Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Anim Biotechnol ; 35(1): 2383261, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39091224

RESUMEN

The aim of this study was to analyze the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid mutton sheep using ASReml software, in order to provide theoretical basis for screening the optimal hybriding combinations and accelerating the breeding process of new breeds of specialized housed-feeding mutton sheep. We selected the wellgrown hybrid Southhu (Southdown × Hu sheep) and Dorhu (Dorset × Hu sheep) sheep as the research objects, constructed weight correction formulae for SH and DH sheep at 60 and 180 days; and used ASReml software to investigate the effects of non-genetic factors on the estimation of genetic parameters of early growth traits in hybrid sheep. The results showed that the birth month and birth type were found significant for all traits (p < 0.001); the heritability of maternal effects ranged from 0.0709 to 0.1859. It was found that both SH and DH sheep emerged the potential for rapid early growth and development, early growth traits are significantly affected by maternal genetic effects, thereby the maternal effect should be taken into consideration for the purpose of improving accuracy in parameter estimations and therefore increasing the success of breeding programs.


Asunto(s)
Cruzamiento , Animales , Ovinos/genética , Femenino , Hibridación Genética/genética , Programas Informáticos , Masculino , Peso Corporal/genética , Oveja Doméstica/genética , Oveja Doméstica/crecimiento & desarrollo , Oveja Doméstica/fisiología
2.
R Soc Open Sci ; 11(7): 240380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39086832

RESUMEN

Bimetallic metal-organic frameworks (BMOFs) are a class of functional porous materials constructed by coordination between nodes containing two different metal ions and organic ligands. Studies have shown that the catalytic activity of BMOFs is greatly improved owing to the adjustment of charge distribution and the increase of active sites as well as the synergistic effect between the bimetals, and the advantages of their large specific surface area, high porosity, unique structure and dispersed active centres make them available as important organic materials applied in the field of wastewater treatment. In this review, the preparation and construction methods for BMOFs in recent years are summarized, and we focus on their removal of different types of pollutants in the aqueous environment, including ions, dyes, pharmaceuticals or personal care products, phenolic compounds and microorganisms, as well as their corresponding removal mechanisms. In addition, we provide an outlook on their future opportunities and challenges in wastewater treatment.

3.
BMC Med Educ ; 24(1): 712, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956620

RESUMEN

BACKGROUND: The online-to-offline (O2O) teaching method is recognized as a new educational model that integrates network learning into offline classroom education, while problem-based learning (PBL) is a teaching modality that guides students to apply acquired theoretical knowledge to solve practical problems. However, implementing O2O combined with PBL has not been extensively explored in nephrology residency training. This study aims to explore the efficacy of O2O combined with PBL in the standardized residency training of nephrology by comparing it with the traditional lecture-based teaching (LBT). METHODS: Sixty residency trainees who participated in the standardized training of internal medicine in the nephrology department of the Second Affiliated Hospital of Zhejiang University School of Medicine were equally allocated into O2O combined with PBL (O2O/PBL) or the LBT group demographically matched. Examinations of theory, practice skills, clinical thinking and teaching satisfaction surveys were utilized to assess the teaching effects of the two groups. RESULTS: Participants from the O2O/PBL group outperformed those from the LBT group in the examination of theory (81.233 ± 9.156 vs. 75.800 ± 7.009, mean ± SEM), practice skills (104.433 ± 3.569 vs.100.316 ± 4.628, mean ± SEM) and clinical thinking (88.933 ± 4.473 vs. 86.667 ± 3.844, mean ± SEM). There was no significant difference in the teaching satisfaction between the two groups. CONCLUSION: The current study shows the positive impact of O2O combined with PBL approach on standardized residency training in nephrology without reducing teaching satisfaction.


Asunto(s)
Internado y Residencia , Nefrología , Aprendizaje Basado en Problemas , Aprendizaje Basado en Problemas/métodos , Humanos , Nefrología/educación , Masculino , Femenino , Competencia Clínica , Evaluación Educacional , Enseñanza , Adulto , Instrucción por Computador/métodos , Educación a Distancia
5.
Polymers (Basel) ; 16(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065289

RESUMEN

A polysaccharide (CP2-S), consisting of glucose with a weight average molecular weight of 5.9 × 106, was purified from the fruit bodies of Cordyceps militaris. In this work, the corresponding structure and anti-tumor activity in vivo were investigated. Methylation and NMR analysis revealed that CP2-S was composed of a →4)-α-D-Glcp-(1→ backbone with partial substitution occurring at O-6 by T-linked α-D-Glcp in every ten residues, which has not been reported in previous reports. In vivo anti-tumor experiments showed that CP2-S could inhibit the growth of Lewis lung carcinoma in mice. Tumor inhibition rates were 17.8%, 24.5%, and 29.5% at dosages of 12.5, 50, and 100 mg/kg/d, respectively. Compared with the cisplatin group, mice treated with CP2-S exhibited a significant increase in spleen index (increased 22.7-42.4%) and thymus index (increased 47.7-36.8%). Additionally, serum levels of IgM and IgG in tumor-bearing mice increased by approximately 6.11~10.75-folds and 1.31~1.38-folds, respectively. These findings prove that CP2-S significantly inhibited the growth of Lewis lung carcinoma through immune-enhancing activity in mice.

6.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062882

RESUMEN

SINA (Seven in absentia) E3 ubiquitin ligases are a family of RING (really interesting new gene) E3 ubiquitin ligases, and they play a crucial role in regulating plant growth and development, hormone response, and abiotic and biotic stress. However, there is little research on the SINA gene family in U. rhynchophylla. In this study, a total of 10 UrSINA genes were identified from the U. rhynchophylla genome. The results of multiple sequence alignments and chromosomal locations show that 10 UrSINA genes were unevenly located on 22 chromosomes, and each UrSINA protein contained a SINA domain at the N-terminal and RING domains at the C-terminal. Synteny analysis showed that there are no tandem duplication gene pairs and there are four segmental gene pairs in U. rhynchophylla, contributing to the expansion of the gene family. Furthermore, almost all UrSINA genes contained the same gene structure, with three exons and two introns, and there were many cis-acting elements relating to plant hormones, light responses, and biotic and abiotic stress. The results of qRT-PCR show that most UrSINA genes were expressed in stems, with the least expression in roots; meanwhile, most UrSINA genes and key enzyme genes were responsive to ABA and MeJA hormones with overlapping but different expression patterns. Co-expression analysis showed that UrSINA1 might participate in the TIA pathway under ABA treatment, and UrSINA5 and UrSINA6 might participate in the TIA pathway under MeJA treatment. The mining of UrSINA genes in the U. rhynchophylla provided novel information for understanding the SINA gene and its function in plant secondary metabolites, growth, and development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Reguladores del Crecimiento de las Plantas , Ubiquitina-Proteína Ligasas , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Estrés Fisiológico/genética , Perfilación de la Expresión Génica , Sintenía , Cromosomas de las Plantas/genética
7.
Chem Commun (Camb) ; 60(62): 8063-8066, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38989638

RESUMEN

An efficient strategy for the oxidative cleavage of CC bonds in olefins to form esters with one or multiple carbon atoms less over heterogeneous cobalt/nitrogen-doped carbon catalyst with dioxygen as the oxidant was described. The protocol features a wide substrate range including the challenging inactive aliphatic and long-chain alkyl aryl olefins. The reactivity of the catalyst did not decrease after reused for seven times. Characterization and control experiments reveal that synergistic effects between the metallic Co nanoparticles and Co-Nx sites provide access to the excellent catalytic activity.

8.
Chin Med J (Engl) ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38879805

RESUMEN

BACKGROUND: G protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA). METHODS: The blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism. RESULTS: In patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (Tregs), an increase in the cluster of differentiation 8 positive (CD8+) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8+ T cells, and induced the proportion of Tregs. Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells. CONCLUSION: Paroxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cell in RA.

9.
Poult Sci ; 103(7): 103833, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810563

RESUMEN

The family of cell cycle-dependent kinases (CDKs) serves as catalytic subunits within protein kinase complexes, playing a crucial role in cell cycle progression. While the function of CDK proteins in regulating mammalian innate immune responses and virus replication is well-documented, their role in chickens remains unclear. To address this, we cloned several chicken CDKs, specifically CDK6 through CDK10. We observed that CDK6 is widely expressed across various chicken tissues, with localization in the cytoplasm, nucleus, or both in DF-1 cells. In addition, we also found that multiple chicken CDKs negatively regulate IFN-ß signaling induced by chicken MAVS or chicken STING by targeting different steps. Moreover, during infection with infectious bursal disease virus (IBDV), various chicken CDKs, except CDK10, were recruited and co-localized with viral protein VP1. Interestingly, overexpression of CDK6 in chickens significantly enhanced IBDV replication. Conversely, knocking down CDK6 led to a marked increase in IFN-ß production, triggered by chMDA5. Furthermore, targeting endogenous CDK6 with RNA interference substantially reduced IBDV replication. These findings collectively suggest that chicken CDKs, particularly CDK6, act as suppressors of IFN-ß production and play a facilitative role in IBDV replication.


Asunto(s)
Proteínas Aviares , Pollos , Quinasas Ciclina-Dependientes , Replicación Viral , Animales , Pollos/genética , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Enfermedades de las Aves de Corral/virología , Enfermedades de las Aves de Corral/metabolismo , Enfermedades de las Aves de Corral/genética , Infecciones por Birnaviridae/veterinaria , Infecciones por Birnaviridae/virología , Inmunidad Innata
10.
ChemSusChem ; : e202400038, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771426

RESUMEN

Perovskite solar cells (PSCs) are usually modified and passivated to improve their performance and stability. The interface modification and bulk doping are the two basic strategies. Fluorine (F)-containing materials are highly favored because of their unique hydrophobicity and coordination ability. This review discusses the basic characteristics of F, and the basic principles of improving the photovoltaic performance and stability of PSC devices using F-containing materials. We systematically summarized the latest progress in the application of F-containing materials to achieve efficient and stable PSCs on several key interface layers. It is believed that this work will afford significant understanding and inspirations toward the future application directions of F-containing materials in PSCs, and provide profound insights for the development of efficient and stable PSCs.

11.
Cell Death Discov ; 10(1): 253, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789436

RESUMEN

Ferroptosis is a novel form of programmed cell death which can exacerbate lung injury in septic acute respiratory distress syndrome (ARDS). Alveolar macrophages, crucial innate immune cells, play a pivotal role in the pathogenesis of ARDS. Ferritinophagy is a process of ferritin degradation mediated by nuclear receptor coactivator 4 (NCOA4) which releases large amounts of iron ions thus promoting ferroptosis. Recent evidence revealed that inhibiting macrophage ferroptosis can effectively attenuate pulmonary inflammatory injury. Melatonin (MT), an endogenous neurohormone, has antioxidant and anti-inflammatory effects and can reduce septic ARDS. However, it is not clear whether MT's pulmonary protective effect is related to the inhibition of macrophage ferritinophagy. Our in vitro experiments demonstrated that MT decreased intracellular malondialdehyde (MDA), Fe2+, and lipid peroxidation levels, increased glutathione (GSH) levels and cell proliferation, and upregulated glutathione peroxidase 4 (GPX4) and ferritin heavy chain 1 (FTH1) protein levels in LPS-treated macrophages. Mechanistically, the antiferroptotic effect of MT on LPS-treated macrophages was significantly compromised by the overexpression of NCOA4. Our in vivo experiments revealed that MT alleviated the protein expression of NCOA4 and FTH1 in the alveolar macrophages of septic mice. Furthermore, MT improved lipid peroxidation and mitigated damage in alveolar macrophages and lung tissue, ultimately increasing the survival rates of septic mice. These findings indicate that MT can inhibit ferroptosis in an NCOA4-mediated ferritinophagy manner, thereby ameliorating septic ARDS.

12.
Biomed Pharmacother ; 176: 116843, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810405

RESUMEN

Hyperlipidemia-induced osteoporosis is marked by increased bone marrow adiposity, and treatment with statins for hyperlipidemia often leads to new-onset osteoporosis. Endosome-associated trafficking regulator 1 (ENTR1) has been found to interact with different proteins in pathophysiology, but its exact role in adipogenesis is not yet understood. This research aimed to explore the role of ENTR1 in adipogenesis and to discover a new small molecule that targets ENTR1 for evaluating its effectiveness in treating hyperlipidemia-induced osteoporosis. We found that ENTR1 expression increased during the adipogenesis of bone marrow mesenchymal cells (BMSCs). ENTR1 gain- and loss-of-function assays significantly enhanced lipid droplets formation. Mechanistically, ENTR1 binds peroxisome proliferator-activated receptor γ (PPARγ) and enhances its expression, thereby elevating adipogenic markers including C/EBPα and LDLR. Therapeutically, AN698/40746067 attenuated adipogenesis by targeting ENTR1 to suppress PPARγ. In vivo, AN698/40746067 reduced bone marrow adiposity and bone loss, as well as prevented lipogenesis-related obesity, inflammation, steatohepatitis, and abnormal serum lipid levels during hyperlipidemia. Together, these findings suggest that ENTR1 facilitates adipogenesis by PPARγ involved in BMSCs' differentiation, and targeted inhibition of ENTR1 by AN698/40746067 may offer a promising therapy for addressing lipogenesis-related challenges and alleviating osteoporosis following hyperlipidemia.


Asunto(s)
Adipogénesis , Médula Ósea , Hiperlipidemias , Células Madre Mesenquimatosas , Osteoporosis , PPAR gamma , Animales , Masculino , Ratones , Adipogénesis/efectos de los fármacos , Adiposidad/efectos de los fármacos , Médula Ósea/metabolismo , Médula Ósea/efectos de los fármacos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo , Osteoporosis/etiología , Osteoporosis/prevención & control , PPAR gamma/metabolismo
13.
Anal Chem ; 96(19): 7747-7755, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691774

RESUMEN

Accurate classification of tumor cells is of importance for cancer diagnosis and further therapy. In this study, we develop multimolecular marker-activated transmembrane DNA computing systems (MTD). Employing the cell membrane as a native gate, the MTD system enables direct signal output following simple spatial events of "transmembrane" and "in-cell target encounter", bypassing the need of multistep signal conversion. The MTD system comprises two intelligent nanorobots capable of independently sensing three molecular markers (MUC1, EpCAM, and miR-21), resulting in comprehensive analysis. Our AND-AND logic-gated system (MTDAND-AND) demonstrates exceptional specificity, allowing targeted release of drug-DNA specifically in MCF-7 cells. Furthermore, the transformed OR-AND logic-gated system (MTDOR-AND) exhibits broader adaptability, facilitating the release of drug-DNA in three positive cancer cell lines (MCF-7, HeLa, and HepG2). Importantly, MTDAND-AND and MTDOR-AND, while possessing distinct personalized therapeutic potential, share the ability of outputting three imaging signals without any intermediate conversion steps. This feature ensures precise classification cross diverse cells (MCF-7, HeLa, HepG2, and MCF-10A), even in mixed populations. This study provides a straightforward yet effective solution to augment the versatility and precision of DNA computing systems, advancing their potential applications in biomedical diagnostic and therapeutic research.


Asunto(s)
ADN , Molécula de Adhesión Celular Epitelial , MicroARNs , Humanos , Molécula de Adhesión Celular Epitelial/metabolismo , ADN/química , MicroARNs/análisis , MicroARNs/metabolismo , Mucina-1/metabolismo , Mucina-1/análisis , Computadores Moleculares , Células MCF-7 , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/análisis , Membrana Celular/metabolismo , Membrana Celular/química , Células Hep G2
14.
Adv Sci (Weinh) ; 11(21): e2306486, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588050

RESUMEN

Nucleosome assembly proteins (NAPs) have been identified as histone chaperons. Testis-Specific Protein, Y-Encoded-Like (TSPYL) is a newly arisen NAP family in mammals. TSPYL2 can be transcriptionally induced by DNA damage and TGFß causing proliferation arrest. TSPYL1, another TSPYL family member, has been poorly characterized and is the only TSPYL family member known to be causal of a lethal recessive disease in humans. This study shows that TSPYL1 and TSPYL2 play an opposite role in TGFß signaling. TSPYL1 partners with the transcription factor FOXA1 and histone methyltransferase EZH2, and at the same time represses TGFBR1 and epithelial-mesenchymal transition (EMT). Depletion of TSPYL1 increases TGFBR1 expression, upregulates TGFß signaling, and elevates the protein stability of TSPYL2. Intriguingly, TSPYL2 forms part of the SMAD2/3/4 signal transduction complex upon stimulation by TGFß to execute the transcriptional responses. Depletion of TSPYL2 rescues the EMT phenotype of TSPYL1 knockdown in A549 lung carcinoma cells. The data demonstrates the prime role of TSPYL2 in causing the dramatic defects in TSPYL1 deficiency. An intricate counter-balancing role of TSPYL1 and TSPYL2 in regulating TGFß signaling is also unraveled.


Asunto(s)
Receptor Tipo I de Factor de Crecimiento Transformador beta , Transducción de Señal , Factor de Crecimiento Transformador beta , Humanos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral
15.
FEBS Lett ; 598(11): 1402-1410, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38589226

RESUMEN

Overactivation of the epidermal growth factor receptor (EGFR) is critical for the development of multiple cancers. Previous studies have shown that the cell membrane is a key regulator of EGFR kinase activity through its interaction with the EGFR juxtamembrane domain (JM). However, the lipid recognition specificity of EGFR-JM and its interaction details remain unclear. Using lipid strip and liposome pulldown assays, we showed that EGFR-JM could specifically interact with PI(4,5)P2-or phosphatidylserine-containing membranes. We further characterized the JM-membrane interaction using NMR-titration-based chemical shift perturbation and paramagnetic relaxation enhancement analyses, and found that residues I649 - L659 comprised the membrane-binding site. Furthermore, the membrane-binding region contains the predicted dimerization motif of JM, 655LRRLL659, suggesting that membrane binding may affect JM dimerization and, therefore, regulate kinase activation.


Asunto(s)
Membrana Celular , Receptores ErbB , Fosfatidilserinas , Unión Proteica , Dominios Proteicos , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Membrana Celular/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilserinas/química , Sitios de Unión , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Liposomas/metabolismo , Liposomas/química , Multimerización de Proteína , Secuencia de Aminoácidos
16.
BMC Pregnancy Childbirth ; 24(1): 329, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678187

RESUMEN

BACKGROUND: This study aimed to establish a placental long non-coding RNA (lncRNA)-mRNA expression network for early-onset preeclampsia (early-onset PE). METHODS: The RNA sequencing data of the GSE14821 dataset were acquired. Several crucial lncRNAs and mRNAs were exerted based on the differential expression analysis of lncRNA and mRNA. By analyzing the differentially expressed lncRNA and mRNA, we constructed a regulatory network to explore the mechanism of the lncRNA in early onset preeclampsia. RESULTS: A total of 4436 differentially expressed lncRNAs (DElncRNAs) were identified in early-onset PE placenta samples compared with control placenta samples. Pearson correlation analysis revealed significant correlations between 3659 DElncRNAs and 372 DEmRNAs. KEGG analysis showed that the DEmRNAs were enriched in cytokine-cytokine receptor and hypoxia-inducible factor (HIF)-1 pathways. Several well-known early-onset PE-related mRNAs, such as vascular endothelial growth factor A (VEGFA) and VEGF receptor 1 (FLT1), were involved in the two pathways. Weighted gene co-expression network analysis and cis-regulatory analysis further suggested the involvement of the two pathways and potential DElncRNA-DEmRNA interactions in early-onset PE. Moreover, the upregulation of representative DElncRNAs, such as RP11-211G3.3 and RP11-65J21.3, and DEmRNAs, such as VEGFA and FLT1, were validated in clinical placenta samples from patients with early-onset PE by quantitative reverse transcription PCR. Importantly, overexpression of RP11-65J21.3 significantly promoted the proliferation of HTR-8 trophoblast cells at 72 h after transfection. CONCLUSIONS: In conclusion, we identified placental DElncRNAs of early-onset PE and established a DElncRNA-DEmRNA network that was closely related to the cytokine-cytokine receptor and HIF-1 pathways. Our results provide potential diagnostic markers and therapeutic targets for early-onset PE management.


Asunto(s)
Redes Reguladoras de Genes , Placenta , Preeclampsia , ARN Largo no Codificante , ARN Mensajero , Humanos , Femenino , Preeclampsia/genética , Preeclampsia/metabolismo , Embarazo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Placenta/metabolismo , Adulto , Perfilación de la Expresión Génica , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Estudios de Casos y Controles
17.
BMC Genomics ; 25(1): 391, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649797

RESUMEN

Developmental delay (DD), or intellectual disability (ID) is a very large group of early onset disorders that affects 1-2% of children worldwide, which have diverse genetic causes that should be identified. Genetic studies can elucidate the pathogenesis underlying DD/ID. In this study, whole-exome sequencing (WES) was performed on 225 Chinese DD/ID children (208 cases were sequenced as proband-parent trio) who were classified into seven phenotype subgroups. The phenotype and genomic data of patients with DD/ID were further retrospectively analyzed. There were 96/225 (42.67%; 95% confidence interval [CI] 36.15-49.18%) patients were found to have causative single nucleotide variants (SNVs) and small insertions/deletions (Indels) associated with DD/ID based on WES data. The diagnostic yields among the seven subgroups ranged from 31.25 to 71.43%. Three specific clinical features, hearing loss, visual loss, and facial dysmorphism, can significantly increase the diagnostic yield of WES in patients with DD/ID (P = 0.005, P = 0.005, and P = 0.039, respectively). Of note, hearing loss (odds ratio [OR] = 1.86%; 95% CI = 1.00-3.46, P = 0.046) or abnormal brainstem auditory evoked potential (BAEP) (OR = 1.91, 95% CI = 1.02-3.50, P = 0.042) was independently associated with causative genetic variants in DD/ID children. Our findings enrich the variation spectrums of SNVs/Indels associated with DD/ID, highlight the value genetic testing for DD/ID children, stress the importance of BAEP screen in DD/ID children, and help to facilitate early diagnose, clinical management and reproductive decisions, improve therapeutic response to medical treatment.


Asunto(s)
Discapacidades del Desarrollo , Secuenciación del Exoma , Discapacidad Intelectual , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , Pueblos del Este de Asia/genética , Mutación INDEL , Discapacidad Intelectual/genética , Fenotipo , Polimorfismo de Nucleótido Simple
18.
BMC Sports Sci Med Rehabil ; 16(1): 92, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659073

RESUMEN

BACKGROUND: Social communication impairments (SCI) is a core symptom of autism spectrum disorder (ASD) and is marked by challenges in social interaction. Although physical exercise has been shown to improve SCI, this finding has not been supported by comprehensive scientific evidence. Existing research has established a strong link between the SCI in children with ASD and abnormalities in regional homogeneity (ReHo). Therefore, investigating the effects of physical exercise on SCI and Reho in patients with ASD may help to elucidate the neurological mechanisms involved. METHODS: The present study included 30 preschool children diagnosed with ASD, with 15 participants in each group (experimental and control). The experimental group underwent a 12-week mini-basketball training program (MBTP) based on routine behavioral rehabilitation, while the control group only received routine behavioral rehabilitation. The Social Responsiveness Scale-Second Edition (SRS-2) was employed to assess SCI in both groups. Resting-state functional magnetic resonance imaging technology was used to evaluate ReHo in both groups. RESULTS: After 12-week of MBTP, significant group × time interactions were observed between the experimental and control groups in total SRS-2 scores (F = 14.514, p < 0.001, ηp2 = 0.341), as well as in the domains of social cognition (F = 15.620, p < 0.001, ηp2 = 0.358), social communication (F = 12.460, p < 0.01, ηp2 = 0.308), and autistic mannerisms (F = 9.970, p < 0.01, ηp2 = 0.263). No statistical difference was found in the scores for the social awareness subscale and social motivation subscale in the group × time interaction (all p > 0.05). The experimental group exhibited increased ReHo in the right Cerebellum_Crus1 and right parahippocampal gyrus, coupled with decreased ReHo in the left middle frontal gyrus (orbital part), left superior frontal gyrus (dorsolateral), left postcentral gyrus, and right superior parietal gyrus. Furthermore, a decrease in ReHo in the left postcentral gyrus positively correlated with changes in social communication scores in SCI behaviors (p < 0.05). CONCLUSIONS: Our study underscores the effectiveness of a 12-week MBTP in ameliorating SCI and abnormalities in ReHo among preschool children with ASD. TRIAL REGISTRATION: The trial is retrospectively registered on the Chinese Clinical Trial Registry (ChiCTR1900024973; August 5, 2019).

19.
Anal Chem ; 96(18): 6968-6977, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38662948

RESUMEN

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Asunto(s)
Colorantes Fluorescentes , Células Espumosas , Gotas Lipídicas , Colorantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patología , Animales , Ratones , Gotas Lipídicas/metabolismo , Gotas Lipídicas/química , Lisosomas/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/patología , Imagen Óptica , Humanos , Células RAW 264.7 , Concentración de Iones de Hidrógeno , Color
20.
ChemSusChem ; 17(12): e202301497, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38446050

RESUMEN

Interface modification and bulk doping are two major strategies to improve the photovoltaic performance of perovskite solar cells (PSCs). Dipolar molecules are highly favored due to their unique dipolarity. This review discusses the basic concepts and characteristics of dipoles. In addition, the role of dipoles in PSCs and the corresponding conventional characterization methods for dipoles are introduced. Then, we systematically summarize the latest progress in achieving efficient and stable PSCs in dipole materials at several key interfaces. Finally, we look forward to the future application directions of dipole molecules in PSCs, aiming at providing deep insight and inspiration for developing efficient and stable PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA