Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.212
Filtrar
1.
Nat Immunol ; 25(7): 1231-1244, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38898157

RESUMEN

To understand the role of T cells in the pathogenesis of ulcerative colitis (UC), we analyzed colonic T cells isolated from patients with UC and controls. Here we identified colonic CD4+ and CD8+ T lymphocyte subsets with gene expression profiles resembling stem-like progenitors, previously reported in several mouse models of autoimmune disease. Stem-like T cells were increased in inflamed areas compared to non-inflamed regions from the same patients. Furthermore, TCR sequence analysis indicated stem-like T cells were clonally related to proinflammatory T cells, suggesting their involvement in sustaining effectors that drive inflammation. Using an adoptive transfer colitis model in mice, we demonstrated that CD4+ T cells deficient in either BCL-6 or TCF1, transcription factors that promote T cell stemness, had decreased colon T cells and diminished pathogenicity. Our results establish a strong association between stem-like T cell populations and UC pathogenesis, highlighting the potential of targeting this population to improve clinical outcomes.


Asunto(s)
Colitis Ulcerosa , Factor Nuclear 1-alfa del Hepatocito , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Humanos , Animales , Ratones , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/genética , Células Madre/inmunología , Células Madre/metabolismo , Femenino , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Ratones Noqueados , Colon/inmunología , Colon/patología , Masculino , Ratones Endogámicos C57BL , Traslado Adoptivo , Modelos Animales de Enfermedad , Adulto , Persona de Mediana Edad
2.
J Immunother Cancer ; 12(6)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38945552

RESUMEN

BACKGROUND: How distinct methods of host preconditioning impact the efficacy of adoptively transferred antitumor T helper cells is unknown. METHODS: CD4+ T cells with a transgenic T-cell receptor that recognize tyrosinase-related peptide (TRP)-1 melanoma antigen were polarized to the T helper 17 (Th17) phenotype and then transferred into melanoma-bearing mice preconditioned with either total body irradiation or chemotherapy. RESULTS: We found that preconditioning mice with a non-myeloablative dose of total body irradiation (TBI of 5 Gy) was more effective than using an equivalently dosed non-myeloablative chemotherapy (cyclophosphamide (CTX) of 200 mg/kg) at augmenting therapeutic activity of antitumor TRP-1 Th17 cells. Antitumor Th17 cells engrafted better following preconditioning with TBI and regressed large established melanoma in all animals. Conversely, only half of mice survived long-term when preconditioned with CTX and infused with anti-melanoma Th17 cells. Interleukin (IL)-17 and interferon-γ, produced by the infused Th17 cells, were detected in animals given either TBI or CTX preconditioning. Interestingly, inflammatory cytokines (granulocyte colony stimulating factor, IL-6, monocyte chemoattractant protein-1, IL-5, and keratinocyte chemoattractant) were significantly elevated in the serum of mice preconditioned with TBI versus CTX after Th17 therapy. The addition of fludarabine (FLU, 200 mg/kg) to CTX (200 mg/kg) improved the antitumor response to the same degree mediated by TBI, whereas FLU alone with Th17 therapy was ineffective. CONCLUSIONS: Our results indicate, for the first time, that the antitumor response, persistence, and cytokine profiles resulting from Th17 therapy are impacted by the specific regimen of host preconditioning. This work is important for understanding mechanisms that promote long-lived responses by adoptive cellular therapy, particularly as CD4+ based T-cell therapies are now emerging in the clinic.


Asunto(s)
Células Th17 , Animales , Células Th17/inmunología , Células Th17/metabolismo , Ratones , Ratones Endogámicos C57BL , Inmunoterapia Adoptiva/métodos , Irradiación Corporal Total , Melanoma Experimental/inmunología , Melanoma Experimental/terapia , Melanoma Experimental/tratamiento farmacológico , Ciclofosfamida/farmacología , Ciclofosfamida/uso terapéutico , Traslado Adoptivo/métodos , Femenino , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/terapia
3.
Methods Cell Biol ; 188: 109-129, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38880520

RESUMEN

Despite being the most common adult leukemia in the western world, Chronic Lymphocytic Leukemia (CLL) remains a life-threatening and incurable disease. Efforts to develop new treatments are highly dependent on the availability of appropriate mouse models for pre-clinical testing. The Eµ-TCL1 mouse model is the most established pre-clinical approach to study CLL pathobiology and response to treatment, backed by numerous studies highlighting its resemblance to the most aggressive form of this malignancy. In contrast to the transgenic Eµ-TCL1 model, employing the adoptive transfer of Eµ-TCL1-derived splenocytes in immunocompetent C57BL/6 mice results in a comparably rapid (e.g., leukemic development within weeks compared to months in the transgenic model) and reliable model mimicking CLL. In this chapter, we would like to provide readers with a thoroughly optimized, detailed, and comprehensive protocol to use the adoptive transfer Eµ-TCL1 model in their research.


Asunto(s)
Traslado Adoptivo , Modelos Animales de Enfermedad , Leucemia Linfocítica Crónica de Células B , Ratones Endogámicos C57BL , Animales , Leucemia Linfocítica Crónica de Células B/terapia , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Traslado Adoptivo/métodos , Ratones Transgénicos , Bazo , Humanos , Proteínas Proto-Oncogénicas
4.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L114-L125, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772902

RESUMEN

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.


Asunto(s)
Displasia Broncopulmonar , Quimiocina CXCL12 , Modelos Animales de Enfermedad , Células Progenitoras Endoteliales , Hiperoxia , Macrófagos Alveolares , Animales , Displasia Broncopulmonar/terapia , Displasia Broncopulmonar/patología , Células Progenitoras Endoteliales/trasplante , Células Progenitoras Endoteliales/metabolismo , Macrófagos Alveolares/metabolismo , Ratones , Quimiocina CXCL12/metabolismo , Hiperoxia/terapia , Ratones Endogámicos C57BL , Animales Recién Nacidos , Pulmón/patología , Pulmón/metabolismo , Humanos , Traslado Adoptivo/métodos , Trasplante de Células Madre/métodos
5.
J Autoimmun ; 146: 103235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696926

RESUMEN

Soluble components secreted by Tfh cells are critical for the germinal center responses. In this study, we investigated whether Tfh cells could regulate the B-cell response by releasing small extracellular vesicles (sEVs). Our results showed that Tfh cells promote B-cell differentiation and antibody production through sEVs and that CD40L plays a crucial role in Tfh-sEVs function. In addition, increased Tfh-sEVs were found in mice with collagen-induced arthritis (CIA). Adoptive transfer of Tfh cells significantly exacerbated the severity of CIA; however, the effect of Tfh cells on exacerbating the CIA process was significantly diminished after inhibiting sEVs secretion. Moreover, the levels of plasma Tfh-like-sEVs and CD40L expression on Tfh-like-sEVs in RA patients were significantly higher than those in healthy subjects. In summary, Tfh cell-derived sEVs can enhance the B-cell response, and exacerbate the procession of autoimmune arthritis.


Asunto(s)
Artritis Experimental , Linfocitos B , Vesículas Extracelulares , Células T Auxiliares Foliculares , Animales , Artritis Experimental/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Ratones , Linfocitos B/inmunología , Linfocitos B/metabolismo , Humanos , Células T Auxiliares Foliculares/inmunología , Masculino , Artritis Reumatoide/inmunología , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Traslado Adoptivo , Ligando de CD40/metabolismo , Ligando de CD40/inmunología , Centro Germinal/inmunología , Centro Germinal/metabolismo , Índice de Severidad de la Enfermedad , Femenino
6.
Nat Immunol ; 25(6): 957-968, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811815

RESUMEN

The adult central nervous system (CNS) possesses a limited capacity for self-repair. Severed CNS axons typically fail to regrow. There is an unmet need for treatments designed to enhance neuronal viability, facilitate axon regeneration and ultimately restore lost neurological functions to individuals affected by traumatic CNS injury, multiple sclerosis, stroke and other neurological disorders. Here we demonstrate that both mouse and human bone marrow neutrophils, when polarized with a combination of recombinant interleukin-4 (IL-4) and granulocyte colony-stimulating factor (G-CSF), upregulate alternative activation markers and produce an array of growth factors, thereby gaining the capacity to promote neurite outgrowth. Moreover, adoptive transfer of IL-4/G-CSF-polarized bone marrow neutrophils into experimental models of CNS injury triggered substantial axon regeneration within the optic nerve and spinal cord. These findings have far-reaching implications for the future development of autologous myeloid cell-based therapies that may bring us closer to effective solutions for reversing CNS damage.


Asunto(s)
Axones , Factor Estimulante de Colonias de Granulocitos , Interleucina-4 , Ratones Endogámicos C57BL , Regeneración Nerviosa , Neutrófilos , Animales , Neutrófilos/inmunología , Regeneración Nerviosa/inmunología , Ratones , Humanos , Axones/metabolismo , Axones/fisiología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Interleucina-4/metabolismo , Activación Neutrófila , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/inmunología , Traumatismos de la Médula Espinal/metabolismo , Traslado Adoptivo , Citocinas/metabolismo , Células Cultivadas
7.
Immunity ; 57(6): 1225-1242.e6, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38749446

RESUMEN

Classical monocytes (CMs) are ephemeral myeloid immune cells that circulate in the blood. Emerging evidence suggests that CMs can have distinct ontogeny and originate from either granulocyte-monocyte- or monocyte-dendritic-cell progenitors (GMPs or MDPs). Here, we report surface markers that allowed segregation of murine GMP- and MDP-derived CMs, i.e., GMP-Mo and MDP-Mo, as well as their functional characterization, including fate definition following adoptive cell transfer. GMP-Mo and MDP-Mo yielded an equal increase in homeostatic CM progeny, such as blood-resident non-classical monocytes and gut macrophages; however, these cells differentially seeded various other selected tissues, including the dura mater and lung. Specifically, GMP-Mo and MDP-Mo differentiated into distinct interstitial lung macrophages, linking CM dichotomy to previously reported pulmonary macrophage heterogeneity. Collectively, we provide evidence for the existence of two functionally distinct CM subsets in the mouse that differentially contribute to peripheral tissue macrophage populations in homeostasis and following challenge.


Asunto(s)
Diferenciación Celular , Macrófagos , Monocitos , Animales , Monocitos/inmunología , Monocitos/citología , Ratones , Diferenciación Celular/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Pulmón/citología , Pulmón/inmunología , Homeostasis , Ratones Endogámicos C57BL , Células Dendríticas/inmunología , Linaje de la Célula , Traslado Adoptivo
8.
Hypertension ; 81(7): 1511-1523, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757269

RESUMEN

BACKGROUND: It is established that the immune system, namely T cells, plays a role in the development of hypertension and renal damage in male Dahl salt-sensitive (SS) rats, but far less is known about this relationship in females. Rats with genetically deleted T cells via CD247 gene mutation on the Dahl SS background (SSCD247-/-) were utilized to interrogate the effect of sex and T cells on salt sensitivity. METHODS: We assessed the hypertensive and kidney injury phenotypes in male versus female SS and SSCD247-/- rats challenged with 3 weeks of high salt (4.0% NaCl). Differences in T cell activation genes were examined in renal T cells from male and female SS rats, and a sex-specific adoptive transfer was performed by injecting male or female splenocytes into either male or female SSCD247-/- recipients to determine the potential contribution of T cell sex. RESULTS: The lack of functional T cells in SSCD247-/- rats significantly reduced salt-induced hypertension and proteinuria in both sexes, although SSCD247-/- females exhibited greater protection from kidney damage. Adoptive transfer of either Dahl SS male or female splenocytes into SSCD247-/- male recipients exacerbated hypertension and proteinuria compared with controls, while in SSCD247-/- female recipients, exacerbation of disease occurred only upon transfer of male, but not female, SS splenocytes. CONCLUSIONS: The absence of T cells in the SSCD247-/- normalized sex differences in blood pressure, though sex differences in renal damage persisted. Splenocyte transfer experiments demonstrated that salt sensitivity is amplified if the sex of the T cell or the recipient is male.


Asunto(s)
Hipertensión , Ratas Endogámicas Dahl , Linfocitos T , Animales , Masculino , Femenino , Ratas , Hipertensión/fisiopatología , Hipertensión/genética , Linfocitos T/inmunología , Factores Sexuales , Modelos Animales de Enfermedad , Cloruro de Sodio Dietético/efectos adversos , Presión Sanguínea/fisiología , Traslado Adoptivo , Riñón/patología , Riñón/metabolismo
9.
Nat Commun ; 15(1): 4418, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806459

RESUMEN

The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.


Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Memoria Inmunológica , Interferón gamma , Factor de Transcripción STAT1 , Animales , Linfocitos T CD8-positivos/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunología , Linfocitos T CD4-Positivos/inmunología , Ratones , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT1/deficiencia , Ratones Endogámicos C57BL , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Transducción de Señal , Ratones Noqueados , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Proliferación Celular , Traslado Adoptivo
10.
J Autoimmun ; 146: 103230, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754237

RESUMEN

Neonatal Fc receptor (FcRn) recycles immunoglobulin G, and inhibition of FcRn is used clinically for treatment of autoimmune diseases. In this work, using the vesicular stomatitis virus (VSV) mouse infection model system, we determined the role of FcRn during virus infection. While induction of neutralizing antibodies and long-term protection of these antibodies was hardly affected in FcRn deficient mice, FcRn deficiency limited the amount of natural IgG (VSV-specific) antibodies. Lack of natural antibodies (nAbs) limited early control of VSV in macrophages, accelerated propagation of virus in several organs, led to the spread of VSV to the neural tissue resulting in fatal outcomes. Adoptive transfer of natural IgG into FcRn deficient mice limited early propagation of VSV in FcRn deficient mice and enhanced survival of FcRn knockout mice. In line with this, vaccination of FcRn mice with very low dose of VSV prior to infection similarly prevented death after infection. In conclusion we determined the importance of nAbs during VSV infection. Lack of FcRn limited nAbs and thereby enhanced the susceptibility to virus infection.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antígenos de Histocompatibilidad Clase I , Inmunoglobulina G , Ratones Noqueados , Receptores Fc , Estomatitis Vesicular , Animales , Ratones , Inmunoglobulina G/inmunología , Receptores Fc/inmunología , Receptores Fc/genética , Receptores Fc/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Estomatitis Vesicular/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Vesiculovirus/inmunología , Virus de la Estomatitis Vesicular Indiana/inmunología , Modelos Animales de Enfermedad , Traslado Adoptivo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL
11.
Nat Commun ; 15(1): 4327, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773088

RESUMEN

The antitumor efficacy of adoptively transferred T cells is limited by their poor persistence, in part due to exhaustion, but the underlying mechanisms and potential interventions remain underexplored. Here, we show that targeting histone demethylase LSD1 by chemical inhibitors reshapes the epigenome of in vitro activated and expanded CD8+ T cells, and potentiates their antitumor efficacy. Upon T cell receptor activation and IL-2 signaling, a timely and transient inhibition of LSD1 suffices to improve the memory phenotype of mouse CD8+ T cells, associated with a better ability to produce multiple cytokines, resist exhaustion, and persist in both antigen-dependent and -independent manners after adoptive transfer. Consequently, OT1 cells primed with LSD1 inhibitors demonstrate an enhanced antitumor effect in OVA-expressing solid tumor models implanted in female mice, both as a standalone treatment and in combination with PD-1 blockade. Moreover, priming with LSD1 inhibitors promotes polyfunctionality of human CD8+ T cells, and increases the persistence and antitumor efficacy of human CD19-CAR T cells in both leukemia and solid tumor models. Thus, pharmacological inhibition of LSD1 could be exploited to improve adoptive T cell therapy.


Asunto(s)
Linfocitos T CD8-positivos , Histona Demetilasas , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones , Humanos , Femenino , Ratones Endogámicos C57BL , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Activación de Linfocitos/efectos de los fármacos , Traslado Adoptivo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Interleucina-2/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Memoria Inmunológica/efectos de los fármacos
12.
Front Immunol ; 15: 1339318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711496

RESUMEN

Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.


Asunto(s)
Enfermedad Injerto contra Huésped , Efecto Injerto vs Leucemia , Trasplante de Células Madre Hematopoyéticas , Linfocitos T Reguladores , Linfocitos T Reguladores/inmunología , Humanos , Efecto Injerto vs Leucemia/inmunología , Animales , Enfermedad Injerto contra Huésped/inmunología , Enfermedad Injerto contra Huésped/prevención & control , Trasplante Homólogo , Traslado Adoptivo/métodos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología
13.
Front Immunol ; 15: 1381919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799424

RESUMEN

Introduction: CD8+T cell tolerance plays an important role in tumor escape. Recent studies have shown that CD45+ erythroid progenitor cells (CD45+EPCs) generated through splenic extramedullary erythropoiesis suppress tumor immunity. However, the mechanism underlying how CD45+EPCs mediate CD8+T cell tolerance remains incompletely understood and requires further research. Methods: In this study, the antigen-processing abilities of CD45+EPCs was verified through both in vitro and in vivo experiments. We have used the method of co-culture in vitro and adoptive transfer experiments in vivo to explore the effects of CD45+EPCs on CD8+T cell tolerance. RNA-sequencing analysis and blocking experiments were used to evaluate the role of ROS in the CD45+EPC mediated tolerance of CD8+T cells. Finally, we incorporated uric acid into the adoptive transfer experiments to rescue the CD45+EPC mediated tumor-promoting effect. Results and discussion: We found that CD45+EPCs take up soluble proteins, present antigenic epitopes on their surface, and induce antigen-specific CD8+T cell anergy. In addition, we found that CD45+EPC directly nitrates tyrosine within the TCR/CD8 complex via the production of reactive oxygen species and peroxynitrite, preventing CD8+ T cells from responding to their specific peptide antigens. Furthermore, uric acid treatment effectively abolished the immunosuppressive effects of CD45+EPCs during CD8+T cell adoptive transfer, thereby enhancing the anti-tumor efficacy. These results demonstrated that CD8+T cell tolerance in tumor-bearing mice is induced by CD45+EPCs. The results of this study have direct implications for tumor immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Células Precursoras Eritroides , Tolerancia Inmunológica , Animales , Linfocitos T CD8-positivos/inmunología , Ratones , Células Precursoras Eritroides/inmunología , Células Precursoras Eritroides/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones Endogámicos C57BL , Traslado Adoptivo , Especies Reactivas de Oxígeno/metabolismo , Escape del Tumor/inmunología , Línea Celular Tumoral , Ácido Úrico
14.
Cancer Immunol Immunother ; 73(6): 101, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630265

RESUMEN

BACKGROUND: Adoptive transfer of in vitro expanded tumor-infiltrating lymphocytes (TILs) has been effective in regressing several types of malignant tumors. This study assessed the yield and factors influencing the successful expansion of tumor-infiltrating lymphocytes (TILs) from head and neck squamous cell carcinoma (HNSCC), along with their immune phenotypes. METHODS: TILs were expanded from 47 surgically resected HNSCC specimens and their metastasized lymph nodes. The cancer tissues were cut into small pieces (1-2 mm) and underwent initial expansion for 2 weeks. Tumor location, smoking history, stromal TIL percentage, human papillomavirus infection, and programmed death-ligand 1 score were examined for their impact on successful expansion of TILs. Expanded TILs were evaluated by flow cytometry using fluorescence-activated cell sorting. A second round of TIL expansion following the rapid expansion protocol was performed on a subset of samples with successful TIL expansion. RESULTS: TILs were successfully expanded from 36.2% samples. Failure was due to contamination (27.6%) or insufficient expansion (36.2%). Only the stromal TIL percentage was significantly associated with successful TIL expansion (p = 0.032). The stromal TIL percentage also displayed a correlation with the expanded TILs per fragment (r = 0.341, p = 0.048). On flow cytometry analysis using 13 samples with successful TIL expansion, CD4 + T cell dominancy was seen in 69.2% of cases. Effector memory T cells were the major phenotype of expanded CD4 + and CD8 + T cells in all cases. CONCLUSION: We could expand TILs from approximately one-third of HNSCC samples. TIL expansion could be applicable in HNSCC samples with diverse clinicopathological characteristics.


Asunto(s)
Neoplasias de Cabeza y Cuello , Inmunoterapia Adoptiva , Humanos , Linfocitos Infiltrantes de Tumor , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Traslado Adoptivo , Neoplasias de Cabeza y Cuello/terapia
15.
World J Gastroenterol ; 30(13): 1791-1800, 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38659486

RESUMEN

Liver transplantation (LT) has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management. However, long-term side-effects of immunosuppressants, like infection, metabolic disorders and malignant tumor are gaining more attention. Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants, but the liver function and intrahepatic histology maintain normal. The approaches to achieve immune tolerance after transplantation include spontaneous, operational and induced tolerance. The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up. No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation. With the understanding to the underlying mechanisms of immune tolerance, many strategies have been developed to induce tolerance in LT recipients. Cellular strategy is one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells. The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials, while obstacles still exist before translating into clinical practice. Here, we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.


Asunto(s)
Inmunosupresores , Trasplante de Hígado , Humanos , Trasplante de Hígado/efectos adversos , Trasplante de Hígado/métodos , Inmunosupresores/uso terapéutico , Inmunosupresores/efectos adversos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Tolerancia Inmunológica/inmunología , Enfermedad Hepática en Estado Terminal/cirugía , Enfermedad Hepática en Estado Terminal/inmunología , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Tolerancia al Trasplante/inmunología , Traslado Adoptivo/métodos , Supervivencia de Injerto/inmunología , Supervivencia de Injerto/efectos de los fármacos , Animales , Resultado del Tratamiento , Linfocitos T Reguladores/inmunología , Hígado/inmunología , Hígado/patología , Hígado/cirugía
16.
Am J Physiol Renal Physiol ; 326(6): F942-F956, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634135

RESUMEN

T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)ß1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.


Asunto(s)
Lesión Renal Aguda , Tasa de Filtración Glomerular , Ratones Endogámicos C57BL , Daño por Reperfusión , Linfocitos T Reguladores , Animales , Lesión Renal Aguda/inmunología , Lesión Renal Aguda/patología , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/fisiopatología , Daño por Reperfusión/inmunología , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Masculino , Modelos Animales de Enfermedad , Fibrosis , Células Epiteliales/metabolismo , Células Epiteliales/patología , Traslado Adoptivo , Ratones , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Fenotipo , Túbulos Renales/patología , Túbulos Renales/metabolismo , Regeneración , Células Cultivadas
17.
J Cell Mol Med ; 28(9): e18310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676361

RESUMEN

Studies have shown that adoptive transfer of myeloid-derived suppressor cells (MDSCs) can alleviate various inflammatory diseases, including glomerulonephritis, but the long-term effects of the transferred MDSCs are still unclear. In addition, although glucocorticoids exert immunosuppressive effects on inflammatory diseases by inducing the expansion of MDSCs, the impact of glucocorticoids on the immunosuppressive function of MDSCs and their molecular mechanisms are unclear. In this study, we found that adoptive transfer of MDSCs to doxorubicin-induced focal segmental glomerulosclerosis (FSGS) mice for eight consecutive weeks led to an increase in serum creatinine and proteinuria and aggravation of renal interstitial fibrosis. Similarly, 8 weeks of high-dose dexamethasone administration exacerbated renal interstitial injury and interstitial fibrosis in doxorubicin-induced mice, manifested as an increase in serum creatinine and proteinuria, collagen deposition and α-SMA expression. On this basis, we found that dexamethasone could enhance MDSC expression and secretion of the fibrosis-related cytokines TGF-ß and IL-10. Mechanistically, we revealed that dexamethasone promotes the expression of immunoglobulin-like transcription factor 4 (ILT4), which enhances the T-cell inhibitory function of MDSCs and promotes the activation of STAT6, thereby strengthening the expression and secretion of TGF-ß and IL-10. Knocking down ILT4 alleviated renal fibrosis caused by adoptive transfer of MDSCs. Therefore, our findings demonstrate that the role and mechanism of dexamethasone mediate the expression and secretion of TGF-ß and IL-10 in MDSCs by promoting the expression of ILT4, thereby leading to renal fibrosis.


Asunto(s)
Dexametasona , Fibrosis , Células Supresoras de Origen Mieloide , Animales , Dexametasona/farmacología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/efectos de los fármacos , Ratones , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Masculino , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Ratones Endogámicos C57BL , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Traslado Adoptivo , Modelos Animales de Enfermedad , Regulación hacia Arriba/efectos de los fármacos , Interleucina-10/metabolismo , Interleucina-10/genética , Factor de Crecimiento Transformador beta/metabolismo
18.
Blood Adv ; 8(10): 2373-2383, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38467031

RESUMEN

ABSTRACT: Immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is slow and patients carry a high and prolonged risk of opportunistic infections. We hypothesized that the adoptive transfer of donor B cells can foster after HSCT immuno-reconstitution. Here, we report, to our knowledge, the results of a first-in-human phase 1/2a study aimed to evaluate the feasibility and safety of adoptively transferred donor B cells and to test their activity upon recall vaccination. Good manufactoring practice (GMP) B-cell products were generated from donor apheresis products using 2-step magnetic cell separation. Fifteen patients who had undergone allo-HSCT were enrolled and treated after taper of immunosuppression (median, day +148; range, 130-160). Patients received 4 different doses of B cells (0.5 × 106 to 4.0 × 106 B cells per kg body weight). To test the activity of infused donor memory B cells in vivo, patients were vaccinated with a pentavalent vaccine 7 days after B-cell transfer. We observed the mobilization of plasmablasts and an increase in serum titers against vaccine antigens, with a stronger response in patients receiving higher B-cell numbers. Analysis of immunoglobulin VH-sequences by next-generation sequencing revealed that plasmablasts responding to vaccination originated from memory B-cell clones from the donor. Donor B-cell transfer was safe, as no Epstein-Barr virus (EBV) reactivation was observed, and only low-grade graft-versus-host disease (GVHD) occurred in 4 out of 15 patients. This pilot trial may pave the way for further studies exploring the adoptive transfer of memory B cells to reduce the frequency of infections after allo-HSCT. This trial was registered at ClinicalTrial.gov as #NCT02007811.


Asunto(s)
Traslado Adoptivo , Linfocitos B , Trasplante de Células Madre Hematopoyéticas , Trasplante Homólogo , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Adulto , Linfocitos B/inmunología , Persona de Mediana Edad , Masculino , Femenino , Traslado Adoptivo/métodos , Donantes de Tejidos , Adulto Joven , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control
19.
J Pediatric Infect Dis Soc ; 13(Supplement_1): S49-S57, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38417086

RESUMEN

Viral infections are a major source of morbidity and mortality in the context of immune deficiency and immunosuppression following allogeneic hematopoietic cell (allo-HCT) and solid organ transplantation (SOT). The pharmacological treatment of viral infections is challenging and often complicated by limited efficacy, the development of resistance, and intolerable side effects. A promising strategy to rapidly restore antiviral immunity is the adoptive transfer of virus-specific T cells (VST). This therapy involves the isolation and ex vivo expansion or direct selection of antigen-specific T cells from healthy seropositive donors, followed by infusion into the patient. This article provides a practical guide to VST therapy by reviewing manufacturing techniques, donor selection, and treatment indications. The safety and efficacy data of VSTs gathered in clinical trials over nearly 30 years is summarized. Current challenges and limitations are discussed, as well as opportunities for further research and development.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Trasplante de Órganos , Sepsis , Virosis , Humanos , Linfocitos T , Virosis/terapia , Traslado Adoptivo/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos
20.
Transplant Proc ; 56(3): 692-700, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360464

RESUMEN

BACKGROUND: We demonstrated that an agonistic anti-B and T lymphocyte attenuator antibody (3C10) prolonged cardiac survival by inducing regulatory T cells (Treg). However, the mechanisms of immune tolerance in the recipients remained unclear. In this study, we investigated the graft-protective and intercellular immunomodulatory effects of adoptive transfer (AT) of 3C10-induced Tregs in a murine cardiac allograft transplant model. METHODS: Thirty days after transplantation of a C57BL/6 heart into the primary 3C10-treated CBA recipients, splenic CD4+CD25+ cells from these recipients (3C10/AT group) or naïve CBA mice (no-treatment group) were adoptively transferred into secondary CBA recipients with a C57BL/6 heart. To confirm the requirement for 3C10-induced Tregs, we administered an anti-interleukin-2 receptor alpha antibody (PC-61) to secondary CBA recipients. Additionally, histologic and fluorescent staining, cell proliferation analysis, flow cytometry, and donor-specific antibody (DSA) measurements were performed. RESULTS: 3C10/AT-treated CBA recipients resulted in significantly prolonged allograft survival (median survival time [MST], >50 days). Allografts displayed prolonged function with preservation of vessel structure by maintaining high numbers of splenic CD4+CD25+Foxp3+ Treg and intramyocardial CD4+Foxp3+ cells. DSA levels were suppressed in 3C10/AT-treated CBA recipients. Moreover, PC-61 administration resulted in a shorter MSTs of cardiac allograft survivals, a detrimental increase in DSA production, and enhanced expression of programmed cell death (PD)-1. CONCLUSION: AT of 3C10-induced Tregs may be a promising graft-protective strategy to prolong allograft survival and suppress DSA production, driven by the promotion of splenic and graft-infiltrating Tregs and collaboration with PD-1+ T cells and Treg.


Asunto(s)
Traslado Adoptivo , Supervivencia de Injerto , Trasplante de Corazón , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Linfocitos T Reguladores , Animales , Linfocitos T Reguladores/inmunología , Ratones , Supervivencia de Injerto/efectos de los fármacos , Subunidad alfa del Receptor de Interleucina-2/inmunología , Anticuerpos Monoclonales/farmacología , Masculino , Receptores Inmunológicos/metabolismo , Aloinjertos , Rechazo de Injerto/inmunología , Rechazo de Injerto/prevención & control , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...