Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.364
Filtrar
1.
BMC Oral Health ; 24(1): 785, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997686

RESUMEN

BACKGROUND: The number of adult orthodontic patients is increasing, and studies have shown that autophagy is involved in regulating orthodontic tooth movement and plays an important role in aging-related changes. Therefore, we aimed to explore the role of autophagy in aging-related changes during orthodontic tooth movement by establishing a rat orthodontic tooth movement model. METHODS: Forty-five 6-week-old and sixty-five 8-month-old male Sprague-Dawley rats were selected to represent adolescents and adults and establish orthodontic tooth movement model. They were sacrificed on days 0,1,3,7 and 14. Immunohistochemistry, immunofluorescence and tartrate resistant acid phosphatase (TRAP) staining were applied to measure the expression level of osteogenesis, autophagy, aging factors and osteoclast number in periodontal membrane of left upper first molar during orthodontic tooth movement. Then, we regulated the autophagy level by injecting autophagy activator rapamycin during orthodontic tooth movement and measured these factors and tooth movement distance by micro-computed tomography. RESULTS: Aging factor levels in the periodontal membrane were higher in adult rats than in adolescent rats and the autophagy factor levels were lower. The levels of osteogenic factors were lower on the tension side in adult rats than in adolescent rats. The peak osteoclast number on the pressure side occurred later in adult rats than in adolescent rats. The injection of rapamycin increased autophagy, accelerated orthodontic tooth movement in adult rats, and reduced the levels of aging factors. The levels of osteogenic factors were higher and reached those in adolescent rats at some time points. The number of osteoclasts increased significantly in the early stage. CONCLUSIONS: Autophagy may play a substantial role in regulating aging-related changes in orthodontic tooth movement.


Asunto(s)
Envejecimiento , Autofagia , Osteoclastos , Ratas Sprague-Dawley , Técnicas de Movimiento Dental , Animales , Autofagia/fisiología , Masculino , Ratas , Envejecimiento/fisiología , Envejecimiento/patología , Microtomografía por Rayos X , Sirolimus/farmacología , Osteogénesis/fisiología , Fosfatasa Ácida Tartratorresistente/metabolismo , Diente Molar
2.
Neuropathol Appl Neurobiol ; 50(4): e13000, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39036836

RESUMEN

AIMS: Astrocytic tau pathology is a major feature of tauopathies and ageing-related tau astrogliopathy (ARTAG). The substantia nigra (SN) is one of the important degenerative areas in tauopathies with parkinsonism. Nigral tau pathology is usually reported as neuronal predominant with less prominent astrocytic involvement. We aimed to identify cases with prominent astrocytic tau pathology in the SN. METHODS: We use the term nigral tau-astrogliopathy (NITAG) to describe cases showing an unusually high density of ARTAG with less neuronal tau pathology in the SN. We collected clinical information and studied the distribution of tau pathology, morphological features and immunostaining profiles in three cases. RESULTS: Three cases, all males with parkinsonism, were identified with the following clinicopathological diagnoses: (i) atypical parkinsonism with tau pathology reminiscent to that in postencephalitic parkinsonism (69-year-old); (ii) multiple system atrophy (73-year-old); (iii) traumatic encephalopathy syndrome/chronic traumatic encephalopathy (84-year-old). Double-labelling immunofluorescence confirmed co-localization of GFAP and phosphorylated tau in affected astrocytes. Staining profiles of NITAG revealed immunopositivity for various phosphorylated tau antibodies. Some astrocytic tau lesions were also seen in other brainstem regions and cerebral grey matter. CONCLUSIONS: We propose NITAG is a rare neuropathological feature, and not a distinct disease entity, in the frame of multiple system ARTAG, represented by abundant tau-positive astrocytes in various brain regions but having the highest density in the SN. The concept of NITAG allows the stratification of cases with various background pathologies to understand its relevance and contribution to neuronal dysfunction.


Asunto(s)
Envejecimiento , Astrocitos , Sustancia Negra , Tauopatías , Proteínas tau , Humanos , Masculino , Sustancia Negra/patología , Sustancia Negra/metabolismo , Anciano , Astrocitos/patología , Astrocitos/metabolismo , Tauopatías/patología , Tauopatías/metabolismo , Anciano de 80 o más Años , Envejecimiento/patología , Proteínas tau/metabolismo , Trastornos Parkinsonianos/patología , Trastornos Parkinsonianos/metabolismo
3.
Neurobiol Aging ; 141: 151-159, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954878

RESUMEN

Decline in spatial context memory emerges in midlife, the time when most females transition from pre- to post-menopause. Recent evidence suggests that, among post-menopausal females, advanced age is associated with functional brain alterations and lower spatial context memory. However, it is unknown whether similar effects are evident for white matter (WM) and, moreover, whether such effects contribute to sex differences at midlife. To address this, we conducted a study on 96 cognitively unimpaired middle-aged adults (30 males, 32 pre-menopausal females, 34 post-menopausal females). Spatial context memory was assessed using a face-location memory paradigm, while WM microstructure was assessed using diffusion tensor imaging. Behaviorally, advanced age was associated with lower spatial context memory in post-menopausal females but not pre-menopausal females or males. Additionally, advanced age was associated with microstructural variability in predominantly frontal WM (e.g., anterior corona radiata, genu of corpus callosum), which was related to lower spatial context memory among post-menopausal females. Our findings suggest that post-menopausal status enhances vulnerability to age effects on the brain's WM and episodic memory.


Asunto(s)
Envejecimiento , Imagen de Difusión Tensora , Menopausia , Caracteres Sexuales , Memoria Espacial , Sustancia Blanca , Humanos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Femenino , Persona de Mediana Edad , Masculino , Memoria Espacial/fisiología , Envejecimiento/patología , Envejecimiento/psicología , Envejecimiento/fisiología , Menopausia/fisiología , Menopausia/psicología , Adulto , Posmenopausia/fisiología , Posmenopausia/psicología , Memoria Episódica
4.
Mech Ageing Dev ; 220: 111959, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950628

RESUMEN

Oligodendrocyte precursor cells (OPCs) comprise 5-8 % of the adult glial cell population and stand out as the most proliferative cell type in the central nervous system (CNS). OPCs are responsible for generating oligodendrocytes (OLs), the myelinating cells of the CNS. However, OPC functions decline as we age, resulting in impaired differentiation and inadequate remyelination. This review explores the cellular and molecular changes associated with OPC aging, and their impact on OPC differentiation and functionality. Furthermore, it examines the impact of OPC aging within the context of multiple sclerosis and Alzheimer's disease, both neurodegenerative conditions wherein aged OPCs exacerbate disease progression by impeding remyelination. Moreover, various pharmacological interventions targeting pathways related to senescence and differentiation are discussed as potential strategies to rejuvenate aged OPCs. Enhancing our understanding of OPC aging mechanisms holds promise for developing new therapies to improve remyelination and repair in age-related neurodegenerative disorders.


Asunto(s)
Encéfalo , Diferenciación Celular , Senescencia Celular , Células Precursoras de Oligodendrocitos , Humanos , Células Precursoras de Oligodendrocitos/metabolismo , Células Precursoras de Oligodendrocitos/fisiología , Senescencia Celular/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Diferenciación Celular/fisiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Envejecimiento/patología , Oligodendroglía/metabolismo , Remielinización/fisiología
5.
Hum Genomics ; 18(1): 75, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956648

RESUMEN

BACKGROUND: Aging represents a significant risk factor for the occurrence of cerebral small vessel disease, associated with white matter (WM) lesions, and to age-related cognitive alterations, though the precise mechanisms remain largely unknown. This study aimed to investigate the impact of polygenic risk scores (PRS) for WM integrity, together with age-related DNA methylation, and gene expression alterations, on cognitive aging in a cross-sectional healthy aging cohort. The PRSs were calculated using genome-wide association study (GWAS) summary statistics for magnetic resonance imaging (MRI) markers of WM integrity, including WM hyperintensities, fractional anisotropy (FA), and mean diffusivity (MD). These scores were utilized to predict age-related cognitive changes and evaluate their correlation with structural brain changes, which distinguish individuals with higher and lower cognitive scores. To reduce the dimensionality of the data and identify age-related DNA methylation and transcriptomic alterations, Sparse Partial Least Squares-Discriminant Analysis (sPLS-DA) was used. Subsequently, a canonical correlation algorithm was used to integrate the three types of omics data (PRS, DNA methylation, and gene expression data) and identify an individual "omics" signature that distinguishes subjects with varying cognitive profiles. RESULTS: We found a positive association between MD-PRS and long-term memory, as well as a correlation between MD-PRS and structural brain changes, effectively discriminating between individuals with lower and higher memory scores. Furthermore, we observed an enrichment of polygenic signals in genes related to both vascular and non-vascular factors. Age-related alterations in DNA methylation and gene expression indicated dysregulation of critical molecular features and signaling pathways involved in aging and lifespan regulation. The integration of multi-omics data underscored the involvement of synaptic dysfunction, axonal degeneration, microtubule organization, and glycosylation in the process of cognitive aging. CONCLUSIONS: These findings provide valuable insights into the biological mechanisms underlying the association between WM coherence and cognitive aging. Additionally, they highlight how age-associated DNA methylation and gene expression changes contribute to cognitive aging.


Asunto(s)
Envejecimiento Cognitivo , Metilación de ADN , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Humanos , Metilación de ADN/genética , Femenino , Masculino , Herencia Multifactorial/genética , Anciano , Persona de Mediana Edad , Estudios Transversales , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Factores de Riesgo , Imagen por Resonancia Magnética , Envejecimiento/genética , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Puntuación de Riesgo Genético
6.
Eur J Pharmacol ; 978: 176794, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968980

RESUMEN

Heart failure (HF) remains a huge medical burden worldwide, with aging representing a major risk factor. Here, we report the effects of sacubitril/valsartan, an approved drug for HF with reduced EF, in an experimental model of aging-related HF with preserved ejection fraction (HFpEF). Eighteen-month-old female Fisher 344 rats were treated for 12 weeks with sacubitril/valsartan (60 mg/kg/day) or with valsartan (30 mg/kg/day). Three-month-old rats were used as control. No differential action of sacubitril/valsartan versus valsartan alone, either positive or negative, was observed. The positive effects of both sacubitril/valsartan and valsartan on cardiac hypertrophy was evidenced by a significant reduction of wall thickness and myocyte cross-sectional area. Contrarily, myocardial fibrosis in aging heart was not reduced by any treatment. Doppler echocardiography and left ventricular catheterization evidenced diastolic dysfunction in untreated and treated old rats. In aging rats, both classical and non-classical renin-angiotensin-aldosterone system (RAAS) were modulated. In particular, with respect to untreated animals, both sacubitril/valsartan and valsartan showed a partial restoration of cardioprotective non-classical RAAS. In conclusion, this study evidenced the favorable effects, by both treatments, on age-related cardiac hypertrophy. The attenuation of cardiomyocyte size and hypertrophic response may be linked to a shift towards cardioprotective RAAS signaling. However, diastolic dysfunction and cardiac fibrosis persisted despite of treatment and were accompanied by myocardial inflammation, endothelial activation, and oxidative stress.


Asunto(s)
Envejecimiento , Aminobutiratos , Compuestos de Bifenilo , Combinación de Medicamentos , Insuficiencia Cardíaca , Ratas Endogámicas F344 , Tetrazoles , Valsartán , Animales , Aminobutiratos/farmacología , Aminobutiratos/uso terapéutico , Compuestos de Bifenilo/farmacología , Valsartán/farmacología , Valsartán/uso terapéutico , Envejecimiento/efectos de los fármacos , Envejecimiento/patología , Femenino , Tetrazoles/farmacología , Tetrazoles/uso terapéutico , Ratas , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/fisiopatología , Sistema Renina-Angiotensina/efectos de los fármacos , Fibrosis , Estrés Oxidativo/efectos de los fármacos , Antagonistas de Receptores de Angiotensina/farmacología , Antagonistas de Receptores de Angiotensina/uso terapéutico , Volumen Sistólico/efectos de los fármacos , Modelos Animales de Enfermedad , Neprilisina/antagonistas & inhibidores , Neprilisina/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología
7.
Sci Transl Med ; 16(754): eadj5958, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38959324

RESUMEN

Pathological tau aggregates cause cognitive decline in neurodegenerative tauopathies, including Alzheimer's disease (AD). These aggregates are prevalent within intracellular compartments. Current tau immunotherapies have shown limited efficacy in clearing intracellular tau aggregates and improving cognition in clinical trials. In this study, we developed toxic tau conformation-specific monoclonal antibody-2 (TTCM2), which selectively recognized pathological tau aggregates in brain tissues from patients with AD, dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). TTCM2 potently inhibited tau-seeding activity, an essential mechanism underlying tauopathy progression. To effectively target intracellular tau aggregates and ensure rapid delivery to the brain, TTCM2 was loaded in micelles (TTCM2-ms) and administered through the intranasal route. We found that intranasally administered TTCM2-ms efficiently entered the brain in hTau-tauopathy mice, targeting pathological tau in intracellular compartments. Moreover, a single intranasal dose of TTCM2-ms effectively cleared pathological tau, elevated synaptic proteins, and improved cognitive functions in aged tauopathy mice. Mechanistic studies revealed that TTCM2-ms cleared intracellular, synaptic, and seed-competent tau aggregates through tripartite motif-containing 21 (TRIM21), an intracellular antibody receptor and E3 ubiquitin ligase known to facilitate proteasomal degradation of cytosolic antibody-bound proteins. TRIM21 was found to be essential for TTCM2-ms-mediated clearance of tau pathology. Our study collectively provides evidence of the effectiveness of nasal tau immunotherapy in targeting and clearing intracellular tau pathology through TRIM21 and enhancing cognition in aged tauopathy mice. This study could be valuable in designing effective tau immunotherapies for AD and other tauopathies.


Asunto(s)
Cognición , Tauopatías , Proteínas tau , Animales , Humanos , Ratones , Administración Intranasal , Envejecimiento/patología , Anticuerpos Monoclonales/farmacología , Encéfalo/patología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inmunoterapia/métodos , Ratones Transgénicos , Agregado de Proteínas/efectos de los fármacos , Proteínas tau/metabolismo , Tauopatías/inmunología , Tauopatías/metabolismo , Tauopatías/patología , Tauopatías/terapia
8.
Aging Dis ; 15(4): 1432-1437, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059424

RESUMEN

Vascular pathologies are among the most common contributors to neurodegenerative changes across the spectrum of normal aging to dementia. Cerebral small vessel disease (SVD) encompasses a wide range of conditions affecting capillaries, small arteries, and arterioles, as well as perivascular spaces and fluid dynamics in the brain, playing a significant role in vascular contributions to cognitive impairment and dementia (VCID). These factors can accelerate the progression of SVD and neuronal degeneration. Since aging is the primary risk factor for Alzheimer's disease (AD) and AD-related dementias (ADRD), this Research Topic aims to gather recent research to better understand vascular contributions to healthy aging and age-related cognitive impairment. Other risk factors include diabetes, lifestyle factors, high cholesterol, vascular inflammation, and immune remodeling, all of which can accelerate cognitive dysfunction progression. This special issue includes a total of 21 articles comprising Reviews, Perspectives, and Original Research articles. The articles cover various technical and biological aspects related to recent progress in aging and dementia research. We aim to promote research exchange across different fields, including imaging, VCID, molecular biology, neuroinflammation, and immunology. Most papers in this special issue focus on understanding the disease mechanisms of AD/ADRD and developing new therapeutic strategies.


Asunto(s)
Demencia , Envejecimiento Saludable , Humanos , Envejecimiento Saludable/fisiología , Demencia/fisiopatología , Demencia/patología , Demencia/etiología , Enfermedades de los Pequeños Vasos Cerebrales/fisiopatología , Enfermedades de los Pequeños Vasos Cerebrales/patología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/patología , Encéfalo/patología , Encéfalo/fisiopatología , Encéfalo/irrigación sanguínea , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/patología , Factores de Riesgo , Envejecimiento/fisiología , Envejecimiento/patología
9.
Ageing Res Rev ; 99: 102407, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38977082

RESUMEN

Aging is the greatest risk factor for chronic human diseases, including many eye diseases. Geroscience aims to understand the effects of the aging process on these diseases, including the genetic, molecular, and cellular mechanisms that underlie the increased risk of disease over the lifetime. Understanding of the aging eye increases general knowledge of the cellular physiology impacted by aging processes at various biological extremes. Two major diseases, age-related cataract and age-related macular degeneration (AMD) are caused by dysfunction of the lens and retina, respectively. Lens transparency and light refraction are mediated by lens fiber cells lacking nuclei and other organelles, which provides a unique opportunity to study a single aging hallmark, i.e., loss of proteostasis, within an environment of limited metabolism. In AMD, local dysfunction of the photoreceptors/retinal pigmented epithelium/Bruch's membrane/choriocapillaris complex in the macula leads to the loss of photoreceptors and eventually loss of central vision, and is driven by nearly all the hallmarks of aging and shares features with Alzheimer's disease, Parkinson's disease, cardiovascular disease, and diabetes. The aging eye can function as a model for studying basic mechanisms of aging and, vice versa, well-defined hallmarks of aging can be used as tools to understand age-related eye disease.


Asunto(s)
Envejecimiento , Catarata , Degeneración Macular , Humanos , Degeneración Macular/patología , Degeneración Macular/fisiopatología , Envejecimiento/fisiología , Envejecimiento/patología , Catarata/fisiopatología , Catarata/patología , Animales , Ojo
10.
Circ Arrhythm Electrophysiol ; 17(7): e012452, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012929

RESUMEN

BACKGROUND: Aging is one of the most potent risk determinants for the onset of atrial fibrillation (AF). Sirts (sirtuins) have been implicated in the pathogenesis of cardiovascular disease, and their expression declines with aging. However, whether Sirts involved in age-related AF and its underlying mechanisms remain unknown. The present study aims to explore the role of Sirts in age-related AF and delineate the underlying molecular mechanisms. METHODS: Sirt1 levels in the atria of both elderly individuals and aging rats were evaluated using quantitative real-time polymerase chain reaction and Western blot analysis. Mice were engineered to specifically knockout Sirt1 in the atria and right ventricle (Sirt1mef2c/mef2c). Various techniques, such as echocardiography, atrial electrophysiology, and protein acetylation modification omics were employed. Additionally, coimmunoprecipitation was utilized to substantiate the interaction between Sirt1 and RIPK1 (receptor-interacting protein kinase 1). RESULTS: We discerned that among the diverse subtypes of sirtuin proteins, only Sirt1 expression was significantly diminished in the atria of elderly people and aged rats. The Sirt1mef2c/mef2c mice exhibited an enlarged atrial diameter and heightened vulnerability to AF. Acetylated proteomics and cell experiments identified that Sirt1 deficiency activated atrial necroptosis through increasing RIPK1 acetylation and subsequent pseudokinase MLKL (mixed lineage kinase domain-like protein) phosphorylation. Consistently, necroptotic inhibitor necrosulfonamide mitigated atrial necroptosis and diminished both the atrial diameter and AF susceptibility of Sirt1mef2c/mef2c mice. Resveratrol prevented age-related AF in rats by activating atrial Sirt1 and inhibiting necroptosis. CONCLUSIONS: Our findings first demonstrated that Sirt1 exerts significant efficacy in countering age-related AF by impeding atrial necroptosis through regulation of RIPK1 acetylation, highlighting that the activation of Sirt1 or the inhibition of necroptosis could potentially serve as a therapeutic strategy for age-related AF.


Asunto(s)
Fibrilación Atrial , Modelos Animales de Enfermedad , Atrios Cardíacos , Ratones Noqueados , Necroptosis , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Acetilación , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Fibrilación Atrial/metabolismo , Fibrilación Atrial/genética , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/prevención & control , Fibrilación Atrial/patología , Masculino , Humanos , Ratas , Envejecimiento/metabolismo , Envejecimiento/patología , Ratones , Ratas Sprague-Dawley , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Transducción de Señal , Factores de Edad , Anciano , Ratones Endogámicos C57BL , Femenino
11.
Hum Brain Mapp ; 45(11): e26798, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39081128

RESUMEN

Brain atrophy and cortical thinning are typically observed in people with Alzheimer's disease (AD) and, to a lesser extent, in those with mild cognitive impairment. In asymptomatic middle-aged apolipoprotein ε4 (ΑPOE4) carriers, who are at higher risk of future AD, study reports are discordant with limited evidence of brain structural differences between carriers and non-carriers of the ε4 allele. Alternative imaging markers with higher sensitivity at the presymptomatic stage, ideally quantified using typically acquired structural MRI scans, would thus be of great benefit for the detection of early disease, disease monitoring and subject stratification. In the present cross-sectional study, we investigated textural properties of T1-weighted 3T MRI scans in relation to APOE4 genotype, age and sex. We pooled together data from the PREVENT-Dementia and ALFA studies focused on midlife healthy populations with dementia risk factors (analysable cohort: 1585 participants; mean age 56.2 ± 7.4 years). Voxel-based and texture (examined features: contrast, entropy, energy, homogeneity) based morphometry was used to identify areas of volumetric and textural differences between APOE4 carriers and non-carriers. Textural maps were generated and were subsequently harmonised using voxel-wise COMBAT. For all analyses, APOE4, sex, age and years of education were used as model predictors. Interactions between APOE4 and age were further examined. There were no group differences in regional brain volume or texture based on APOE4 carriership or when age × APOE4 interactions were examined. Older people tended to have a less homogeneous textural profile in grey and white matter and a more homogeneous profile in the ventricles. A more heterogeneous textural profile was observed for females in areas such as the ventricles, frontal and parietal lobes and for males in the brainstem, cerebellum, precuneus and cingulate. Overall, we have shown the absence of volumetric and textural differences between APOE4 carriers and non-carriers at midlife and have established associations of textural features with ageing and sex.


Asunto(s)
Envejecimiento , Apolipoproteína E4 , Imagen por Resonancia Magnética , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Envejecimiento/patología , Envejecimiento/genética , Apolipoproteína E4/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios Transversales , Genotipo , Heterocigoto , Caracteres Sexuales
12.
Neurobiol Aging ; 141: 160-170, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964013

RESUMEN

Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.


Asunto(s)
Enfermedad de Alzheimer , Cognición , Disfunción Cognitiva , Peptidilprolil Isomerasa de Interacción con NIMA , Neocórtex , Ovillos Neurofibrilares , Caracteres Sexuales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Humanos , Femenino , Neocórtex/patología , Neocórtex/metabolismo , Masculino , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Disfunción Cognitiva/metabolismo , Anciano , Anciano de 80 o más Años , Ovillos Neurofibrilares/patología , Ovillos Neurofibrilares/metabolismo , Fenotipo , Sistema Límbico/patología , Sistema Límbico/metabolismo , Expresión Génica , Envejecimiento/patología , Envejecimiento/genética , Envejecimiento/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilación
13.
Neurobiol Aging ; 141: 171-181, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964014

RESUMEN

Age-related neuronal adaptations are known to help maintain function. This study aims to examine gross age-related in vivo retinal functional adaptations (using electroretinography) in young and middle aged C57BL/6J and Thy1-YFPh mice and to relate this to in vivo retinal structure (using optical coherence tomography). Electroretinography responses were generally larger in Thy1-YFPh mice than in C57BL/6J mice, with similar in vivo retinal layer thicknesses except for longer inner/outer photoreceptor segment in Thy1-YFPh mice. Relative to 3-month-old mice, 12-month-old mice showed reduced photoreceptor (C57BL/6J 84.0±2.5 %; Thy1-YFPh 80.2±5.2 %) and bipolar cell (C57BL/6J 75.6±2.3 %; Thy1-YFPh 68.1±5.5 %) function. There was relative preservation of ganglion cell function (C57BL/6J 79.7±3.7 %; Thy1-YFPh 91.7±5.0 %) with age, which was associated with increased b-wave (bipolar cell) sensitivities to light. Ganglion cell function was correlated with both b-wave amplitude and sensitivity. This study shows that there are normal age-related adaptations to preserve functional output. Different mouse strains may have varied age-related adaptation capacity and should be taken into consideration when examining age-related susceptibility to injury.


Asunto(s)
Envejecimiento , Electrorretinografía , Retina , Animales , Masculino , Ratones , Envejecimiento/fisiología , Envejecimiento/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Retina/fisiología , Células Bipolares de la Retina/fisiología , Células Ganglionares de la Retina/fisiología , Antígenos Thy-1/genética , Tomografía de Coherencia Óptica/métodos
14.
Curr Aging Sci ; 17(2): 118-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904154

RESUMEN

Containing information molecules from their parent cells and inclining to fuse with targeted cells, bone marrow mesenchymal stromal cells-derived extracellular vesicles (MSCs- EV) are valuable in nanomedicine. BACKGROUND: The effects of aging on the paracrine mechanism and in the production and action of MSCs-EV and their cargos of miR-26a and siRNA-26a for the treatment of tubular renal cells under nephrotoxicity injury remain unelucidated. OBJECTIVE: The purpose of this study was to evaluate MSCs-EV of different ages and their ability to deliver the cargos of miR-26a and siRNA-26a to target renal tubular cells affected by nephrotoxicity injury. METHODS: In a model of gentamicin-induced nephrotoxicity, renal tubular cells treated with MSCs-EV expressing or not expressing microRNA-26a were analyzed. Western blotting was utilized to evaluate cell cycle markers, and MTT assay was utilized to evaluate auto-renovation capacity. RESULTS: Tubular cells under nephrotoxicity injury showed decreased proliferative capacity, but the treatment in the tubular renal cells under nephrotoxicity injury with MSCs-EV expressing microRNA-26a showed nephroprotective effects, regardless of EV age. While the treatment with EV-mediated siRNA-26a failed to preserve the nephroprotective effects equally, regardless of age. CONCLUSION: Mesenchymal stromal cell nanovesicles carry microRNA with nephroprotective proprieties regardless of aging.


Asunto(s)
Proliferación Celular , Túbulos Renales , Células Madre Mesenquimatosas , MicroARNs , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Animales , Túbulos Renales/patología , Túbulos Renales/metabolismo , Envejecimiento/metabolismo , Envejecimiento/patología , Envejecimiento/genética , Gentamicinas/toxicidad , Gentamicinas/efectos adversos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Factores de Edad , ARN Interferente Pequeño/metabolismo , ARN Interferente Pequeño/genética , Línea Celular , Células Cultivadas , Comunicación Paracrina , Modelos Animales de Enfermedad , Humanos
15.
Front Endocrinol (Lausanne) ; 15: 1375610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38854688

RESUMEN

Muscle loss is a significant health concern, particularly with the increasing trend of population aging, and sarcopenia has emerged as a common pathological process of muscle loss in the elderly. Currently, there has been significant progress in the research on sarcopenia, including in-depth analysis of the mechanisms underlying sarcopenia caused by aging and the development of corresponding diagnostic criteria, forming a relatively complete system. However, as research on sarcopenia progresses, the concept of secondary sarcopenia has also been proposed. Due to the incomplete understanding of muscle loss caused by chronic diseases, there are various limitations in epidemiological, basic, and clinical research. As a result, a comprehensive concept and diagnostic system have not yet been established, which greatly hinders the prevention and treatment of the disease. This review focuses on Type 2 Diabetes Mellitus (T2DM)-related sarcopenia, comparing its similarities and differences with sarcopenia and disuse muscle atrophy. The review show significant differences between the three muscle-related issues in terms of pathological changes, epidemiology and clinical manifestations, etiology, and preventive and therapeutic strategies. Unlike sarcopenia, T2DM-related sarcopenia is characterized by a reduction in type I fibers, and it differs from disuse muscle atrophy as well. The mechanism involving insulin resistance, inflammatory status, and oxidative stress remains unclear. Therefore, future research should further explore the etiology, disease progression, and prognosis of T2DM-related sarcopenia, and develop targeted diagnostic criteria and effective preventive and therapeutic strategies to better address the muscle-related issues faced by T2DM patients and improve their quality of life and overall health.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sarcopenia , Humanos , Sarcopenia/patología , Sarcopenia/etiología , Sarcopenia/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/epidemiología , Músculo Esquelético/patología , Atrofia Muscular/patología , Atrofia Muscular/etiología , Trastornos Musculares Atróficos/patología , Trastornos Musculares Atróficos/complicaciones , Envejecimiento/patología
16.
Brain Behav ; 14(6): e3594, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38849980

RESUMEN

INTRODUCTION: In vivo myeloarchitectonic mapping based on Magnetic Resonance Imaging (MRI) provides a unique view of gray matter myelin content and offers information complementary to other morphological indices commonly employed in studies of autism spectrum disorder (ASD). The current study sought to determine if intracortical myelin content (MC) and its age-related trajectories differ between middle aged to older adults with ASD and age-matched typical comparison participants. METHODS: Data from 30 individuals with ASD and 36 age-matched typical comparison participants aged 40-70 years were analyzed. Given substantial heterogeneity in both etiology and outcomes in ASD, we utilized both group-level and subject-level analysis approaches to test for signs of atypical intracortical MC as estimated by T1w/T2w ratio. RESULTS: Group-level analyses showed no significant differences in average T1w/T2w ratio or its associations with age between groups, but revealed significant positive main effects of age bilaterally, with T1w/T2w ratio increasing with age across much of the cortex. In subject-level analyses, participants were classified into subgroups based on presence or absence of clusters of aberrant T1w/T2w ratio, and lower neuropsychological function was observed in the ASD subgroup with atypically high T1w/T2w ratio in spatially heterogeneous cortical regions. These differences were observed across several neuropsychological domains, including overall intellectual functioning, processing speed, and aspects of executive function. CONCLUSIONS: The group-level and subject-level approaches employed here demonstrate the value of examining inter-individual variability and provide important preliminary insights into relationships between brain structure and cognition in the second half of the lifespan in ASD, suggesting shared factors contributing to atypical intracortical myelin content and poorer cognitive outcomes for a subset of middle aged to older autistic adults. These atypicalities likely reflect diverse histories of neurodevelopmental deficits, and possible compensatory changes, compounded by processes of aging, and may serve as useful markers of vulnerability to further cognitive decline in older adults with ASD.


Asunto(s)
Trastorno del Espectro Autista , Imagen por Resonancia Magnética , Vaina de Mielina , Humanos , Masculino , Femenino , Anciano , Persona de Mediana Edad , Vaina de Mielina/patología , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/patología , Adulto , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Pruebas Neuropsicológicas , Envejecimiento/fisiología , Envejecimiento/patología
17.
Cells ; 13(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38891059

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a group of sporadic and genetic neurodegenerative disorders that result in losses of upper and lower motor neurons. Treatment of ALS is limited, and survival is 2-5 years after disease onset. While ALS can occur in younger individuals, the risk significantly increases with advancing age. Notably, both sporadic and genetic forms of ALS share pathophysiological features overlapping hallmarks of aging including genome instability/DNA damage, mitochondrial dysfunction, inflammation, proteostasis, and cellular senescence. This review explores chronological and biological aging in the context of ALS onset and progression. Age-related muscle weakness and motor unit loss mirror aspects of ALS pathology and coincide with peak ALS incidence, suggesting a potential link between aging and disease development. Hallmarks of biological aging, including DNA damage, mitochondrial dysfunction, and cellular senescence, are implicated in both aging and ALS, offering insights into shared mechanisms underlying disease pathogenesis. Furthermore, senescence-associated secretory phenotype and senolytic treatments emerge as promising avenues for ALS intervention, with the potential to mitigate neuroinflammation and modify disease progression.


Asunto(s)
Envejecimiento , Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Humanos , Envejecimiento/patología , Senoterapéuticos/farmacología , Senoterapéuticos/uso terapéutico , Animales , Senescencia Celular , Mitocondrias/metabolismo , Mitocondrias/patología , Daño del ADN
18.
Nature ; 630(8016): 475-483, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839958

RESUMEN

Senescence is a cellular state linked to ageing and age-onset disease across many mammalian species1,2. Acutely, senescent cells promote wound healing3,4 and prevent tumour formation5; but they are also pro-inflammatory, thus chronically exacerbate tissue decline. Whereas senescent cells are active targets for anti-ageing therapy6-11, why these cells form in vivo, how they affect tissue ageing and the effect of their elimination remain unclear12,13. Here we identify naturally occurring senescent glia in ageing Drosophila brains and decipher their origin and influence. Using Activator protein 1 (AP1) activity to screen for senescence14,15, we determine that senescent glia can appear in response to neuronal mitochondrial dysfunction. In turn, senescent glia promote lipid accumulation in non-senescent glia; similar effects are seen in senescent human fibroblasts in culture. Targeting AP1 activity in senescent glia mitigates senescence biomarkers, extends fly lifespan and health span, and prevents lipid accumulation. However, these benefits come at the cost of increased oxidative damage in the brain, and neuronal mitochondrial function remains poor. Altogether, our results map the trajectory of naturally occurring senescent glia in vivo and indicate that these cells link key ageing phenomena: mitochondrial dysfunction and lipid accumulation.


Asunto(s)
Envejecimiento , Encéfalo , Senescencia Celular , Drosophila melanogaster , Metabolismo de los Lípidos , Mitocondrias , Neuroglía , Animales , Femenino , Humanos , Masculino , Envejecimiento/metabolismo , Envejecimiento/patología , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/citología , Drosophila melanogaster/metabolismo , Drosophila melanogaster/citología , Fibroblastos/metabolismo , Fibroblastos/patología , Longevidad , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo , Factor de Transcripción AP-1/metabolismo , Lípidos , Inflamación/metabolismo , Inflamación/patología
19.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928291

RESUMEN

The process of aging inevitably leads to an increase in age-related comorbidities, including chronic kidney disease (CKD). In many aspects, CKD can be considered a state of accelerated and premature aging. Aging kidney and CKD have numerous common characteristic features, ranging from pathological presentation and clinical manifestation to underlying mechanisms. The shared mechanisms underlying the process of kidney aging and the development of CKD include the increase in cellular senescence, the decrease in autophagy, mitochondrial dysfunction, and the alterations of epigenetic regulation, suggesting the existence of potential therapeutic targets that are applicable to both conditions. In this review, we provide a comprehensive overview of the common characteristics between aging kidney and CKD, encompassing morphological changes, functional alterations, and recent advancements in understanding the underlying mechanisms. Moreover, we discuss potential therapeutic strategies for targeting senescent cells in both the aging process and CKD.


Asunto(s)
Envejecimiento , Senescencia Celular , Epigénesis Genética , Riñón , Insuficiencia Renal Crónica , Humanos , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/etiología , Envejecimiento/patología , Riñón/patología , Riñón/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/patología , Autofagia
20.
Exp Cell Res ; 440(1): 114115, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844260

RESUMEN

The process of aging is characterized by structural degeneration and functional decline, as well as diminished adaptability and resistance. The aging kidney exhibits a variety of structural and functional impairments. In aging mice, thinning and graying of fur were observed, along with a significant increase in kidney indices compared to young mice. Biochemical indicators revealed elevated levels of creatinine, urea nitrogen and serum uric acid, suggesting impaired kidney function. Histological analysis unveiled glomerular enlargement and sclerosis, severe hyaline degeneration, capillary occlusion, lymphocyte infiltration, tubular and glomerular fibrosis, and increased collagen deposition. Observations under electron microscopy showed thickened basement membranes, altered foot processes, and increased mesangium and mesangial matrix. Molecular marker analysis indicated upregulation of aging-related ß-galactosidase, p16-INK4A, and the DNA damage marker γH2AX in the kidneys of aged mice. In metabolomics, a total of 62 significantly different metabolites were identified, and 10 pathways were enriched. We propose that citrulline, dopamine, and indoxyl sulfate have the potential to serve as markers of kidney damage related to aging in the future. Phosphoproteomics analysis identified 6656 phosphosites across 1555 proteins, annotated to 62 pathways, and indicated increased phosphorylation at the Ser27 site of Minichromosome maintenance complex component 2 (Mcm2) and decreased at the Ser284 site of heterogeneous nuclear ribonucleoprotein K (hnRNP K), with these modifications being confirmed by western blotting. The phosphorylation changes in these molecules may contribute to aging by affecting genome stability. Eleven common pathways were detected in both omics, including arginine biosynthesis, purine metabolism and biosynthesis of unsaturated fatty acids, etc., which are closely associated with aging and renal insufficiency.


Asunto(s)
Envejecimiento , Inestabilidad Genómica , Riñón , Componente 2 del Complejo de Mantenimiento de Minicromosoma , Animales , Envejecimiento/metabolismo , Envejecimiento/genética , Envejecimiento/patología , Inestabilidad Genómica/genética , Ratones , Fosforilación , Riñón/metabolismo , Riñón/patología , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/genética , Ratones Endogámicos C57BL , Masculino , Metabolómica/métodos , Daño del ADN , Multiómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA