Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.394
1.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 178-186, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38836664

This study aimed to explore the regulatory effects and associated mechanisms of adiponectin on apoptosis and proliferation in the LN18 glioma cell line through the AMPK and Akt signaling pathways. Additionally, we sought to elucidate the impact of adiponectin on the chemosensitivity of the LN18 glioma cell line to temozolomide (TMZ). The proliferation rate of glioma cells treated with adiponectin was assessed using the cholecystokinin (CCK8) assay. The Western blot analysis was employed to assess the expression of p-Akt, p-AMPK, p-mTOR, cleaved caspase3, Bax, Cyclin D1, and Cyclin B1 following adiponectin treatment. Cell apoptosis was quantified using AnnexinV/PI flow cytometry, while changes in the cell cycle were detected using PI staining flow cytometry. The findings revealed that adiponectin upregulates p-AMPK expression and downregulates p-mTOR expression in the PTEN wild-type glioma cell line LN18, with no discernible effect on p-Akt expression. Moreover, adiponectin inhibits the proliferation rate of the PTEN wild-type glioma cell line LN18, enhances the expression of cleaved caspase3 and Bax, and significantly elevates the apoptosis rate, as evidenced by AnnexinV/PI flow cytometry. Adiponectin was observed to suppress the expression of Cyclin D1 and Cyclin B1, increase the number of cells in the G1 phase, and promote autophagy. Additionally, adiponectin augments the expression of Beclin1 and the ratio of LC3II/I in the PTEN wild-type glioma cell line LN18, while decreasing p62 expression. In conclusion, this study posits that adiponectin holds therapeutic promise for glioma treatment. Furthermore, adiponectin enhances the inhibitory effect of TMZ on the proliferation rate of LN18 cells when treated with 0.1 mM and 1 mM TMZ. These results collectively suggest that adiponectin impedes proliferation, encourages apoptosis and autophagy in the LN18 glioma cell line, and heightens its sensitivity to the chemotherapeutic drug TMZ.


Adiponectin , Apoptosis , Autophagy , Cell Proliferation , Glioma , Temozolomide , Adiponectin/metabolism , Adiponectin/pharmacology , Adiponectin/genetics , Apoptosis/drug effects , Humans , Glioma/pathology , Glioma/metabolism , Glioma/drug therapy , Glioma/genetics , Autophagy/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Temozolomide/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism
2.
BMC Genomics ; 25(1): 592, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867146

BACKGROUND: Intramuscular fat content is an important index reflecting the quality of mutton, which directly affects the flavor and tenderness of mutton. Livestock and poultry intramuscular fat content is influenced by genetics, nutritional level, and environmental factors. Key regulatory factors play a crucial role in intramuscular fat deposition. However, there is a limited amount of research on the identification and function of key genes involved in intramuscular fat content deposition specifically in sheep. RESULTS: Histological differences in the longest dorsal muscle of the small-tailed frigid sheep increased in diameter and decreased in several muscle fibers with increasing monthly age; The intramuscular fat content of the longest dorsal muscle of the small-tailed cold sheep varied with age, with a minimum of 1 month of age, a maximum of 6 months of age, and a minimum of 12 months of age. Transcriptomic sequencing and bioinformatics analysis revealed a large number of differential genes in the longest dorsal muscles of little-tailed billy goats of different months of age, which were enriched in multiple GO entries and KEGG pathways. Among them, the pathway associated with intramuscular fat was the AMPK signaling pathway, and the related genes were PPARGC1A and ADIPOQ; Immunohistochemical studies showed that PPARGC1A and ADIPOQ proteins were expressed in connective tissues, cell membranes, and, to a lesser extent, the cytoplasm of the longest dorsal muscle of the little-tailed frigid sheep; Real-time PCR and Western Blot validation showed that PPARGC1A and ADIPOQ were both expressed in the longest dorsal muscle of the little-tailed frigid sheep at different ages, and there were age differences in the amount of expression. The ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle, and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle; As inferred from the above results, the ADIPOQ gene was negatively correlated with the intramuscular fat content of the longest dorsal muscle (r = -0.793, P < 0.05); and the PPARGC1A gene was positively correlated with the intramuscular fat content of the longest dorsal muscle r = 0.923, P < 0.05). CONCLUSIONS: Based on the above results, it can be inferred that the ADIPOQ gene is negatively correlated with the intramuscular fat content of the longest back muscle (r = -0.793, P < 0.05); the PPARGC1A gene is positively correlated with the intramuscular fat content of the longest back muscle (r = 0.923, P < 0.05).


Adipose Tissue , Muscle, Skeletal , Animals , Sheep/genetics , Sheep/metabolism , Muscle, Skeletal/metabolism , Adipose Tissue/metabolism , Adiponectin/metabolism , Adiponectin/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Gene Expression Profiling , Transcriptome
3.
Genes (Basel) ; 15(6)2024 May 23.
Article En | MEDLINE | ID: mdl-38927605

Type 2 diabetes mellitus (T2DM) is a socially significant disease with increasing prevalence worldwide. It is characterized by heterogeneous metabolic disorders and is associated with various risk factors, including BMI, abnormal lipid levels, hypertension, smoking, dietary preferences, physical inactivity, sedentary lifestyle, family history of diabetes, prediabetes or gestational diabetes, inflammation, intrauterine environment, age, sex, ethnicity, and socioeconomic status. Assessing the genetic risk of developing T2DM in specific populations remains relevant. The ADIPOQ gene, encoding adiponectin, is directly related to the risk of developing T2DM, obesity, and cardiovascular diseases. Our study demonstrated significant associations of ADIPOQ gene polymorphisms with the risk of developing T2DM and obesity, as well as with fasting glucose levels and BMI, in the Kazakh population. Specifically, rs266729 was significantly associated with T2DM and obesity in the Kazakh population, while other studied polymorphisms (rs1501299, rs2241766, and rs17846866) did not show a significant association. These findings suggest that ADIPOQ gene polymorphisms may influence T2DM risk factors and highlight the importance of genetic factors in T2DM development. However, further research in larger cohorts is needed to confirm these associations.


Adiponectin , Diabetes Mellitus, Type 2 , Genetic Predisposition to Disease , Obesity , Polymorphism, Single Nucleotide , Humans , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/epidemiology , Female , Adiponectin/genetics , Male , Obesity/genetics , Middle Aged , Case-Control Studies , Adult , Risk Factors , Kazakhstan/epidemiology , Aged
4.
Front Biosci (Landmark Ed) ; 29(6): 236, 2024 Jun 25.
Article En | MEDLINE | ID: mdl-38940054

BACKGROUND: This study aimed to elucidate the molecular mechanism through which C1q/tumor necrosis factor (TNF)-related protein 9 (CTRP9) acts in the formation and differentiation of brown adipose tissue (BAT). METHODS: Adenovirus particles encoding CTRP9 and green fluorescent protein were inoculated into the scapula of C57BL/6J mice and fed a high-fat diet for 8 weeks; the body weight, lipid droplet morphology, glucose tolerance, insulin tolerance, and protein expression levels were analyzed. In addition, CTRP9 adenovirus was transfected into brown preadipocytes, and differentiation was induced to identify the effect of CTRP9 overexpression on adipocyte differentiation. RESULTS: CTRP9 overexpression significantly increased the weight gain of mice. Additionally, the CTRP9 overexpression group exhibited significantly increased adipose tissue weight and glucose clearance rates and decreased insulin sensitivity and serum triglyceride levels compared to the control group. Furthermore, CTRP9 overexpression significantly upregulated the adipose triglyceride lipase (ATGL) and perilipin 1 protein expression levels in BAT. The cell experiment results confirmed that CTRP9 overexpression significantly inhibited the adipogenesis of brown adipocytes as evidenced by the downregulation of uncoupling protein 1, beta-3 adrenergic receptor, ATGL, and hormone-sensitive lipase mRNA levels and the significant suppression of uncoupling protein 1, ATGL, and perilipin 1 protein levels in brown adipocytes. CONCLUSIONS: The finding of this study demonstrated that CTRP9 promotes lipolysis by upregulating ATGL expression in vivo and inhibits the differentiation of brown preadipocytes in vitro.


Adipose Tissue, Brown , Diet, High-Fat , Lipolysis , Mice, Inbred C57BL , Animals , Diet, High-Fat/adverse effects , Adipose Tissue, Brown/metabolism , Male , Mice , Adiponectin/metabolism , Adiponectin/genetics , Insulin Resistance , Lipase/metabolism , Lipase/genetics , Cell Differentiation , Adipogenesis/genetics , Perilipin-1/metabolism , Perilipin-1/genetics , Acyltransferases , Glycoproteins
5.
Int J Mol Sci ; 25(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38791438

Geese are susceptible to oxidative stress during reproduction, which can lead to follicular atresia and impact egg production. Follicular atresia is directly triggered by the apoptosis and autophagy of granulosa cells (GCs). Adiponectin (ADPN), which is secreted by adipose tissue, has good antioxidant and anti-apoptotic capacity, but its role in regulating the apoptosis of GCs in geese is unclear. To investigate this, this study examined the levels of oxidative stress, apoptosis, and autophagy in follicular tissues and GCs using RT-qPCR, Western blotting, immunofluorescence, flow cytometry, transcriptomics and other methods. Atretic follicles exhibited high levels of oxidative stress and apoptosis, and autophagic flux was obstructed. Stimulating GCs with H2O2 produced results similar to those of atretic follicles. The effects of ADPN overexpression and knockdown on oxidative stress, apoptosis and autophagy in GCs were investigated. ADPN was found to modulate autophagy and reduced oxidative stress and apoptosis in GCs, in addition to protecting them from H2O2-induced damage. These results may provide a reasonable reference for improving egg-laying performance of geese.


Adiponectin , Apoptosis , Autophagy , Follicular Atresia , Geese , Granulosa Cells , Hydrogen Peroxide , Oxidative Stress , Animals , Female , Granulosa Cells/metabolism , Follicular Atresia/metabolism , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Adiponectin/metabolism , Adiponectin/genetics , Ovarian Follicle/metabolism
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article En | MEDLINE | ID: mdl-38791193

Adiponectin is an important adipokine involved in glucose and lipid metabolism, but its secretion and potential role in regulating glucose utilization during ovarian development remains unclear. This study aims to investigate the mechanism and effects of follicle-stimulating hormones (FSHs) on adiponectin secretion and its following impact on glucose transport in the granulosa cells of rat ovaries. A range of experimental techniques were utilized to test our research, including immunoblotting, immunohistochemistry, immunofluorescence, ELISA, histological staining, real-time quantitative PCR, and transcriptome analysis. The immunohistochemistry results indicated that adiponectin was primarily located in the granulosa cells of rat ovaries. In primary granulosa cells cultured in vitro, both Western blot and immunofluorescence assays demonstrated that FSH significantly induced adiponectin secretion within 2 h of incubation, primarily via the PKA signaling pathway rather than the PI3K/AKT pathway. Concurrently, the addition of the AdipoR1/AdipoR2 dual agonist AdipoRon to the culture medium significantly stimulated the protein expression of GLUT1 in rat granulosa cells, resulting in enhanced glucose absorption. Consistent with these in vitro findings, rats injected with eCG (which shares structural and functional similarities with FSH) exhibited significantly increased adiponectin levels in both the ovaries and blood. Moreover, there was a notable elevation in mRNA and protein levels of AdipoRs and GLUTs following eCG administration. Transcriptomic analysis further revealed a positive correlation between the expression of the intraovarian adiponectin system and glucose transporter. The present study represents a novel investigation, demonstrating that FSH stimulates adiponectin secretion in ovarian granulosa cells through the PKA signaling pathway. This mechanism potentially influences glucose transport (GLUT1) and utilization within the ovaries.


Adiponectin , Follicle Stimulating Hormone , Glucose , Granulosa Cells , Receptors, Adiponectin , Signal Transduction , Animals , Female , Adiponectin/metabolism , Adiponectin/genetics , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Rats , Follicle Stimulating Hormone/metabolism , Glucose/metabolism , Receptors, Adiponectin/metabolism , Receptors, Adiponectin/genetics , Cells, Cultured , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Rats, Sprague-Dawley , Cyclic AMP-Dependent Protein Kinases/metabolism , Ovary/metabolism , Piperidines
7.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R54-R65, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38738295

Obesity is a major public health issue due to its association with type 2 diabetes, hypertension, and other cardiovascular risks. The BBSome, a complex of eight conserved Bardet-Biedl syndrome (BBS) proteins, has emerged as a key regulator of energy and glucose homeostasis as well as cardiovascular function. However, the importance of adipocyte BBSome in controlling these physiological processes is not clear. Here, we show that adipocyte-specific constitutive disruption of the BBSome through selective deletion of the Bbs1 gene adiponectin (AdipoCre/Bbs1fl/fl mice) does not affect body weight under normal chow or high-fat and high-sucrose diet (HFHSD). However, constitutive BBSome deficiency caused impairment in glucose tolerance and insulin sensitivity. Similar phenotypes were observed after inducible adipocyte-specific disruption of the BBSome (AdipoCreERT2/Bbs1fl/fl mice). Interestingly, a significant increase in renal sympathetic nerve activity, measured using multifiber recording in the conscious state, was observed in AdipoCre/Bbs1fl/fl mice on both chow and HFHSD. A significant increase in tail-cuff arterial pressure was also observed in chow-fed AdipoCre/Bbs1fl/fl mice, but this was not reproduced when arterial pressure was measured by radiotelemetry. Moreover, AdipoCre/Bbs1fl/fl mice had no significant alterations in vascular reactivity. On the other hand, AdipoCre/Bbs1fl/fl mice displayed impaired baroreceptor reflex sensitivity when fed HFHSD, but not on normal chow. Taken together, these data highlight the relevance of the adipocyte BBSome for the regulation of glucose homeostasis and sympathetic traffic. The BBSome also contributes to baroreflex sensitivity under HFHSD, but not normal chow.NEW & NOTEWORTHY The current study show how genetic manipulation of fat cells impacts various functions of the body including sensitivity to the hormone insulin.


Adipocytes , Adiponectin , Animals , Adipocytes/metabolism , Adiponectin/metabolism , Adiponectin/genetics , Mice , Insulin Resistance , Male , Obesity/physiopathology , Obesity/metabolism , Obesity/genetics , Mice, Knockout , Sympathetic Nervous System/physiopathology , Diet, High-Fat , Mice, Inbred C57BL , Disease Models, Animal , Autonomic Nervous System Diseases/physiopathology , Autonomic Nervous System Diseases/genetics , Autonomic Nervous System Diseases/metabolism , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/physiopathology , Bardet-Biedl Syndrome/metabolism , Microtubule-Associated Proteins
8.
Genes (Basel) ; 15(4)2024 04 11.
Article En | MEDLINE | ID: mdl-38674417

Autosomal Dominant Polycystic Kidney Disease (ADPKD) is a common monogenic disorder characterized by renal cysts and progressive renal failure. In kidney diseases, adipose tissue undergoes functional changes that have been associated with increased inflammation and insulin resistance mediated by release of adipokines. Adiponectin is involved in various cellular processes, such as energy and inflammatory and oxidative processes. However, it remains to be determined whether adiponectin is involved in the concomitant metabolic dysfunctions present in PKD. In this scenario, we aimed to analyze: (a) PPARγ, ADIPOQ, ADIPOR1 and ADIPOR2 gene variations in 92 ADPKD patients through PCR-Sanger sequencing; and (b) adiponectin levels and its oligomerization state by ELISA and Western Blot. Our results indicated that: (a) 14 patients carried the PPARγ SNP, 29 patients carried the ADIPOQ SNP rs1501299, and 25 patients carried the analyzed ADIPOR1 SNPs. Finally, 82 patients carried ADIPOR2 SNPs; and (b) Adiponectin is statistically lower in ADPKD patients compared to controls, and further statistically lower in ESRD than in non-ESRD patients. An inverse relationship between adiponectin and albumin and between adiponectin and creatinine and a direct relationship between adiponectin and eGFR were found. Interestingly, significantly lower levels of adiponectin were found in patients bearing the ADIPOQ rs1501299 SNP and associated with low levels of eGFR. In conclusion, adiponectin levels and the presence of ADIPOQ rs1501299 genotype are significantly associated with a worse ADPKD phenotype, indicating that both could potentially provide important insights into the disease. Further studies are warranted to understand the pathophysiological role of adiponectin in ADPKD patients.


Adiponectin , Polycystic Kidney, Autosomal Dominant , Polymorphism, Single Nucleotide , Receptors, Adiponectin , Humans , Adiponectin/genetics , Adiponectin/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Female , Male , Receptors, Adiponectin/genetics , Middle Aged , Adult , PPAR gamma/genetics , PPAR gamma/metabolism
9.
Front Immunol ; 15: 1368516, 2024.
Article En | MEDLINE | ID: mdl-38601146

Background: Differences in border zone contribute to different outcomes post-infarction, such as left ventricular aneurysm (LVA) and myocardial infarction (MI). LVA usually forms within 24 h of the onset of MI and may cause heart rupture; however, LVA surgery is best performed 3 months after MI. Few studies have investigated the LVA model, the differences in border zones between LVA and MI, and the mechanism in the border zone. Methods: The LVA, MI, and SHAM mouse models were used. Echocardiography, Masson's trichrome staining, and immunofluorescence staining were performed, and RNA sequencing of the border zone was conducted. The adipocyte-conditioned medium-treated hypoxic macrophage cell line and LVA and MI mouse models were employed to determine the effects of the hub gene, adiponectin (ADPN), on macrophages. Quantitative polymerase chain reaction (qPCR), Western blot analysis, transmission electron microscopy, and chromatin immunoprecipitation (ChIP) assays were conducted to elucidate the mechanism in the border zone. Human subepicardial adipose tissue and blood samples were collected to validate the effects of ADPN. Results: A novel, simple, consistent, and low-cost LVA mouse model was constructed. LVA caused a greater reduction in contractile functions than MI owing to reduced wall thickness and edema in the border zone. ADPN impeded cardiac edema and promoted lymphangiogenesis by increasing macrophage infiltration post-infarction. Adipocyte-derived ADPN promoted M2 polarization and sustained mitochondrial quality via the ADPN/AdipoR2/HMGB1 axis. Mechanistically, ADPN impeded macrophage HMGB1 inflammation and decreased interleukin-6 (IL6) and HMGB1 secretion. The secretion of IL6 and HMGB1 increased ADPN expression via STAT3 and the co-transcription factor, YAP, in adipocytes. Based on ChIP and Dual-Glo luciferase experiments, STAT3 promoted ADPN transcription by binding to its promoter in adipocytes. In vivo, ADPN promoted lymphangiogenesis and decreased myocardial injury after MI. These phenotypes were rescued by macrophage depletion or HMGB1 knockdown in macrophages. Supplying adipocytes overexpressing STAT3 decreased collagen disposition, increased lymphangiogenesis, and impaired myocardial injury. However, these effects were rescued after HMGB1 knockdown in macrophages. Overall, the IL6/ADPN/HMGB1 axis was validated using human subepicardial tissue and blood samples. This axis could serve as an independent factor in overweight MI patients who need coronary artery bypass grafting (CABG) treatment. Conclusion: The IL6/ADPN/HMGB1 loop between adipocytes and macrophages in the border zone contributes to different clinical outcomes post-infarction. Thus, targeting the IL6/ADPN/HMGB1 loop may be a novel therapeutic approach for cardiac lymphatic regulation and reduction of cell senescence post-infarction.


HMGB1 Protein , Myocardial Infarction , Mice , Animals , Humans , Interleukin-6/metabolism , Adiponectin/genetics , Adiponectin/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Feedback , Myocardial Infarction/metabolism , Macrophages/metabolism , Adipocytes/metabolism
10.
Cytokine ; 178: 156567, 2024 06.
Article En | MEDLINE | ID: mdl-38489870

OBJECTIVE: To investigate the association of circulating adiponectin (APN) level and single nucleotide polymorphisms (rs1501299 and rs266729) of the APN gene in the coronary heart disease (CHD) population of Northern Guangxi Province. METHODS: Two hundred and sixty-three CHD patients and 235 healthy controls from our hospital from August 2018 to October 2020 were included in this study. ELISA was used to determine the serum APN concentration. PCR-RFLP and direct DNA sequencing were used to analyze the genotypes of APN gene rs1501299 G/T and rs266729 C/G single-nucleotide loci, their distribution differences between the two groups were compared and their correlation with APN concentration was analyzed. RESULTS: The serum APN concentration in the CHD group was significantly lower than the control group (14.40(1.42-52.26) µg/mL vs. 29.40 (3.18-90.31) µg/mL, P < 0.001). There were statistically significant differences in the rs266729 genotype of APN single nucleotide locus between the two groups (P < 0.001). The dominant model and recessive model of rs266729 genotype showed that mutant homozygous GG genotype carriers significantly increased the risk of CHD in comparison with C allele carriers (CG + CC) (OR = 2.156, 95 %CI: 1.004-4.631, P = 0.049), and this effect was still significant after adjusting gender and age (OR = 2.695, 95 %CI 1.110-6.540, P = 0.028). In both the dominant and recessive models for rs1501299, ORs before and after adjustment for age and sex revealed no significant association with CHD, with ORs of 0.765 (95 % CI: 0.537-1.091, P = 0.139) and 0.718 (95 % CI: 0.466-1.106, P = 0.133) in the Dominant model, and ORs of 0.960 (95 % CI: 0.442-2.087, P = 0.918) and 0.613 (95 % CI: 0.239-1.570, P = 0.308) in the Recessive model, respectively. No statistically significant differences in APN concentrations across genotypes in both groups (P > 0.05), with chi-square values of 1.633 (control group) and 0.823 (CHD group) for rs1501299, and 1.354 (control group) and 0.618 (CHD group) for rs266729. CONCLUSIONS: APN gene of rs266729 C/G single-nucleotide loci gene mutation can significantly increase the risk of CHD. There was no significant correlation between rs1501299 G/T single-nucleotide loci and CHD in Northern Guangxi populations.


Coronary Disease , Genetic Predisposition to Disease , Humans , Adiponectin/genetics , Case-Control Studies , China , Coronary Disease/genetics , Genetic Predisposition to Disease/genetics , Genotype , Nucleotides , Polymorphism, Single Nucleotide/genetics , Risk Factors
11.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38530908

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Adiponectin , Diabetes Mellitus, Type 2 , Glycocalyx , Kidney Glomerulus , Animals , Glycocalyx/metabolism , Glycocalyx/drug effects , Adiponectin/metabolism , Adiponectin/genetics , Mice , Diabetes Mellitus, Type 2/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/drug effects , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Male , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/drug effects , Tumor Necrosis Factor-alpha/metabolism , Syndecan-4/metabolism , Syndecan-4/genetics , Disease Models, Animal , Mice, Inbred C57BL
12.
J Neuroinflammation ; 21(1): 77, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38539253

Adiponectin (APN) is an adipokine which predominantly expresses in adipocytes with neuroprotective and anti-inflammatory effects. We have recently indicated that circulatory trimeric APN can enter the brain by crossing the blood-brain barrier (BBB) and modulate microglia-mediated neuroinflammation. Here, we found that the microglial NLR family pyrin domain containing 3 (NLRP3)-inflammasome activation was exacerbated in APN-/-5xFAD mice in age-dependent manner. The focus of this study was to develop a new and tractable therapeutic approach for treating Alzheimer's disease (AD)-related pathology in 5xFAD mice using peripheral APN gene therapy. We have generated and transduced adeno-associated virus (AAV2/8) expressing the mouse mutated APN gene (APNC39S) into the liver of 5xFAD mice that generated only low-molecular-weight trimeric APN (APNTri). Single dose of AAV2/8-APNC39S in the liver increased circulatory and cerebral APN levels indicating the overexpressed APNTri was able to cross the BBB. Overexpression of APNTri decreased both the soluble and fibrillar Aß in the brains of 5xFAD mice. AAV2/8-APNTri treatment reduced Aß-induced IL-1ß and IL-18 secretion by suppressing microglial NLRP3-inflammasome activation. The memory functions improved significantly in AAV-APNTri-treated 5xFAD mice with reduction of dystrophic neurites. These findings demonstrate that peripheral gene delivery to overexpress trimeric APN can be a potential therapy for AD.


Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Alzheimer Disease/therapy , Alzheimer Disease/pathology , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Adiponectin/genetics , Adiponectin/pharmacology , Microglia , Liver/pathology , Amyloid beta-Peptides/pharmacology
13.
Clin Transl Sci ; 17(3): e13758, 2024 03.
Article En | MEDLINE | ID: mdl-38515365

Strategies to enhance autophagy flux have been suggested to improve outcomes in cardiac ischemic models. We explored the role of adiponectin in mediating cardiac autophagy under ischemic conditions induced by permanent coronary artery ligation. We studied the molecular mechanisms underlying adiponectin's cardio-protective effects in adiponectin knockout (Ad-KO) compared with wild-type (WT) mice subjected to ischemia by coronary artery ligation and H9c2 cardiomyocyte cell line exposed to hypoxia. Systemic infusion of a cathepsin-B activatable near-infrared probe as a biomarker for autophagy and detection via noninvasive three-dimensional fluorescence molecular tomography combined with computerized tomography to quantitate temporal changes, indicated increased activity in the myocardium of WT mice after myocardial infarction which was attenuated in Ad-KO. Seven days of ischemia increased myocardial adiponectin accumulation and elevated ULK1/AMPK phosphorylation and autophagy assessed by Western blotting for LC3 and p62, an outcome not observed in Ad-KO mice. Cell death, assessed by TUNEL analysis and the ratio of Bcl-2:Bax, plus cardiac dysfunction, measured using echocardiography with strain analysis, were exacerbated in Ad-KO mice. Using cellular models, we observed that adiponectin stimulated autophagy flux in isolated primary adult cardiomyocytes and increased basal and hypoxia-induced autophagy in H9c2 cells. Real-time temporal analysis of caspase-3/7 activation and caspase-3 Western blot indicated that adiponectin suppressed activation by hypoxia. Hypoxia-induced mitochondrial reactive oxygen species production and cell death were also attenuated by adiponectin. Importantly, the ability of adiponectin to reduce caspase-3/7 activation and cell death was not observed in autophagy-deficient cells generated by CRISPR-mediated deletion of Atg7. Collectively, our data indicate that adiponectin acts in an autophagy-dependent manner to attenuate cardiomyocyte caspase-3/7 activation and cell death in response to hypoxia in vitro and ischemia in mice.


Adiponectin , Heart Diseases , Mice , Animals , Adiponectin/genetics , Adiponectin/metabolism , Adiponectin/pharmacology , Caspase 3/metabolism , Mice, Knockout , Myocytes, Cardiac , Autophagy , Ischemia/metabolism , Hypoxia , Heart Diseases/metabolism , Apoptosis
14.
Mol Biol Rep ; 51(1): 445, 2024 Mar 23.
Article En | MEDLINE | ID: mdl-38520487

BACKGROUND: Inflammation is an important factor contributing to obesity-induced metabolic disorders. Different investigations confirm that local inflammation in adipose issues is the primary reason for such disorder, resulting in low-grade systemic inflammation. Anti-inflammatory, antioxidant, and epigenetic modification are among the varied properties of Quercetin (QCT) as a natural flavonoid. OBJECTIVE: The precise molecular mechanism followed by QCT to alleviate inflammation has been unclear. This study explores whether the anti-inflammatory effects of QCT in 3T3-L1 differentiated adipocytes may rely on SIRT-1. METHODS: The authors isolated 3T3-L1 pre-adipocyte cells and exposed them to varying concentrations of QCT, lipopolysaccharide (LPS), and a selective inhibitor of silent mating type information regulation 2 homolog 1 (SIRT-1) called EX-527. After determining the optimal dosages of QCT, LPS, and EX-527, they assessed the mRNA expression levels of IL-18, IL-1, IL-6, TNF-α, SIRT-1, and adiponectin using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS: The study showed considerable cytotoxic effects of LPS (200 ng/mL) + QCT (100 µM) + EX-527 (10 µM) on 3T3-L1 differentiated adipocytes after 48 h of incubation. QCT significantly upregulated the expression levels of adiponectin and SIRT-1 (p < 0.0001). However, introducing SIRT-1 inhibitor (p < 0.0001) reversed the impact of QCT on adiponectin expression. Additionally, QCT reduced SIRT-1-dependent pro-inflammatory cytokines in 3T3-L1 differentiated adipocytes (p < 0.0001). CONCLUSION: This study revealed that QCT treatment reduced crucial pro-inflammatory cytokines levels and increased adiponectin levels following LPS treatment. This finding implies that SIRT-1 may be a crucial factor for the anti-inflammatory activity of QCT.


Adiponectin , Lipopolysaccharides , Quercetin , Sirtuin 1 , Animals , Mice , 3T3-L1 Cells , Adipocytes/metabolism , Adiponectin/genetics , Adiponectin/metabolism , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Lipopolysaccharides/adverse effects , Quercetin/pharmacology , Sirtuin 1/metabolism
15.
Clin Neurol Neurosurg ; 237: 108154, 2024 02.
Article En | MEDLINE | ID: mdl-38330803

OBJECTIVE: To determine whether adiponectin levels and the risk of trigeminal neuralgia (TN) were causally related, a two-sample Mendelian Randomization (MR) study design was used. METHODS: We obtained data regarding adiponectin from the UK Biobank genome wide association studies (GWAS) (n = 39,883) as the exposure and TN, using GWAS summary statistics generated from FinnGen, (total n = 195 847 159; case = 800, control = 195 047) as the outcome. We conducted a two-sample Mendelian randomization analysis employing inverse variance-weighted (IVW), MR-Egger regression, weighted median, and weighted mode analyses. RESULTS: We selected 14 single nucleotide polymorphisms (SNPs) with genome-wide significance from the GWAS on adiponectin as instrumental variables. Based on the IVW method, a causal association between adiponectin levels and TN was evidenced (OR= 0.577, 95 %CI: 0.393-0.847). MR-Egger regression revealed that directional pleiotropy was unlikely to be biasing the result (intercept = -0.01; P = 0.663), but it showed no causal association between adiponectin and TN (OR=0.627, 95 %CI: 0.369-1.067). However, the weighted median (OR=0.569, 95 %CI: 0.353-0.917) and Weighted mode (OR= 0.586, 95 %CI: 0.376-0.916) approach yielded evidence of a causal association between adiponectin and TN. Cochran's Q-statistics and funnel plots indicated no evidence of heterogeneity or asymmetry, indicating no directional pleiotropy. CONCLUSION: The results of the MR analysis suggested that adiponectin may be causally associated with an increased TN risk.


Adiponectin , Trigeminal Neuralgia , Humans , Adiponectin/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Trigeminal Neuralgia/genetics , Causality
16.
Vascul Pharmacol ; 154: 107281, 2024 03.
Article En | MEDLINE | ID: mdl-38320678

OBJECTIVE: Perivascular adipose tissue (PVAT) function during aging has not been investigated in detail so far and its effect on vasodilation remains to be fully elucidated. The aim of this study was to investigate endothelium-dependent vasodilation of thoracic aorta in a mouse model of accelerated, selective vascular smooth muscle and PVAT aging, induced by SM22α-Cre-driven genetic deletion of the endonuclease ERCC1 (SMC-KO mice) versus healthy littermates (LM). We hypothesized that PVAT enhances vasodilation in LM, possibly through adiponectin secretion, which might be compromised in SMC-KO animals. METHODS: Thoracic aorta was isolated from SMC-KO animals and LM and segments with and without PVAT were mounted in wire myography setups. The endothelium-dependent vasodilation was assessed via acetylcholine dose-response curves and pathway contribution was studied. Moreover, adiponectin secretion was measured after stimulating the aortic segments with PVAT with acetylcholine. RESULTS: Adiponectin, secreted by PVAT, led to increased NO-contribution to endothelium-dependent vasodilation in healthy LM, although this did not increase maximum relaxation due to loss of EDH. Endothelium-dependent vasodilation was decreased in SMC-KO animals due to reduced NO-contribution and complete EDH loss. Despite strong lipodystrophy the PVAT partially compensated for lost vasodilation in SMC-KO. LM PVAT contained acetylcholinesterase that attenuated acetylcholine responses. This was lost in SMC-KO. CONCLUSIONS: PVAT-derived adiponectin is able to partially compensate for age-related decline in NO-mediated vasodilation, even during strong lipodystrophy, in conditions of absence of compensating EDH. In aorta with healthy PVAT acetylcholinesterase modulates vascular tone, but this is lost during aging, further compensating for decreased acetylcholine responsiveness. Thus, preservation of adiponectin levels, through relatively increased production in lipodystrophic PVAT, and reduction of cholinesterase might be regulatory mechanisms of the PVAT to preserve cholinergic vasodilation during aging.


Lipodystrophy , Vasodilation , Mice , Animals , Adiponectin/genetics , Acetylcholinesterase/metabolism , Acetylcholinesterase/pharmacology , Acetylcholine/pharmacology , Acetylcholine/metabolism , Muscle, Smooth, Vascular/metabolism , Adipose Tissue/metabolism , Aging , Lipodystrophy/metabolism
17.
Lipids Health Dis ; 23(1): 51, 2024 Feb 17.
Article En | MEDLINE | ID: mdl-38368320

BACKGROUND: Myocardial ischemia-reperfusion injury (MIRI) is widespread in the treatment of ischemic heart disease, and its treatment options are currently limited. Adiponectin (APN) is an adipocytokine with cardioprotective properties; however, the mechanisms of APN in MIRI are unclear. Therefore, based on preclinical (animal model) evidence, the cardioprotective effects of APN and the underlying mechanisms were explored. METHODS: The literature was searched for the protective effect of APN on MIRI in six databases until 16 November 2023, and data were extracted according to selection criteria. The outcomes were the size of the myocardial necrosis area and hemodynamics. Markers of oxidation, apoptosis, and inflammation were secondary outcome indicators. The quality evaluation was performed using the animal study evaluation scale recommended by the Systematic Review Center for Laboratory animal Experimentation statement. Stata/MP 14.0 software was used for the summary analysis. RESULTS: In total, 20 papers with 426 animals were included in this study. The pooled analysis revealed that APN significantly reduced myocardial infarct size [weighted mean difference (WMD) = 16.67 (95% confidence interval (CI) = 13.18 to 20.16, P < 0.001)] and improved hemodynamics compared to the MIRI group [Left ventricular end-diastolic pressure: WMD = 5.96 (95% CI = 4.23 to 7.70, P < 0.001); + dP/dtmax: WMD = 1393.59 (95% CI = 972.57 to 1814.60, P < 0.001); -dP/dtmax: WMD = 850.06 (95% CI = 541.22 to 1158.90, P < 0.001); Left ventricular ejection fraction: WMD = 9.96 (95% CI = 7.29 to 12.63, P < 0.001)]. Apoptosis indicators [caspase-3: standardized mean difference (SMD) = 3.86 (95% CI = 2.97 to 4.76, P < 0.001); TUNEL-positive cells: WMD = 13.10 (95% CI = 8.15 to 18.05, P < 0.001)], inflammatory factor levels [TNF-α: SMD = 4.23 (95% CI = 2.48 to 5.98, P < 0.001)], oxidative stress indicators [Superoxide production: SMD = 4.53 (95% CI = 2.39 to 6.67, P < 0.001)], and lactate dehydrogenase levels [SMD = 2.82 (95% CI = 1.60 to 4.04, P < 0.001)] were significantly reduced. However, the superoxide dismutase content was significantly increased [SMD = 1.91 (95% CI = 1.17 to 2.65, P < 0.001)]. CONCLUSION: APN protects against MIRI via anti-inflammatory, antiapoptotic, and antioxidant effects, and this effect is achieved by activating different signaling pathways.


Myocardial Infarction , Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Myocardial Reperfusion Injury/metabolism , Rats, Sprague-Dawley , Adiponectin/genetics , Signal Transduction , Apoptosis
18.
J Cell Physiol ; 239(2): e31173, 2024 Feb.
Article En | MEDLINE | ID: mdl-38214103

Obesity and metabolic disorders caused by alterations in lipid metabolism are major health issues in developed, affluent societies. Adipose tissue is the only organ that stores lipids and prevents lipotoxicity in other organs. Mature adipocytes can affect themselves and distant metabolism-related tissues by producing various adipokines, including adiponectin and leptin. The engulfment adaptor phosphotyrosine-binding domain-containing 1 (GULP1) regulates intracellular trafficking of glycosphingolipids and cholesterol, suggesting its close association with lipid metabolism. However, the role of GULP1 in adipocytes remains unknown. Therefore, this study aimed to investigate the function of GULP1 in adipogenesis, glucose uptake, and the insulin signaling pathway in adipocytes. A 3T3-L1 cell line with Gulp1 knockdown (shGulp1) and a 3T3-L1 control group (U6) were established. Changes in shGulp1 cells due to GULP1 deficiency were examined and compared to those in U6 cells using microarray analysis. Glucose uptake was monitored via insulin stimulation in shGulp1 and U6 cells using a 2-NBDG glucose uptake assay, and the insulin signaling pathway was investigated by western blot analysis. Adipogenesis was significantly delayed, lipid metabolism was altered, and several adipogenesis-related genes were downregulated in shGulp1 cells compared to those in U6 cells. Microarray analysis revealed significant inhibition of peroxisome proliferator-activated receptor signaling in shGulp1 cells compared with U6 cells. The production and secretion of adiponectin as well as the expression of adiponectin receptor were decreased in shGulp1 cells. In particular, compared with U6 cells, glucose uptake via insulin stimulation was significantly decreased in shGulp1 cells through the disturbance of ERK1/2 phosphorylation. This is the first study to identify the role of GULP1 in adipogenesis and insulin-stimulated glucose uptake by adipocytes, thereby providing new insights into the differentiation and functions of adipocytes and the metabolism of lipids and glucose, which can help better understand metabolic diseases.


Adipogenesis , Insulin , Signal Transduction , Animals , Mice , 3T3-L1 Cells , Adipogenesis/genetics , Adiponectin/genetics , Adiponectin/metabolism , Cell Differentiation , Down-Regulation , Glucose/metabolism , Insulin/metabolism , Lipids , Peroxisome Proliferator-Activated Receptors/genetics , Peroxisome Proliferator-Activated Receptors/metabolism , PPAR gamma/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism
20.
HGG Adv ; 5(1): 100252, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-37859345

Previous genome-wide association studies (GWASs) for adiponectin, a complex trait linked to type 2 diabetes and obesity, identified >20 associated loci. However, most loci were identified in populations of European ancestry, and many of the target genes underlying the associations remain unknown. We conducted a cross-ancestry adiponectin GWAS meta-analysis in ≤46,434 individuals from the Metabolic Syndrome in Men (METSIM) cohort and the ADIPOGen and AGEN consortiums. We combined study-specific association summary statistics using a fixed-effects, inverse variance-weighted approach. We identified 22 loci associated with adiponectin (p < 5×10-8), including 15 known and seven previously unreported loci. Among individuals of European ancestry, Genome-wide Complex Traits Analysis joint conditional analysis (GCTA-COJO) identified 14 additional distinct signals at the ADIPOQ, CDH13, HCAR1, and ZNF664 loci. Leveraging the cross-ancestry data, FINEMAP + SuSiE identified 45 causal variants (PP > 0.9), which also exhibited potential pleiotropy for cardiometabolic traits. To prioritize target genes at associated loci, we propose a combinatorial likelihood scoring formalism (Gene Priority Score [GPScore]) based on measures derived from 11 gene prioritization strategies and the physical distance to the transcription start site. With GPScore, we prioritize the 30 most probable target genes underlying the adiponectin-associated variants in the cross-ancestry analysis, including well-known causal genes (e.g., ADIPOQ, CDH13) and additional genes (e.g., CSF1, RGS17). Functional association networks revealed complex interactions of prioritized genes, their functionally connected genes, and their underlying pathways centered around insulin and adiponectin signaling, indicating an essential role in regulating energy balance in the body, inflammation, coagulation, fibrinolysis, insulin resistance, and diabetes. Overall, our analyses identify and characterize adiponectin association signals and inform experimental interrogation of target genes for adiponectin.


Diabetes Mellitus, Type 2 , Metabolic Syndrome , Male , Humans , Adiponectin/genetics , Diabetes Mellitus, Type 2/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease/genetics , Metabolic Syndrome/genetics
...