Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 640
Filtrar
1.
Glob Med Genet ; 11(3): 196-199, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38947762
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000161

RESUMEN

Abiotic stress is a limiting factor in peanut production. Peanut is an important oil crop and cash crop in China. Peanut yield is vulnerable to abiotic stress due to its seeds grown underground. Jasmonic acid (JA) is essential for plant growth and defense against adversity stresses. However, the regulation and mechanism of the jasmonic acid biosynthesis pathway on peanut defense against abiotic stresses are still limitedly understood. In this study, a total of 64 genes encoding key enzymes of JA biosynthesis were identified and classified into lipoxygenases (AhLOXs), alleno oxide synthases (AhAOSs), allene oxide cyclases (AhAOCs), and 12-oxo-phytodienoic acid reductases (AhOPRs) according to gene structure, conserved motif, and phylogenetic feature. A cis-regulatory element analysis indicated that some of the genes contained stress responsive and hormone responsive elements. In addition to proteins involved in JA biosynthesis and signaling, they also interacted with proteins involved in lipid biosynthesis and stress response. Sixteen putative Ah-miRNAs were identified from four families targeting 35 key genes of JA biosynthesis. A tissue expression pattern analysis revealed that AhLOX2 was the highest expressed in leaf tissues, and AhLOX32 was the highest expressed in shoot, root, and nodule tissues. AhLOX16, AhOPR1, and AhOPR3 were up-regulated under drought stress. AhLOX16, AhAOS3, AhOPR1, and AhAOC4 had elevated transcript levels in response to cold stress. AhLOX5, AhLOX16, AhAOC3, AhOPR1, and AhOPR3 were up-regulated for expression under salt stress. Our study could provide a reference for the study of the abiotic stress resistance mechanism in peanut.


Asunto(s)
Arachis , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxilipinas , Proteínas de Plantas , Estrés Fisiológico , Arachis/genética , Arachis/metabolismo , Arachis/crecimiento & desarrollo , Arachis/fisiología , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Estudio de Asociación del Genoma Completo
3.
J Environ Manage ; 365: 121670, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38963956

RESUMEN

In the era of climate change and carbon neutrality, China is actively coping with its carbon lock-in dilemma. In this context, the development of the digital economy is considered a possible path to carbon unlocking. This study contributes to the literature by providing a comprehensive analysis of how the digital economy can be leveraged to address carbon lock-in, highlighting the importance of formal environmental regulation and informal environmental regulation in enhancing this effect. Accordingly, following findings are highlighted. (1) Our primary findings provide strong evidence on the negative effect of the digital economy on carbon lock-in; by implication, improving the digital economy is an efficient measure for eradicating carbon lock-in. (2) The digital economy shows the greatest marginal impact on industrial lock-in, while its inhibiting effect on behavior lock-in is the least pronounced. Moreover, the digital economy plays a prominent role in curbing carbon lock-in in provinces with a higher level of physical, human, and social capital. And the asymmetric impacts of the digital economy on carbon lock-in are significant at most quantiles. (3) Environmental regulation is a significant moderator. Put differently, the synergy of formal environmental regulation and the digital economy, as well as informal environmental regulation and the digital economy, are important means to break carbon lock-in. (4) The carbon lock-in mitigation effect of the digital economy is caused mainly by increasing technical market turnover and the efficiency of energy consumption.

4.
World J Clin Cases ; 12(17): 2995-3003, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38898857

RESUMEN

BACKGROUND: Radiation esophagitis (RE) is one of the most common clinical symptoms of regi-onal lymph node radiotherapy for breast cancer. However, there are fewer studies focusing on RE caused by hypofractionated radiotherapy (HFRT). AIM: To analyze the clinical and dosimetric factors that contribute to the development of RE in patients with breast cancer treated with HFRT of regional lymph nodes. METHODS: Between January and December 2022, we retrospectively analysed 64 patients with breast cancer who met our inclusion criteria underwent regional nodal intensity-modulated radiotherapy at a radiotherapy dose of 43.5 Gy/15F. RESULTS: Of the 64 patients in this study, 24 (37.5%) did not develop RE, 29 (45.3%) developed grade 1 RE (G1RE), 11 (17.2%) developed grade 2 RE (G2RE), and none developed grade 3 RE or higher. Our univariable logistic regression analysis found G2RE to be significantly correlated with the maximum dose, mean dose, relative volume 20-40, and absolute volume (AV) 20-40. Our stepwise linear regression analyses found AV30 and AV35 to be significantly associated with G2RE (P < 0.001). The optimal threshold for AV30 was 2.39 mL [area under the curve (AUC): 0.996; sensitivity: 90.9%; specificity: 91.1%]. The optimal threshold for AV35 was 0.71 mL (AUC: 0.932; sensitivity: 90.9%; specificity: 83.9%). CONCLUSION: AV30 and AV35 were significantly associated with G2RE. The thresholds for AV30 and AV35 should be limited to 2.39 mL and 0.71 mL, respectively.

5.
Chem Rev ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900019

RESUMEN

Nanomaterial-microorganism hybrid systems (NMHSs), integrating semiconductor nanomaterials with microorganisms, present a promising platform for broadband solar energy harvesting, high-efficiency carbon reduction, and sustainable chemical production. While studies underscore its potential in diverse solar-to-chemical energy conversions, prevailing NMHSs grapple with suboptimal energy conversion efficiency. Such limitations stem predominantly from an insufficient systematic exploration of the mechanisms dictating solar energy flow. This review provides a systematic overview of the notable advancements in this nascent field, with a particular focus on the discussion of three pivotal steps of energy flow: solar energy capture, cross-membrane energy transport, and energy conversion into chemicals. While key challenges faced in each stage are independently identified and discussed, viable solutions are correspondingly postulated. In view of the interplay of the three steps in affecting the overall efficiency of solar-to-chemical energy conversion, subsequent discussions thus take an integrative and systematic viewpoint to comprehend, analyze and improve the solar energy flow in the current NMHSs of different configurations, and highlighting the contemporary techniques that can be employed to investigate various aspects of energy flow within NMHSs. Finally, a concluding section summarizes opportunities for future research, providing a roadmap for the continued development and optimization of NMHSs.

6.
Adv Sci (Weinh) ; : e2402709, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889334

RESUMEN

Visual observation and therapeutic intervention against tumors hold significant appeal for tumor treatment, particularly in meeting the demands of intraoperative navigation. From a clinical perspective, the naked-eye visualization of tumors provides a direct and convenient approach to identifying tumors and navigating during surgery. Nevertheless, there is an ongoing need to develop effective solutions in this frontier. Genetically engineered microorganisms are promising as living therapeutics for combatting malignant tumors, leveraging precise tumor targeting and versatile programmed functionalities. Here, genetically modified Escherichia coli (E. coli) MG1655 bacterial cells are introduced, called MelaBac cells, designed to express tyrosinase continuously. This bioengineered melanogenesis produces melanin capable of pigmenting both subcutaneous CT26 xenografts and chemically induced colorectal cancer (CRC). Additionally, MelaBac cells demonstrate the initiation of photonic hyperthermia therapy and immunotherapy against tumors, offering promising selective therapeutic interventions with high biocompatibility.

7.
Aging (Albany NY) ; 16(11): 10132-10141, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862253

RESUMEN

BACKGROUND: Acute pancreatitis (AP) is a prevalent acute abdominal condition, and AP induced colonic barrier dysfunction is commonly observed. Total flavonoids of Chrysanthemum indicum L (TFC) have exhibited noteworthy anti-inflammatory and anti-apoptotic properties. METHODS: We established AP models, both in animals and cell cultures, employing Cerulein. 16S rRNA gene sequencing was performed to investigate the gut microorganisms changes. RESULTS: In vivo, TFC demonstrated a remarkable capacity to ameliorate AP, as indicated by the inhibition of serum amylase, myeloperoxidase (MPO) levels, and the reduction in pancreatic tissue water content. Furthermore, TFC effectively curtailed the heightened inflammatory response. The dysfunction of colonic barrier induced by AP was suppressed by TFC. At the in vitro level, TFC treatment resulted in attenuation of increased cell apoptosis, and regulation of apoptosis related proteins expression in AR42J cells. The increase of Bacteroides sartorial, Lactobacillus reuteri, Muribaculum intestinale, and Parabacteroides merdae by AP, and decrease of of Helicobacter rodentium, Pasteurellaceae bacterium, Streptococcus hyointestinalis by AP were both reversed by TFC treatment. CONCLUSIONS: TFC can effectively suppress AP progression and AP induced colonic barrier dysfunction by mitigating elevated serum amylase, MPO levels, water content in pancreatic tissue, as well as curtailing inflammation, apoptosis. The findings presented herein shed light on the potential mechanisms by which TFC inhibit the development of AP progression and AP induced colonic barrier dysfunction.


Asunto(s)
Chrysanthemum , Flavonoides , Microbioma Gastrointestinal , Pancreatitis , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Chrysanthemum/química , Pancreatitis/metabolismo , Pancreatitis/microbiología , Pancreatitis/tratamiento farmacológico , Flavonoides/farmacología , Masculino , Ratas , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Línea Celular , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología
8.
Nat Commun ; 15(1): 4755, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834568

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a severe type of the non-alcoholic fatty liver disease (NAFLD). NASH is a growing global health concern due to its increasing morbidity, lack of well-defined biomarkers and lack of clinically effective treatments. Using metabolomic analysis, the most significantly changed active lipid sphingosine d18:1 [So(d18:1)] is selected from NASH patients. So(d18:1) inhibits macrophage HIF-2α as a direct inhibitor and promotes the inflammatory factors secretion. Male macrophage-specific HIF-2α knockout and overexpression mice verified the protective effect of HIF-2α on NASH progression. Importantly, the HIF-2α stabilizer FG-4592 alleviates liver inflammation and fibrosis in NASH, which indicated that macrophage HIF-2α is a potential drug target for NASH treatment. Overall, this study confirms that So(d18:1) promotes NASH and clarifies that So(d18:1) inhibits the transcriptional activity of HIF-2α in liver macrophages by suppressing the interaction of HIF-2α with ARNT, suggesting that macrophage HIF-2α may be a potential target for the treatment of NASH.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Macrófagos , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico , Esfingosina , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Masculino , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Humanos , Ratones , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Ratones Endogámicos C57BL , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/genética , Modelos Animales de Enfermedad
9.
Sci Rep ; 14(1): 12917, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839811

RESUMEN

Allii Macrostemonis Bulbus (AMB) is a traditional Chinese medicine with medicinal and food homology. AMB has various biological activities, including anti-coagulation, lipid-lowering, anti-tumor, and antioxidant effects. Saponins from Allium macrostemonis Bulbus (SAMB), the predominant beneficial compounds, also exhibited lipid-lowering and anti-inflammatory properties. However, the effect of SAMB on atherosclerosis and the underlying mechanisms are still unclear. This study aimed to elucidate the pharmacological impact of SAMB on atherosclerosis. In apolipoprotein E deficiency (ApoE-/-) mice with high-fat diet feeding, oral SAMB administration significantly attenuated inflammation and atherosclerosis plaque formation. The in vitro experiments demonstrated that SAMB effectively suppressed oxidized-LDL-induced foam cell formation by down-regulating CD36 expression, thereby inhibiting lipid endocytosis in bone marrow-derived macrophages. Additionally, SAMB effectively blocked LPS-induced inflammatory response in bone marrow-derived macrophages potentially through modulating the NF-κB/NLRP3 pathway. In conclusion, SAMB exhibits a potential anti-atherosclerotic effect by inhibiting macrophage foam cell formation and inflammation. These findings provide novel insights into potential preventive and therapeutic strategies for the clinical management of atherosclerosis.


Asunto(s)
Aterosclerosis , Células Espumosas , Inflamación , Saponinas , Animales , Células Espumosas/efectos de los fármacos , Células Espumosas/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , Saponinas/farmacología , Ratones , Inflamación/tratamiento farmacológico , Inflamación/patología , Allium/química , Masculino , Apolipoproteínas E/deficiencia , Dieta Alta en Grasa/efectos adversos , FN-kappa B/metabolismo , Ratones Endogámicos C57BL , Lipoproteínas LDL/metabolismo
10.
Sci Adv ; 10(24): eadn6211, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38865453

RESUMEN

Semi-artificial Z-scheme systems offer promising potential toward efficient solar-to-chemical conversion, yet sustainable and stable designs are currently lacking. Here, we developed a sustainable hybrid Z-scheme system capable for visible light-driven overall water splitting by integrating the durability of inorganic photocatalysts with the interfacial adhesion and regenerative property of bacterial biofilms. The Z-scheme configuration is fabricated by drop casting a mixture of photocatalysts onto a glass plate, followed by the growth of biofilms for conformal conductive paste through oxidative polymerization of pyrrole molecules. Notably, the system exhibited scalability indicated by consistent catalytic efficiency across various sheet areas, resistance observed by remarkable maintaining of photocatalytic efficiency across a range of background pressures, and high stability as evidenced by minimal decay of photocatalytic efficiency after 100-hour reaction. Our work thus provides a promising avenue toward sustainable and high-efficiency artificial photosynthesis, contributing to the broader goal of sustainable energy solutions.

12.
Dev Cell ; 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723629

RESUMEN

In mice, skin-resident type 2 innate lymphoid cells (ILC2s) exhibit some ILC3-like characteristics. However, the underlying mechanism remains elusive. Here, we observed lower expression of the ILC2 master regulator GATA3 specifically in cutaneous ILC2s (cILC2s) compared with canonical ILC2s, in line with its functionally divergent role in transcriptional control in cILC2s. Decreased levels of GATA3 enabled the expansion of RORγt fate-mapped (RORγtfm+) cILC2s after postnatal days, displaying certain similarities to ILC3s. Single-cell trajectory analysis showed a sequential promotion of the RORγtfm+ cILC2 divergency by RORγt and GATA3. Notably, during hair follicle recycling, these RORγtfm+ cILC2s accumulated around the hair follicle dermal papilla (DP) region to facilitate the process. Mechanistically, we found that GATA3-mediated integrin α3ß1 upregulation on RORγtfm+ cILC2s was required for their positioning around the DP. Overall, our study demonstrates a distinct regulatory role of GATA3 in cILC2s, particularly in promoting the divergence of RORγtfm+ cILC2s to facilitate hair follicle recycling.

13.
Eur J Med Chem ; 271: 116451, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691892

RESUMEN

The potent antibacterial activity and low resistance of antimicrobial peptides (AMPs) render them potential candidates for treating multidrug-resistant bacterial infections. Herein, a minimalist design strategy was proposed employing the "golden partner" combination of arginine (R) and tryptophan (W), along with a dendritic structure to design AMPs. By extension, the α/ε-amino group and the carboxyl group of lysine (K) were utilized to link R and W, forming dendritic peptide templates αRn(εRn)KWm-NH2 and αWn(εWn)KRm-NH2, respectively. The corresponding linear peptide templates R2nKWm-NH2 and W2nKRm-NH2 were used as controls. Their physicochemical properties, activity, toxicity, and stability were compared. Among these new peptides, the dendritic peptide R2(R2)KW4 was screened as a prospective candidate owing to its preferable antibacterial properties, biocompatibility, and stability. Additionally, R2(R2)KW4 not only effectively restrained the progression of antibiotic resistance, but also demonstrated synergistic utility when combined with conventional antibiotics due to its unique membrane-disruptive mechanism. Furthermore, R2(R2)KW4 possessed low toxicity (LD50 = 109.31 mg/kg) in vivo, while efficiently clearing E. coli in pulmonary-infected mice. In conclusion, R2(R2)KW4 has the potential to become an antimicrobial regent or adjuvant, and the minimalist design strategy of dendritic peptides provides innovative and encouraging thoughts in designing AMPs.


Asunto(s)
Antibacterianos , Arginina , Pruebas de Sensibilidad Microbiana , Triptófano , Triptófano/química , Triptófano/farmacología , Animales , Arginina/química , Arginina/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Ratones , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Péptidos Antimicrobianos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Infecciones Bacterianas/tratamiento farmacológico , Humanos , Escherichia coli/efectos de los fármacos
14.
Sci Bull (Beijing) ; 69(12): 1936-1953, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38734583

RESUMEN

Molecular glues are typically small chemical molecules that act at the interface between a target protein and degradation machinery to trigger ternary complex formation. Identifying molecular glues is challenging. There is a scarcity of target-specific upregulating molecular glues, which are highly anticipated for numerous targets, including P53. P53 is degraded in proteasomes through polyubiquitination by specific E3 ligases, whereas deubiquitinases (DUBs) remove polyubiquitination conjugates to counteract these E3 ligases. Thus, small-molecular glues that enhance P53 anchoring to DUBs may stabilize P53 through deubiquitination. Here, using small-molecule microarray-based technology and unbiased screening, we identified three potential molecular glues that may tether P53 to the DUB, USP7, and elevate the P53 level. Among the molecular glues, bromocriptine (BC) is an FDA-approved drug with the most robust effects. BC was further verified to increase P53 stability via the predicted molecular glue mechanism engaging USP7. Consistent with P53 upregulation in cancer cells, BC was shown to inhibit the proliferation of cancer cells in vitro and suppress tumor growth in a xenograft model. In summary, we established a potential screening platform and identified potential molecular glues upregulating P53. Similar strategies could be applied to the identification of other types of molecular glues that may benefit drug discovery and chemical biology studies.


Asunto(s)
Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Regulación hacia Arriba , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Animales , Regulación hacia Arriba/efectos de los fármacos , Ratones , Línea Celular Tumoral , Ubiquitinación/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
15.
Eur J Med Chem ; 273: 116519, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795519

RESUMEN

Anticancer peptides (ACPs) have regarded as a new generation of promising antitumor drugs due to the unique mode of action. The main challenge is to develop potential anticancer peptides with satisfied antitumor activity and low toxicity. Here, a series of new α-helical anticancer peptides were designed and synthesized based on the regular repeat motif KLLK. The optimal peptides 14E and 14Aad were successfully derived from the new short α-helical peptide KL-8. Our results demonstrated that 14E and 14Aad had good antitumor activity and low toxicity, exhibiting excellent selectivity index. This result highlighted that the desirable modification position and appropriate hydrophobic side-chain structure of acidic amino acids played critical roles in regulating the antitumor activity/toxicity of new peptides. Further studies indicated that they could induce tumor cell death via the multiple actions of efficient membrane disruption and intracellular mechanisms, displaying apparent superiority in combination with PTX. In addition, the new peptides 14E and 14Aad showed excellent antitumor efficacy in vivo and low toxicity in mice compared to KL-8 and PTX. Particularly, 14Aad with the longer side chain at the 14th site exhibited the best therapeutic performance. In conclusion, our work provided a new avenue to develop promising anticancer peptides with good selectivity for tumor therapy.


Asunto(s)
Antineoplásicos , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Péptidos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Humanos , Ratones , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Estructura Molecular , Línea Celular Tumoral , Ratones Endogámicos BALB C , Apoptosis/efectos de los fármacos , Femenino
16.
Aesthetic Plast Surg ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727847

RESUMEN

BACKGROUND: The mechanism underlying the formation of upper eyelid creases has been the subject of extensive study and ongoing debate. This research aims to elucidate the principles of upper eyelid creases formation, leveraging the membrane bending theory from engineering mechanics. METHODS: We developed an anatomical model of the eyelid and implemented the finite element analysis. Preprocessing and mesh division were conducted using HyperMesh, followed by computational analysis with Abaqus. This approach enabled the observation of dynamic changes in the upper eyelid during eye opening and closing. RESULTS: The study reveals that natural upper eyelid crease formation is influenced by multiple factors. These include the softer texture of the upper eyelid skin and the suborbicularis oculi fat, reduced rigidity at the eyelid crease, optimal contraction force of the upper eyelid, and the strategic placement of the pre-tarsal fat pad just above the eyelid crease. CONCLUSIONS: Ultimately, our findings demonstrate the effectiveness of finite element analysis, grounded in membrane bending theory, in elucidating the dynamics of upper eyelid crease formation. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors   www.springer.com/00266 .

17.
Cell Prolif ; : e13679, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801100

RESUMEN

Uncovering mechanisms of endogenous regeneration and repair through resident stem cell activation will allow us to develop specific therapies for injuries and diseases by targeting resident stem cell lineages. Sox9+ stem cells have been reported to play an essential role in acute kidney injury (AKI). However, a complete view of the Sox9+ lineage was not well investigated to accurately elucidate the functional end state and the choice of cell fate during tissue repair after AKI. To identify the mechanisms of fate determination of Sox9+ stem cells, we set up an AKI model with prostaglandin E2 (PGE2) treatment in a Sox9 lineage tracing mouse model. Single-cell RNA sequencing (scRNA-seq) was performed to analyse the transcriptomic profile of the Sox9+ lineage. Our results revealed that PGE2 could activate renal Sox9+ cells and promote the differentiation of Sox9+ cells into renal proximal tubular epithelial cells and inhibit the development of fibrosis. Furthermore, single-cell transcriptome analysis demonstrated that PGE2 could regulate the restoration of lipid metabolism homeostasis in proximal tubular epithelial cells by participating in communication with different cell types. Our results highlight the prospects for the activation of endogenous renal Sox9+ stem cells with PGE2 for the regenerative therapy of AKI.

18.
Food Res Int ; 187: 114462, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763689

RESUMEN

The risk of tuna adulteration is high driven by economic benefits. The authenticity of tuna is required to protect both consumers and tuna stocks. Given this, the study is designed to identify species-specific peptides for distinguishing three commercial tropical tuna species. The peptides derived from trypsin digestion were separated and detected using ultrahigh-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) in data-dependent acquisition (DDA) mode. Venn analysis showed that there were differences in peptide composition among the three tested tuna species. The biological specificity screening through the National Center for Biotechnology Information's Basic Local Alignment Search Tool (NCBI BLAST) revealed that 93 peptides could serve as potential species-specific peptides. Finally, the detection specificity of species-specific peptides of raw meats and processed products was carried out by multiple reaction monitoring (MRM) mode based on a Q-Trap mass spectrometer. The results showed that three, one and two peptides of Katsuwonus pelamis, Thunnus obesus and Thunnus albacores, respectively could serve as species-specific peptides.


Asunto(s)
Péptidos , Especificidad de la Especie , Atún , Animales , Péptidos/análisis , Espectrometría de Masas/métodos , Cromatografía Líquida de Alta Presión/métodos , Alimentos Marinos/análisis , Contaminación de Alimentos/análisis , Proteínas de Peces/análisis
19.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610295

RESUMEN

In recent years, hydroacoustic transducers made of PZT/epoxy composites have been extensively employed in underwater detection, communication, and recognition for their high energy conversion efficiency. Despite the ease with which these transducers can be formed into complex shapes, their lack of mechanical flexibility limits their versatility across various sizes of underwater vehicles. This study introduces a novel flexible piezoelectric composite hydroacoustic transducer (FPCHT) based on a 1-3 PZT-5A/silicone rubber composite and an island-bridge flexible electrode, which can break the limitations of existing hydroacoustic transducers that do not have flexibility. The finite element method is used to optimize the structural parameters of high-performance 1-3 FPC. A large-sized (187 mm × 47 mm × 5.12 mm) FPC is fabricated using an improved cutting-filling method and packaged into the FPCHT. Compared with the planar rigid PZT/epoxy composite hydroacoustic transducer (RPCHT) of the same size, the TVR (186.5 db) of the FPCHT has increased by about 7 dB, indicating that it has better acoustic radiation performance and electroacoustic conversion efficiency. Furthermore, its electroacoustic performance exhibits excellent stability under different bending states. Therefore, the FPCHT with high electroacoustic performance is an ideal substitute for the existing RPCHT and promotes the development of hydroacoustic transducers towards flexibility and portability.

20.
Int J Infect Dis ; 144: 107045, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604470

RESUMEN

BACKGROUND: The course of organ dysfunction (OD) in Corona Virus Disease 2019 (COVID-19) patients is unknown. Herein, we analyze the temporal patterns of OD in intensive care unit-admitted COVID-19 patients. METHODS: Sequential organ failure assessment scores were evaluated daily within 2 weeks of admission to determine the temporal trajectory of OD using group-based multitrajectory modeling (GBMTM). RESULTS: A total of 392 patients were enrolled with a 28-day mortality rate of 53.6%. GBMTM identified four distinct trajectories. Group 1 (mild OD, n = 64), with a median APACHE II score of 13 (IQR 9-21), had an early resolution of OD and a low mortality rate. Group 2 (moderate OD, n = 140), with a median APACHE II score of 18 (IQR 13-22), had a 28-day mortality rate of 30.0%. Group 3 (severe OD, n = 117), with a median APACHR II score of 20 (IQR 13-27), had a deterioration trend of respiratory dysfunction and a 28-day mortality rate of 69.2%. Group 4 (extremely severe OD, n = 71), with a median APACHE II score of 20 (IQR 17-27), had a significant and sustained OD affecting all organ systems and a 28-day mortality rate of 97.2%. CONCLUSIONS: Four distinct trajectories of OD were identified, and respiratory dysfunction trajectory could predict nonpulmonary OD trajectories and patient prognosis.


Asunto(s)
COVID-19 , Unidades de Cuidados Intensivos , Insuficiencia Multiorgánica , Puntuaciones en la Disfunción de Órganos , SARS-CoV-2 , Humanos , COVID-19/mortalidad , COVID-19/complicaciones , COVID-19/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Insuficiencia Multiorgánica/mortalidad , Insuficiencia Multiorgánica/etiología , Anciano , APACHE , Hospitalización , Mortalidad Hospitalaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...