplasmic reticulum, ultimately culminating in ferroptosis. These findings shed light on the potential molecular mechanisms underlying the induction of ferroptosis by dietary PL-PUFA2s and offer novel insights for both the evaluation of cellular iron death sensitivity and the treatment of cancer. This article will provide a more comprehensive elucidation of the paper and facilitate an enhanced understanding of the underlying mechanisms for readers.

7.
Gastroenterol Rep (Oxf) ; 12: goae066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912038

RESUMEN

During liver ischemia-reperfusion injury, existing mechanisms involved oxidative stress, calcium overload, and the activation of inflammatory responses involve mitochondrial injury. Mitochondrial autophagy, a process that maintains the normal physiological activity of mitochondria, promotes cellular metabolism, improves cellular function, and facilitates organelle renewal. Mitochondrial autophagy is involved in oxidative stress and apoptosis, of which the PINK1-Parkin pathway is a major regulatory pathway, and the deletion of PINK1 and Parkin increases mitochondrial damage, reactive oxygen species production, and inflammatory response, playing an important role in mitochondrial quality regulation. In addition, proper mitochondrial permeability translational cycle regulation can help maintain mitochondrial stability and mitigate hepatocyte death during ischemia-reperfusion injury. This mechanism is also closely related to oxidative stress, calcium overload, and the aforementioned autophagy pathway, all of which leads to the augmentation of the mitochondrial membrane permeability transition pore opening and cause apoptosis. Moreover, the release of mitochondrial DNA (mtDNA) due to oxidative stress further aggravates mitochondrial function impairment. Mitochondrial fission and fusion are non-negligible processes required to maintain the dynamic renewal of mitochondria and are essential to the dynamic stability of these organelles. The Bcl-2 protein family also plays an important regulatory role in the mitochondrial apoptosis signaling pathway. A series of complex mechanisms work together to cause hepatic ischemia-reperfusion injury (HIRI). This article reviews the role of mitochondria in HIRI, hoping to provide new therapeutic clues for alleviating HIRI in clinical practice.

9.
Nanoscale Adv ; 6(12): 3220-3228, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868834

RESUMEN

Due to the unique and excellent optical performance and promising prospect for various photonics applications, cavity-enhanced superfluorescence (CESF) in perovskite quantum dot assembled superstructures has garnered wide attention. However, the stringent requirements and high threshold for achieving CESF limit its further development and application. The high threshold of CESF in quantum dot superstructures is mainly attributed to the low radiation recombination rate of the quantum dot and the unsatisfactory light field limiting the ability of the assembled superstructures originating from low controllability of self-assembly. Herein, we propose a strategy to reduce the threshold of CESF in quantum dot superstructure microcavities from two aspects: facet engineering optimization of quantum dot blocks and controllability improvement of the assembly method. We introduce dodecahedral quantum dots with lower nonradiative recombination, substituting frequently used cubic quantum dots as assembly blocks. Besides, we adopt the micro-emulsion droplet assembly method to obtain spherical perovskite quantum dot superparticles with high packing factors and orderly internal arrangements, which are more controllable and efficient than the conventional solvent-drying methods. Based on the dodecahedral quantum dot superparticles, we realized low-threshold CESF (Pth = 15.6 µJ cm-2). Our work provides a practical and scalable avenue for realizing low threshold CESF in quantum dot assembled superstructure systems.

10.
Medicine (Baltimore) ; 103(23): e38484, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847679

RESUMEN

The correlation between hematopoietic cell-specific lyn substrate 1 (HCLS1) expression levels and heart failure (HF) remains unclear. HF datasets GSE192886 and GSE196656 profiles were generated from GPL24676 and GPL20301 platforms in gene expression omnibus (GEO) database and differentially expressed genes (DEGs) were obtained, which was followed by weighted gene co-expression network analysis, protein-protein interaction (PPI) networks, functional enrichment analysis and comparative toxicogenomics database (CTD) analysis. Heatmaps of gene expression levels were plotted. TargetScan was used to screen miRNAs regulating central DEGs. A total of 500 DEGs were found and mainly concentrated in leukocyte activation, protein phosphorylation, and protein complexes involved in cell adhesion, PI3K Akt signaling pathway, Notch signaling pathway, and right ventricular cardiomyopathy. PPI network identified 15 core genes (HCLS1, FERMT3, CD53, CD34, ITGAL, EP300, LYN, VAV1, ITGAX, LEP, ITGB1, IGF1, MMP9, SMAD2, RAC2). Heatmap shows that 4 genes (EP300, CD53, HCLS1, LYN) are highly expressed in HF tissue samples. We found that 4 genes (EP300, CD53, HCLS1, LYN) were associated with heart diseases, cardiovascular diseases, edema, rheumatoid arthritis, necrosis, and inflammation. HCLS1 is highly expressed in HF and maybe its target.


Asunto(s)
Biomarcadores , Insuficiencia Cardíaca , Humanos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Biomarcadores/metabolismo , Mapas de Interacción de Proteínas/genética , MicroARNs/metabolismo , MicroARNs/genética , Perfilación de la Expresión Génica
11.
Artículo en Inglés | MEDLINE | ID: mdl-38847172

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly aggressive neoplasm that usually originates from liver cells and is one of the most common malignancies worldwide. To improve the survival rate of HCC patients, specific prognostic markers are essential to guide HCC therapy. CEP55 is a microtubule-bundling protein involved in critical cell functions, including cell growth, transformation, and cytokinesis. AIMS: This study examined gene alterations in HCC tumor tissues through comprehensive analysis, aiming to elucidate their contribution to disease development. METHODS: Bioinformatics tools were employed to investigate the expression, genetic variations, prognostic significance, and clinicopathological relevance of CEP55 across GEO and TCGA datasets. We further explored gene alterations, DNA methylation levels, and immune infiltration of CEP55. To elucidate the potential molecular mechanisms involved, GO and KEGG analysis was performed. Finally, RT-qPCR was also performed on a number of normal and tumoral cell lines in vitro, which demonstrated that the expression of the CEP55 was significantly higher in the tumor cell lines. RESULTS: We observed that CEP55 was upregulated in 16 cancers compared to corresponding normal tissues. CEP55 was found to be related to T stages, pathologic stages, histologic grade, and levels of AFP. K-M analysis demonstrated that CEP55 expression was associated with a worse outcome. ROC curve analysis showed that CEP55 expression accurately distinguished HCC from normal tissue (AUC = 0.954). The area under 1-,3- and 5-year survival ROCs were above 0.6. The HSPA4 genetic alterations in HCC were 0.8%. Among the 15 DNA methylation CpG sites, 6 were related to the prognosis of HCC. HSPA4 was positively related to immune cell infiltration and immune checkpoints in HCC. The KEGG pathway analysis indicated that CEP55 was associated with the cell cycle and presented together with CDK1. HCC cell lines were demonstrated to express high levels of CEP55 compared to normal cells. CONCLUSION: As a result of bioinformatic analyses and RT-qPCR validation in HCC, CEP55 increased in HCC tissues and was associated with the stage of the disease and survival rate.

12.
Microb Cell Fact ; 23(1): 167, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38849849

RESUMEN

BACKGROUND: White-rot fungi are known to naturally produce high quantities of laccase, which exhibit commendable stability and catalytic efficiency. However, their laccase production does not meet the demands for industrial-scale applications. To address this limitation, it is crucial to optimize the conditions for laccase production. However, the regulatory mechanisms underlying different conditions remain unclear. This knowledge gap hinders the cost-effective application of laccases. RESULTS: In this study, we utilized transcriptomic and metabolomic data to investigate a promising laccase producer, Cerrena unicolor 87613, cultivated with fructose as the carbon source. Our comprehensive analysis of differentially expressed genes (DEGs) and differentially abundant metabolites (DAMs) aimed to identify changes in cellular processes that could affect laccase production. As a result, we discovered a complex metabolic network primarily involving carbon metabolism and amino acid metabolism, which exhibited contrasting changes between transcription and metabolic patterns. Within this network, we identified five biomarkers, including succinate, serine, methionine, glutamate and reduced glutathione, that played crucial roles in co-determining laccase production levels. CONCLUSIONS: Our study proposed a complex metabolic network and identified key biomarkers that determine the production level of laccase in the commercially promising Cerrena unicolor 87613. These findings not only shed light on the regulatory mechanisms of carbon sources in laccase production, but also provide a theoretical foundation for enhancing laccase production through strategic reprogramming of metabolic pathways, especially related to the citrate cycle and specific amino acid metabolism.


Asunto(s)
Lacasa , Redes y Vías Metabólicas , Lacasa/metabolismo , Lacasa/genética , Biomarcadores/metabolismo , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica , Transcriptoma , Polyporaceae/enzimología , Polyporaceae/genética , Polyporaceae/metabolismo , Fructosa/metabolismo , Metabolómica , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
13.
Front Public Health ; 12: 1374762, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894983

RESUMEN

Objective: Internet addiction and depressive symptoms are common mental health problems in adolescents. Due to the comorbidity of Internet addiction and depressive symptoms, their mutual relationship influences their developmental trajectories over time. Thus, this study aimed to identify the joint trajectories of Internet addiction and depressive symptoms, and examined the individual, family, and school antecedents of these trajectories among Chinese adolescents. Methods: Using a battery of self-report scales, three waves of data collection were conducted in a Chinese adolescent sample (N = 1,301). The co-developmental trajectories of Internet addiction and depressive symptoms were extracted by adopting parallel-process latent class growth modeling (PPLCGM). Multinomial logistic regression was performed to assess predictive factors. Results: Four unique joint trajectory classes were detected: the Health Group (n = 912, 70.1%), Comorbidity-Worsening Group (n = 85, 6.5%), Asymptomatic-Comorbid Risk Group (n = 148, 11.4%), and Prominent Depressive Symptoms-Remission Group (n = 156, 12.0%). Individual, family, and school factors (e.g., gender, positive youth development, family function, academic performance) significantly predicted the membership in these distinct co-developmental trajectories. Conclusion: Our findings illustrate that the joint development of Internet addiction and depressive symptoms among adolescents presents a heterogeneous distribution, which could better inform prevention and intervention strategies since each co-developmental trajectory may represent unique experience for adolescents who need targeted treatment. Various individual, family, and school factors are important predictors that play different roles in distinguishing the joint trajectories of Internet addiction and depressive symptoms during this critical developmental transition period.


Asunto(s)
Depresión , Trastorno de Adicción a Internet , Humanos , Adolescente , Femenino , Masculino , Depresión/epidemiología , Trastorno de Adicción a Internet/epidemiología , Trastorno de Adicción a Internet/psicología , China/epidemiología , Comorbilidad , Factores de Riesgo , Autoinforme , Internet
14.
Plant Genome ; : e20480, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840306

RESUMEN

Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.

15.
Trials ; 25(1): 358, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835091

RESUMEN

BACKGROUND: This multicenter, double-blinded, randomized controlled trial (RCT) aims to assess the impact of an artificial intelligence (AI)-based model on the efficacy of intracranial aneurysm detection in CT angiography (CTA) and its influence on patients' short-term and long-term outcomes. METHODS: Study design: Prospective, multicenter, double-blinded RCT. SETTINGS: The model was designed for the automatic detection of intracranial aneurysms from original CTA images. PARTICIPANTS: Adult inpatients and outpatients who are scheduled for head CTA scanning. Randomization groups: (1) Experimental Group: Head CTA interpreted by radiologists with the assistance of the True-AI-integrated intracranial aneurysm diagnosis strategy (True-AI arm). (2) Control Group: Head CTA interpreted by radiologists with the assistance of the Sham-AI-integrated intracranial aneurysm diagnosis strategy (Sham-AI arm). RANDOMIZATION: Block randomization, stratified by center, gender, and age group. PRIMARY OUTCOMES: Coprimary outcomes of superiority in patient-level sensitivity and noninferiority in specificity for the True-AI arm to the Sham-AI arm in intracranial aneurysms. SECONDARY OUTCOMES: Diagnostic performance for other intracranial lesions, detection rates, workload of CTA interpretation, resource utilization, treatment-related clinical events, aneurysm-related events, quality of life, and cost-effectiveness analysis. BLINDING: Study participants and participating radiologists will be blinded to the intervention. SAMPLE SIZE: Based on our pilot study, the patient-level sensitivity is assumed to be 0.65 for the Sham-AI arm and 0.75 for the True-AI arm, with specificities of 0.90 and 0.88, respectively. The prevalence of intracranial aneurysms for patients undergoing head CTA in the hospital is approximately 12%. To establish superiority in sensitivity and noninferiority in specificity with a margin of 5% using a one-sided α = 0.025 to ensure that the power of coprimary endpoint testing reached 0.80 and a 5% attrition rate, the sample size was determined to be 6450 in a 1:1 allocation to True-AI or Sham-AI arm. DISCUSSION: The study will determine the precise impact of the AI system on the detection performance for intracranial aneurysms in a double-blinded design and following the real-world effects on patients' short-term and long-term outcomes. TRIAL REGISTRATION: This trial has been registered with the NIH, U.S. National Library of Medicine at ClinicalTrials.gov, ID: NCT06118840 . Registered 11 November 2023.


Asunto(s)
Inteligencia Artificial , Angiografía por Tomografía Computarizada , Aneurisma Intracraneal , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Método Doble Ciego , Estudios Prospectivos , Valor Predictivo de las Pruebas , Estudios Multicéntricos como Asunto , Angiografía Cerebral/métodos , Masculino , Femenino , Factores de Tiempo , Ensayos Clínicos Controlados Aleatorios como Asunto , Adulto
16.
Neuroscience ; 551: 316-322, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38843985

RESUMEN

APOE ε4 is risk for cognitive decline even in normal aging, but its effect on the whole-brain functional connectivity (FC) among time in young adults remain elusive. This study aimed to validate the time-by-APOE ε4 interaction on brain FC of this specific population. Longitudinal changes in neuropsychological assessments and resting-state functional magnetic resonance imaging in 26 ε4 carriers and 26 matched non-ε4 carriers were measured for about 3 years. Whole-brain FC was calculated, and a full factorial design was used to compare the difference among groups. Two-sample t test was used for post-hoc analysis. Pearson's correlation analysis was conducted to investigate the relationships between FC and cognitive tests. Of 26 specially appointed ROIs, left superior temporal gyrus (TG) was most sensitive to the effect of time-by-gene interaction. Specifically, the alteration of FC was distributed between the left TG and right TG with GRF correction (voxel-P < 0.001, cluster-P < 0.05), and decreased in ε4 carriers while increased in non-ε4. The main effect of gene showed ε4 carriers has lower FC between left TG and right middle frontal gyrus as compared with non-ε4 both at baseline and follow-up study; ε4 carriers has lower FC between left TG and right supramarginal as compared with non-ε4 at baseline, but no difference in follow-up study. The time-by-APOE ε4 interaction on brain FC was demonstrated at a young age, and left TG was the earliest affected brain regions. The young adult ε4 carriers experience decreased FC among time in the absence overt clinical symptoms.

17.
Asian J Surg ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38824017
18.
Clin Chem Lab Med ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896030

RESUMEN

Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.

19.
Nat Commun ; 15(1): 5221, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890329

RESUMEN

Latent bioreactive unnatural amino acids (Uaas) have been widely used in the development of covalent drugs and identification of protein interactors, such as proteins, DNA, RNA and carbohydrates. However, it is challenging to perform high-throughput identification of Uaa cross-linking products due to the complexities of protein samples and the data analysis processes. Enrichable Uaas can effectively reduce the complexities of protein samples and simplify data analysis, but few cross-linked peptides were identified from mammalian cell samples with these Uaas. Here we develop an enrichable and multiple amino acids reactive Uaa, eFSY, and demonstrate that eFSY is MS cleavable when eFSY-Lys and eFSY-His are the cross-linking products. An identification software, AixUaa is developed to decipher eFSY mass cleavable data. We systematically identify direct interactomes of Thioredoxin 1 (Trx1) and Selenoprotein M (SELM) with eFSY and AixUaa.


Asunto(s)
Aminoácidos , Tiorredoxinas , Aminoácidos/metabolismo , Aminoácidos/química , Humanos , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/química , Reactivos de Enlaces Cruzados/química , Unión Proteica , Péptidos/metabolismo , Péptidos/química , Selenoproteínas/metabolismo , Selenoproteínas/genética , Selenoproteínas/química , Programas Informáticos , Proteínas/metabolismo , Proteínas/química , Células HEK293
20.
Front Endocrinol (Lausanne) ; 15: 1401070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887274

RESUMEN

Background: Gut microbiome (GM) and type 2 diabetes mellitus (T2DM) have two-way effects. Improving T2DM by modulating GM in various ways, such as diet, exercise, and medication, is gradually becoming popular, and related studies have yielded positive results. However, there is still a lack of high-quality bibliometric analyses of research in this area. This study aims to systematize and comprehensively summarize the knowledge structure, research tropics, and research trends of GM and T2DM through bibliometric analysis. Methods: Publications related to GM and T2DM before January 9, 2024, in the Web of Science Core Collection (WOSCC) were searched in this study. Microsoft Excel 2019 was used to analyze publishing trends and CiteSpace (v.6.1.R6 Advanced) was used to analyze institutions, cited journals, references, and keywords.SCImago Graphica (v.1.0.39) was used to analyze countries/regions, institutions' collaborations, cited authors, and published journals. Results: We finally included 1004 articles published from 2008 to 2023. The number of published articles showed an upward trend and reached its peak in 2022. China is the country with the largest number of articles, Univ Copenhagen is the institution with the largest number of articles, Fukui, Michiaki, Hamaguchi, Masahide are the scholars with the largest number of articles, and Cani and Patrice D. are the scholars with the largest number of citations. NUTRIENTS(Q1/5.9) published the most publications, while Nature (Q1/64.8; Cited 804 times) is the most frequently cited journal. Gut microbiota, Obesity, and insulin resistance are the most frequently used keywords. This study found that current researches focus on the effects of diet, exercise, and pharmacological modification of GM to improve T2DM and explores specific mechanisms. Future researches will focus on three areas: complications of T2DM and specific physiological processes, methods and measures to regulate GM, and new experimental techniques and assays. Conclusion: The current researches confirmed the effects and specific mechanisms of modulating GM to improve T2DM. Further exploration of the effects of modulating GM on T2DM complications and specific physiologic processes is a future trend of research. Exploring specific methods for regulating GM and developing new experimental techniques and assays are important for future research.


Asunto(s)
Bibliometría , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Diabetes Mellitus Tipo 2/microbiología , Humanos , Microbioma Gastrointestinal/fisiología , Investigación Biomédica/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...