Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100.315
Filtrar
1.
Int J Nanomedicine ; 19: 7731-7750, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099787

RESUMEN

Purpose: Lignin is the most abundant source of aromatic biopolymers and has gained interest in industrial and biomedical applications due to the reported biocompatibility and defense provided against bacterial and fungal pathogens, besides antioxidant and UV-blocking properties. Especially in the form of nanoparticles (NPs), lignin may display also antioxidant and anti-inflammatory activities. Methods: To evaluate these characteristics, sonochemically nano-formulated pristine lignin (LigNPs) and enzymatically-phenolated one (PheLigNPs) were used to expose zebrafish embryos, without chorion, at different concentrations. Furthermore, two different zebrafish inflammation models were generated, by injecting Pseudomonas aeruginosa lipopolysaccharide (LPS) and by provoking a wound injury in the embryo caudal fin. The inflammatory process was investigated in both models by qPCR, analyzing the level of genes as il8, il6, il1ß, tnfα, nfkbiaa, nfk2, and ccl34a.4, and by the evaluation of neutrophils recruitment, taking advantage of the Sudan Black staining, in the presence or not of LigNPs and PheLigNPs. Finally, the Wnt/ß-catenin pathway, related to tissue regeneration, was investigated at the molecular level in embryos wounded and exposed to NPs. Results: The data obtained demonstrated that the lignin-based NPs showed the capacity to induce a positive response during an inflammatory event, increasing the recruitment of cytokines to accelerate their chemotactic function. Moreover, the LigNPs and PheLigNPs have a role in the resolution of wounds, favoring the regeneration process. Conclusion: In this paper, we used zebrafish embryos within 5 days post fertilization (hpf). Despite being an early-stage exemplary, the zebrafish embryos have proven their potential as predicting models. Further long-term experiments in adults will be needed to explore completely the biomedical capabilities of lignin NPs. The results underlined the safety of both NPs tested paved the way for further evaluations to exploit the anti-inflammatory and pro-healing properties of the lignin nanoparticles examined.


Asunto(s)
Inflamación , Lignina , Nanopartículas , Pez Cebra , Animales , Lignina/química , Lignina/farmacología , Nanopartículas/química , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/química , Modelos Animales de Enfermedad , Citocinas/metabolismo , Citocinas/genética , Embrión no Mamífero/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos
2.
J Cardiovasc Pharmacol ; 84(2): 227-238, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39115721

RESUMEN

ABSTRACT: Previous studies have found that anxiety disorders may increase the incidence of atrial fibrillation (AF). More and more studies have shown that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are involved in the occurrence and development of cardiovascular diseases. However, the role of AMPARs in AF associated with anxiety disorder remains unclear. The aim of this study was to investigate the effect of AMPARs on AF susceptibility in rats with anxiety disorder and its possible mechanism. The anxiety disorder rat model was established by unpredictable empty bottle stimulation and was treated with AMPARs agonist and antagonist. Our results showed that AMPARs antagonist treatment significantly reduced sympathetic activity, improved heart rate variability, shortened action potential duration, prolonged effective refractory period, reduced AF induction rate, and improved cardiac electrical remodeling and the expression of inflammatory factors. In addition, inhibition of AMPARs reduced the phosphorylation of IκBα and p65. Our experimental results suggest that inhibition of AMPARs can reduce autonomic remodeling, improve atrial electrical remodeling, and suppress myocardial inflammation, which provides a potential therapeutic strategy for the treatment of AF associated with anxiety disorder.


Asunto(s)
Trastornos de Ansiedad , Fibrilación Atrial , Modelos Animales de Enfermedad , Atrios Cardíacos , Ratas Sprague-Dawley , Receptores AMPA , Animales , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/metabolismo , Masculino , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/metabolismo , Trastornos de Ansiedad/fisiopatología , Atrios Cardíacos/efectos de los fármacos , Atrios Cardíacos/fisiopatología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Receptores AMPA/metabolismo , Remodelación Atrial/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Potenciales de Acción/efectos de los fármacos , Fosforilación , Transducción de Señal , Sistema Nervioso Simpático/fisiopatología , Sistema Nervioso Simpático/efectos de los fármacos , Sistema Nervioso Simpático/metabolismo , Factor de Transcripción ReIA/metabolismo , Ratas , Antiinflamatorios/farmacología , Periodo Refractario Electrofisiológico/efectos de los fármacos , Inhibidor NF-kappaB alfa/metabolismo
3.
Int J Nanomedicine ; 19: 7673-7689, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099793

RESUMEN

Purpose: In this study, wound dressings were designed using zinc-modified marine collagen porous scaffold as host for wild bilberry (WB) leaves extract immobilized in functionalized mesoporous silica nanoparticles (MSN). These new composites were developed as an alternative to conventional wound dressings. In addition to the antibacterial activity of classic antibiotics, a polyphenolic extract could act as an antioxidant and/or an anti-inflammatory agent as well. Methods: Wild bilberry leaves extract was prepared by ultrasound-assisted extraction in ethanol and its properties were evaluated by UV-Vis spectroscopy (radical scavenging activity, total amount of polyphenols, flavonoids, anthocyanins, and condensed tannins). The extract components were identified by HPLC, and the antidiabetic properties of the extract were evaluated via α-glucosidase inhibitory activity. Spherical MSN were modified with propionic acid or proline moieties by post-synthesis method and used as carriers for the WB leaves extract. The textural and structural features of functionalized MSN were assessed by nitrogen adsorption/desorption isotherms, small-angle XRD, SEM, TEM, and FTIR spectroscopy. The composite porous scaffolds were prepared by freeze drying of the zinc-modified collagen suspension containing WB extract loaded silica nanoparticles. Results: The properties of the new composites demonstrated enhanced properties in terms of thermal stability of the zinc-collagen scaffold, without altering the protein conformation, and stimulation of NCTC fibroblasts mobility. The results of the scratch assay showed contributions of both zinc ions from collagen and the polyphenolic extract incorporated in functionalized silica in the wound healing process. The extract encapsulated in functionalized MSN proved enhanced biological activities compared to the extract alone: better inhibition of P. aeruginosa and S. aureus strains, higher biocompatibility on HaCaT keratinocytes, and anti-inflammatory potential demonstrated by reduced IL-1ß and TNF-α levels. Conclusion: The experimental data shows that the novel composites can be used for the development of effective wound dressings.


Asunto(s)
Vendajes , Colágeno , Nanopartículas , Extractos Vegetales , Hojas de la Planta , Dióxido de Silicio , Cicatrización de Heridas , Zinc , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Colágeno/química , Colágeno/farmacología , Zinc/química , Zinc/farmacología , Nanopartículas/química , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Andamios del Tejido/química , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Línea Celular , Porosidad , Fibroblastos/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química
4.
Bull Exp Biol Med ; 177(2): 177-180, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39090468

RESUMEN

The level of cytokine expression was measured in human coronary artery (HCAEC) and internal thoracic artery (HITAEC) endothelial cells exposed to 500 ng/ml alkylating mutagen mitomycin C (MMC) and 5 µM atorvastatin. It was found that treatment of MMC-exposed HCAEC with atorvastatin decreased secretion of macrophage migration inhibitory factor (MIF), IL-8, and IL8 gene expression, but increased the expression of SERPINE1 gene encoding the PAI-1 protein. In atorvastatin-treated HITAEC, the concentration of MIF protein and the expression of the IL8 and SERPINE1 genes were reduced. We can conclude that atorvastatin prevents proinflammatory activation of endothelial cells cultured under conditions of genotoxic load. However, the molecular mechanisms of this effect require further research.


Asunto(s)
Atorvastatina , Vasos Coronarios , Células Endoteliales , Interleucina-8 , Mitomicina , Inhibidor 1 de Activador Plasminogénico , Humanos , Atorvastatina/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Mitomicina/farmacología , Interleucina-8/metabolismo , Interleucina-8/genética , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/citología , Antiinflamatorios/farmacología , Células Cultivadas , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo
6.
Bull Exp Biol Med ; 177(2): 217-220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39093473

RESUMEN

PT1 peptide isolated from the venom of spider Geolycosa sp. is a modulator of P2X3 receptors that play a role in the development of inflammation and the transmission of pain impulses. The anti-inflammatory and analgesic efficacy of the PT1 peptide was studied in a model of complete Freund's adjuvant-induced paw inflammation in CD-1 mice. The analgesic activity of PT1 peptide was maximum after intramuscular injection at a dose of 0.01 mg/kg, which surpassed the analgesic effect of diclofenac at a dose of 1 mg/kg. The anti-inflammatory activity was maximum after intramuscular injection at a dose of 0.0001 mg/kg; a decrease in paw thickness was observed as soon as 2 h after the administration of the PT1 peptide against the background of inflammation development. All tested doses of PT1 peptide showed high anti-inflammatory activity 4 and 24 h after administration. PT1 peptide at a dose of 0.01 mg/kg when injected intramuscularly simultaneously produced high anti-inflammatory and analgesic effects compared to other doses of the peptide. Increasing the dose of PT1 peptide led to a gradual decrease in its analgesic and anti-inflammatory activity; increasing the dose of intramuscular injection to 0.1 and 1 mg/kg is inappropriate.


Asunto(s)
Analgésicos , Antiinflamatorios , Inflamación , Péptidos , Animales , Ratones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/patología , Antiinflamatorios/farmacología , Antiinflamatorios/administración & dosificación , Masculino , Péptidos/farmacología , Péptidos/administración & dosificación , Péptidos/uso terapéutico , Inyecciones Intramusculares , Adyuvante de Freund , Venenos de Araña/farmacología , Diclofenaco/farmacología , Diclofenaco/uso terapéutico , Diclofenaco/administración & dosificación , Modelos Animales de Enfermedad , Dolor/tratamiento farmacológico
7.
Cochrane Database Syst Rev ; 8: CD015064, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105474

RESUMEN

BACKGROUND: Eczema (atopic dermatitis) is the most burdensome skin condition worldwide and cannot currently be prevented or cured. Topical anti-inflammatory treatments are used to control eczema symptoms, but there is uncertainty about the relative effectiveness and safety of different topical anti-inflammatory treatments. OBJECTIVES: To compare and rank the efficacy and safety of topical anti-inflammatory treatments for people with eczema using a network meta-analysis. SEARCH METHODS: We searched the Cochrane Skin Specialised Register, CENTRAL, MEDLINE, Embase and trial registries on 29 June 2023, and checked the reference lists of included studies. SELECTION CRITERIA: We included within-participant or between-participant randomised controlled trials (RCTs) in people of any age with eczema of any severity, but excluded trials in clinically infected eczema, seborrhoeic eczema, contact eczema, or hand eczema. We included topical anti-inflammatory treatments used for at least one week, compared with another anti-inflammatory treatment, no treatment, or vehicle/placebo. Vehicle is a 'carrier system' for an active pharmaceutical substance, which may also be used on its own as an emollient for dry skin. We excluded trials of topical antibiotics used alone, complementary therapies, emollients used alone, phototherapy, wet wraps, and systemic treatments. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methods. Primary outcomes were patient-reported eczema symptoms, clinician-reported eczema signs and investigator global assessment. Secondary outcomes were health-related quality of life, long-term control of eczema, withdrawal from treatment/study, and local adverse effects (application-site reactions, pigmentation changes and skin thinning/atrophy were identified as important concerns through patient and public involvement). We used CINeMA to quantify our confidence in the evidence for each outcome. MAIN RESULTS: We included 291 studies involving 45,846 participants with the full spectrum of eczema severity, mainly conducted in high-income countries in secondary care settings. Most studies included adults, with only 31 studies limited to children aged < 12 years. Studies usually included male and female participants, multiple ethnic groups but predominantly white populations. Most studies were industry-funded (68%) or did not report their funding sources/details. Treatment duration and trial participation were a median of 21 and 28 days (ranging from 7 days to 5 years), respectively. Interventions used were topical corticosteroids (TCS) (172), topical calcineurin inhibitors (TCI) (134), phosphodiesterase-4 (PDE-4) inhibitors (55), janus kinase (JAK) inhibitors (30), aryl hydrocarbon receptor activators (10), or other topical agents (21). Comparators included vehicle (170) or other anti-inflammatory treatments. The risk of bias was high in 242 of the 272 (89.0%) trials contributing to data analyses, most commonly due to concerns about selective reporting. Network meta-analysis (NMA) was only possible for short-term outcomes. Patient-reported symptoms NMA of 40 trials (6482 participants) reporting patient-reported symptoms as a binary outcome ranked tacrolimus 0.1% (OR 6.27, 95% CI 1.19 to 32.98), potent TCS (OR 5.99, 95% CI 2.83 to 12.69), and ruxolitinib 1.5% (OR 5.64, 95% CI 1.26 to 25.25) as the most effective, all with low confidence. Mild TCS, roflumilast 0.15%, and crisaborole 2% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and was more effective than mild TCI and PDE-4 inhibitors. NMA of 29 trials (3839 participants) reporting patient-reported symptoms as a continuous outcome ranked very potent TCS (SMD -1.99, 95% CI -3.25 to -0.73; low confidence) and tacrolimus 0.03% (SMD -1.57, 95% CI -2.42 to -0.72; moderate confidence) the highest. Direct information for tacrolimus 0.03% was based on one trial of 60 participants at high risk of bias. Roflumilast 0.15%, delgocitinib 0.25% or 0.5%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and mild/moderate TCS was less effective than mild TCI. A further 50 trials (9636 participants) reported patient-reported symptoms as a continuous outcome but could not be included in NMA. Clinician-reported signs NMA of 32 trials (4121 participants) reported clinician signs as a binary outcome and ranked potent TCS (OR 8.15, 95% CI 4.99, 13.57), tacrolimus 0.1% (OR 8.06, 95% CI 3.30, 19.67), ruxolitinib 1.5% (OR 7.72, 95% CI 4.92, 12.10), and delgocitinib 0.5% (OR 7.61, 95% CI 3.72, 15.58) as most effective, all with moderate confidence. Mild TCS, roflumilast 0.15%, crisaborole 2%, and tapinarof 1% were the least effective. Class-level sensitivity analysis found potent/very potent TCS more effective than potent TCI, mild TCI, JAK inhibitors, PDE-4 inhibitors; and mild TCS and PDE-4 inhibitors had similar effectiveness. NMA of 49 trials (5261 participants) reported clinician signs as a continuous outcome and ranked tacrolimus 0.03% (SMD -2.69, 95% CI -3.36, -2.02) and very potent TCS (SMD -1.87, 95% CI -2.69, -1.05) as most effective, both with moderate confidence; roflumilast 0.15%, difamilast 0.3% and tapinarof 1% were ranked as least effective. Direct information for tacrolimus 0.03% was based on one trial in 60 participants with a high risk of bias. For some sensitivity analyses, potent TCS, tacrolimus 0.1%, ruxolitinib 1.5%, delgocitinib 0.5% and delgocitinib 0.25% became some of the most effective treatments. Class-level analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors, and moderate/mild TCS was more effective than mild TCI. A further 100 trials (22,814 participants) reported clinician signs as a continuous outcome but could not be included in NMA. Investigator Global Assessment NMA of 140 trials (23,383 participants) reported IGA as a binary outcome and ranked ruxolitinib 1.5% (OR 9.34, 95% CI 4.8, 18.18), delgocitinib 0.5% (OR 10.08, 95% CI 2.65, 38.37), delgocitinib 0.25% (OR 6.87, 95% CI 1.79, 26.33), very potent TCS (OR 8.34, 95% CI 4.73, 14.67), potent TCS (OR 5.00, 95% CI 3.80, 6.58), and tacrolimus 0.1% (OR 5.06, 95% CI 3.59, 7.13) as most effective, all with moderate confidence. Mild TCS, crisaborole 2%, pimecrolimus 1%, roflumilast 0.15%, difamilast 0.3% and 1%, and tacrolimus 0.03% were the least effective. In a sensitivity analysis of low risk of bias information (12 trials, 1639 participants), potent TCS, delgocitinib 0.5% and delgocitinib 0.25% were most effective, and pimecrolimus 1%, roflumilast 0.15%, difamilast 1% and difamilast 0.3% least effective. Class-level sensitivity analysis found potent/very potent TCS had similar effectiveness to potent TCI and JAK inhibitors and were more effective than PDE-4 inhibitors; mild/moderate TCS were less effective than potent TCI and had similar effectiveness to mild TCI. Longer-term outcomes over 6 to 12 months showed a possible increase in effectiveness for pimecrolimus 1% versus vehicle (4 trials, 2218 participants) in a pairwise meta-analysis, and greater treatment success with mild/moderate TCS than pimecrolimus 1% (based on 1 trial of 2045 participants). Local adverse effects NMA of 83 trials (18,992 participants, 2424 events) reporting application-site reactions ranked tacrolimus 0.1% (OR 2.2, 95% CI 1.53, 3.17; moderate confidence), crisaborole 2% (OR 2.12, 95% CI 1.18, 3.81; high confidence), tacrolimus 0.03% (OR 1.51, 95%CI 1.10, 2.09; low confidence), and pimecrolimus 1% (OR 1.44, 95% CI 1.01, 2.04; low confidence) as most likely to cause site reactions. Very potent, potent, moderate, and mild TCS were least likely to cause site reactions. NMA of eight trials (1786 participants, 3 events) reporting pigmentation changes found no evidence for increased pigmentation changes with TCS and crisaborole 2%, with low confidence for mild, moderate or potent TCS and moderate confidence for crisaborole 2%. NMA of 25 trials (3691 participants, 36 events) reporting skin thinning found no evidence for increased skin thinning with short-term (median 3 weeks, range 1-16 weeks) use of mild TCS (OR 0.72, 95% CI 0.12, 4.31), moderate TCS (OR 0.91, 95% CI 0.16, 5.33), potent TCS (OR 0.96, 95% CI 0.21, 4.43) or very potent TCS (OR 0.88, 95% CI 0.31, 2.49), all with low confidence. Longer-term outcomes over 6 to 60 months showed increased skin thinning with mild to potent TCS versus TCI (3 trials, 4069 participants, 6 events with TCS). AUTHORS' CONCLUSIONS: Potent TCS, JAK inhibitors and tacrolimus 0.1% were consistently ranked as amongst the most effective topical anti-inflammatory treatments for eczema and PDE-4 inhibitors as amongst the least effective. Mild TCS and tapinarof 1% were ranked amongst the least effective treatments in three of five efficacy networks. TCI and crisaborole 2% were ranked most likely to cause local application-site reactions and TCS least likely. We found no evidence for increased skin thinning with short-term TCS but an increase with longer-term TCS.


Asunto(s)
Antiinflamatorios , Eccema , Metaanálisis en Red , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Eccema/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Antiinflamatorios/administración & dosificación , Niño , Sesgo , Adulto , Administración Tópica , Femenino , Calidad de Vida , Emolientes/uso terapéutico , Corticoesteroides/uso terapéutico , Corticoesteroides/administración & dosificación
8.
PLoS One ; 19(8): e0297250, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106253

RESUMEN

Coriander (Coriandrum sativum L.) is a member of the Umbelliferae/Apiaceae family and one of the well-known essential oil-containing plants, in which the seeds are used in traditional medicine, and as flavoring in food preparation. Knowing the diverse chemical components of different parts of the plant, this work aims to investigate the antioxidant, the anti-inflammatory, and the immunostimulatory modulator effects of the Jordanian C. sativum's seed extracted essential oil (JCEO). Coriander oil extract was prepared by hydro-distillation method using the Clevenger apparatus. Different concentrations of coriander oil were examined by using DPPH radical scavenging assay, MTT assay, pro-inflammatory cytokine (Tumor Necrosis Factor-TNF-alpha) production in RAW264.7 murine macrophages in addition, scratch-wound assessment, NO level examination, Th1/Th2 assay, phagocytosis assay, and fluorescence imaging using DAPI stain were conducted. JCEO had a potential metabolic enhancer effect at a concentration of 0.3 mg/mL on cell viability with anti-inflammatory activities via increasing cytokines like IL-10, IL-4, and limiting NO, INF-γ, and TNF-α release into cell supernatant. Antioxidant activity was seen significantly at higher concentrations of JCEO reaching 98.7% when using 100mg/mL and minimally reaching 50% at 12.5mg/mL of the essential oil. Treated macrophages were able to attain full scratch closure after 48-hrs at concentrations below 0.3mg/mL. The seed-extracted JCEO showed significant free radical scavenging activity even at lower dilutions. It also significantly induced an anti-inflammatory effect via an increase in the release of cytokines but reduced the LPS-induced NO and TNF-α production at 0.16-0.3mg/mL. In summary, coriander essential oil demonstrated antioxidant, anti-inflammatory, and immunostimulatory effects, showcasing its therapeutic potential at specific concentrations. The findings underscore its safety and metabolic enhancement properties, emphasizing its promising role in promoting cellular health.


Asunto(s)
Antiinflamatorios , Antioxidantes , Coriandrum , Macrófagos , Aceites Volátiles , Semillas , Animales , Ratones , Aceites Volátiles/farmacología , Aceites Volátiles/química , Semillas/química , Antioxidantes/farmacología , Coriandrum/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Células RAW 264.7 , Factor de Necrosis Tumoral alfa/metabolismo , Supervivencia Celular/efectos de los fármacos , Óxido Nítrico/metabolismo , Fagocitosis/efectos de los fármacos , Citocinas/metabolismo , Jordania
9.
PLoS One ; 19(8): e0297716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39106290

RESUMEN

Magnetic drug delivery systems using nanoparticles present a promising opportunity for clinical treatment. This study explored the potential anti-inflammatory properties of RosA- CrFe2O4 nanoparticles. These nanoparticles were developed through rosmarinic acid (RosA) co-precipitation via a photo-mediated extraction technique. XRD, FTIR, and TEM techniques were employed to characterize the nanoparticles, and the results indicated that they had a cubic spinel ferrite (FCC) structure with an average particle size of 25nm. The anti-inflammatory and antioxidant properties of RosA- CrFe2O4 nanoparticles were evaluated by using LPS-induced raw 264.7 macrophages and a hydrogen peroxide scavenging assay, respectively. The results showed that RosA- CrFe2O4 nanoparticles had moderate DPPH scavenging effects with an IC50 value of 59.61±4.52µg/ml. Notably, these nanoparticles effectively suppressed the expression of pro-inflammatory genes (IL-1ß, TNF-α, IL-6, and iNOS) in LPS-stimulated cells. Additionally, the anti-inflammatory activity of RosA- CrFe2O4 nanoparticles was confirmed by reducing the release of secretory pro-inflammatory cytokines (IL-6 and TNF-α) in LPS-stimulated macrophages. This investigation highlights the promising potential of Phyto-mediated CrFe2O4-RosA as an anti-inflammatory and antioxidant agent in biomedical applications.


Asunto(s)
Antiinflamatorios , Antioxidantes , Cinamatos , Depsidos , Compuestos Férricos , Nanopartículas de Magnetita , Ácido Rosmarínico , Depsidos/farmacología , Depsidos/química , Animales , Ratones , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Cinamatos/química , Cinamatos/farmacología , Compuestos Férricos/química , Compuestos Férricos/farmacología , Nanopartículas de Magnetita/química , Células RAW 264.7 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lipopolisacáridos/farmacología , Citocinas/metabolismo , Tamaño de la Partícula
10.
J Biochem Mol Toxicol ; 38(8): e23798, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108104

RESUMEN

Doxorubicin (DOX), which is frequently used in cancer treatment, has limited clinical use due to adverse effects on healthy tissues, especially the liver. Therefore, it is necessary to research the molecular basis of DOX-induced organ and tissue damage and protective agents. In this study, we aimed to examine the protective effects of tannic acid (TA) against DOX-induced hepatoxicity in experimental rat models. Rats were randomly divided into four experimental groups: the untreated control, DOX, TA, and cotreatment (DOX + TA) groups. We investigated the antioxidant system's main components and oxidative stress indicators. Moreover, we examined alterations in the mRNA expression of critical regulators that modulate apoptosis, inflammation, and cell metabolism to better understand the underlying factors of DOX-induced liver toxicity. The results showed that DOX exposure caused an increase in MDA levels and a significant depletion of GSH content in rat liver tissues. Consistent with oxidative stress-related metabolites, DOX was found to significantly suppress both mRNA expression and enzyme activities of antioxidant system components. Moreover, DOX exposure had significant adverse effects on regulating the other regulatory genes studied. However, it was determined that TA could alleviate many of the negative changes caused by DOX. The results of the present study indicated that TA might be considered a versatile candidate that could prevent DOX-induced hepatotoxicity, possibly by preserving cell physiology, viability, and especially redox balance.


Asunto(s)
Antiinflamatorios , Antioxidantes , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas , Doxorrubicina , Hígado , Polifenoles , Animales , Masculino , Ratas , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo/efectos de los fármacos , Polifenoles/farmacología , Ratas Sprague-Dawley
11.
Mediators Inflamm ; 2024: 5273198, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108992

RESUMEN

Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1ß) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1ß secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.


Asunto(s)
Antiinflamatorios , Antioxidantes , Ácido Ascórbico , Colágeno , Resveratrol , Tendinopatía , Tenocitos , Xantófilas , Humanos , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Resveratrol/farmacología , Antioxidantes/farmacología , Xantófilas/farmacología , Xantófilas/uso terapéutico , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Colágeno/metabolismo , Antiinflamatorios/farmacología , Tenocitos/metabolismo , Tenocitos/efectos de los fármacos , Interleucina-1beta/metabolismo , Péptidos/química , Péptidos/farmacología , Peróxido de Hidrógeno/metabolismo , Estilbenos/farmacología , Estilbenos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , FN-kappa B/metabolismo , Células Cultivadas , Estrés Oxidativo/efectos de los fármacos
12.
Immun Inflamm Dis ; 12(8): e1370, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39110084

RESUMEN

BACKGROUND: Endometriosis is associated with a wide variety of signs and symptoms and can lead to infertility, embryo death, and even miscarriage. Although the exact pathogenesis and etiology of endometriosis is still unclear, it has been shown that it has a chronic inflammatory nature and angiogenesis is also involved in it. OBJECTIVE: This review aims to explore the role of inflammation and angiogenesis in endometriosis and suggest a potential treatment targeting these pathways. FINDINGS: Among the pro-inflammatory cytokines, studies have shown solid roles for interleukin 1ß (IL-ß), IL-6, and tumor necrosis factor α (TNF-α) in the pathogenesis of this condition. Other than inflammation, angiogenesis, the formation of new blood vessels from pre-existing capillaries, is also involved in the pathogenesis of endometriosis. Among angiogenic factors, vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1α (HIF-1α), transforming growth factor ß1 (TGF-ß1), and matrix metalloproteinases (MMPs) are more essential in the pathogenesis of endometriosis. Interestingly, it has been shown that inflammation and angiogenesis share some similar pathways with each other that could be potentially targeted for treatment of diseases caused by these two processes. Cannabidiol (CBD) is a non-psychoactive member of cannabinoids which has well-known and notable anti-inflammatory and antiangiogenic properties. This agent has been shown to decrease IL-1ß, IL-6, TNF-α, VEGF, TGFß, and MMPs in different animal models of diseases. CONCLUSION: It seems that CBD could be a possible treatment for endometriosis due to its anti-inflammatory and antiangiogenic activity, however, further studies are needed.


Asunto(s)
Cannabidiol , Endometriosis , Inflamación , Neovascularización Patológica , Endometriosis/tratamiento farmacológico , Endometriosis/patología , Femenino , Humanos , Cannabidiol/uso terapéutico , Cannabidiol/farmacología , Neovascularización Patológica/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Animales , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Inhibidores de la Angiogénesis/uso terapéutico , Inhibidores de la Angiogénesis/farmacología , Angiogénesis
13.
Sci Rep ; 14(1): 18390, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117680

RESUMEN

Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.


Asunto(s)
Acetofenonas , Colitis Ulcerosa , FN-kappa B , PPAR gamma , Transducción de Señal , Acetofenonas/farmacología , Acetofenonas/uso terapéutico , PPAR gamma/metabolismo , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , FN-kappa B/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Humanos , Células RAW 264.7 , Modelos Animales de Enfermedad , Masculino , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Sulfato de Dextran/toxicidad , Ratones Endogámicos C57BL
14.
Sci Rep ; 14(1): 18451, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117712

RESUMEN

As a class of biologically active molecules with significant immunomodulatory and anti-inflammatory effects, anti-inflammatory peptides have important application value in the medical and biotechnology fields due to their unique biological functions. Research on the identification of anti-inflammatory peptides provides important theoretical foundations and practical value for a deeper understanding of the biological mechanisms of inflammation and immune regulation, as well as for the development of new drugs and biotechnological applications. Therefore, it is necessary to develop more advanced computational models for identifying anti-inflammatory peptides. In this study, we propose a deep learning model named DAC-AIPs based on variational autoencoder and contrastive learning for accurate identification of anti-inflammatory peptides. In the sequence encoding part, the incorporation of multi-hot encoding helps capture richer sequence information. The autoencoder, composed of convolutional layers and linear layers, can learn latent features and reconstruct features, with variational inference enhancing the representation capability of latent features. Additionally, the introduction of contrastive learning aims to improve the model's classification ability. Through cross-validation and independent dataset testing experiments, DAC-AIPs achieves superior performance compared to existing state-of-the-art models. In cross-validation, the classification accuracy of DAC-AIPs reached around 88%, which is 7% higher than previous models. Furthermore, various ablation experiments and interpretability experiments validate the effectiveness of DAC-AIPs. Finally, a user-friendly online predictor is designed to enhance the practicality of the model, and the server is freely accessible at http://dac-aips.online .


Asunto(s)
Antiinflamatorios , Aprendizaje Profundo , Péptidos , Péptidos/química , Humanos
15.
Sci Rep ; 14(1): 18462, 2024 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122736

RESUMEN

Bovine mastitis caused by infectious pathogens, mainly Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), constitutes a major destructive challenge for the dairy industry and public health. Berberine chloride (BER) and Cyperus rotundus possess a broad spectrum of anti-inflammatory, antioxidant, antibacterial, and antiproliferative activities; however, their bioavailability is low. This research aimed first to prepare an ethanolic extract of Cyperus rotundus rhizomes (CRE) followed by screening its phytochemical contents, then synthesis of BER and CRE loaded chitosan nanoparticles (NPs) (BER/CH-NPs and CRE/CH-NPs), afterward, the analysis of their loading efficiency in addition to the morphological and physicochemical characterization of the formulated NPs employing Scanning Electron Microscopy (SEM), Zeta Potential (ZP), Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) assessments compared to their crude forms to evaluate the enhancement of bioavailability and stability. Isolation of bacterial strains from the milk of mastitic cows, used for induction of mammary gland (MG) inflammation in female albino rats, and a preliminary investigation of the prophylactic oral doses of the prepared NPs against S. aureus-induced mastitis in female rats. The minimal inhibitory concentration (MIC) of BER/CH-NPs and CRE/CH-NPs is 1 mg/kg b.w. BER/CH-NPs and CRE/CH-NPs alone or in combination show significant (P ≤ 0.05) DPPH radical scavenging activity (69.2, 88.5, and 98.2%, respectively) in vitro. Oral administration of BER/CH-NPs and CRE/CH-NPs to mastitis rats significantly (P ≤ 0.05) attenuated TNF-α (22.1, 28.6 pg/ml), IL-6 (33.4, 42.9 pg/ml), IL-18 (21.7, 34.7 pg/ml), IL-4 (432.9, 421.6 pg/ml), and MPO (87.1, 89.3 pg/ml) compared to mastitis group alongside the improvement of MG histopathological findings without any side effect on renal and hepatic functions. Despite promising results with BER and CRE nanoparticles, the study is limited by small-scale trials, a focus on acute administration, and partially explored nanoparticle-biological interactions, with no economic or scalability assessments. Future research should address these limitations by expanding trial scopes, exploring interactions further, extending study durations, and assessing economic and practical scalability. Field trials and regulatory compliance are also necessary to ensure practical application and safety in the dairy industry. In conclusion, the in vitro and in vivo results proved the antioxidant and anti-inflammatory efficacy of BER/CH-NPs and CRE/CH-NPs in low doses with minimal damage to the liver and kidney functions, supposing their promising uses in mastitis treatment.


Asunto(s)
Antiinflamatorios , Antioxidantes , Berberina , Cyperus , Mastitis , Nanopartículas , Extractos Vegetales , Animales , Femenino , Cyperus/química , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Berberina/farmacología , Berberina/química , Berberina/administración & dosificación , Bovinos , Nanopartículas/química , Mastitis/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Mastitis Bovina/tratamiento farmacológico , Mastitis Bovina/microbiología , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Quitosano/química , Quitosano/farmacología
16.
Int J Nanomedicine ; 19: 8059-8070, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39130687

RESUMEN

Introduction: Asthma, a chronic respiratory disease closely associated with inflammation, presents ongoing treatment challenges. IALLIPF (le-Ala-Leu-Leu-Ile-Pro-Phe) is one of millet prolamins peptides (MPP) which shows anti-oxidant bioactivity by reducing the production of reactive oxygen species (ROS). Tryptophan (Trp, W) is an amino acid that has been demonstrated to possess anti-inflammatory effects. We introduce a novel cathepsin B-activatable bioactive peptides nanocarrier, PEG-IALLIPF-GFLG-W (MPP-Trp), designed for immunotherapy of asthma. Methods: MPP-Trp is synthesized, purified, and its characteristics are investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The yield of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) are examined to evaluate anti-inflammatory effects of IALLIPF, Trp and MPP-Trp. The immunomodulatory effects of IALLIPF, Trp and MPP-Trp on Th1/Th2 cell populations and cytokines are investigated by flow cytometry, qRT-PCR and ELISA assays. We explore the therapeutic effect of MPP-Trp in the mouse model of asthma by the analysis of lung histology and ELISA. It is necessary to study the biocompatibility of MPP-Trp by CCK8 assay and histopathologic analysis using hematoxylin and eosin (HE) staining. Results: In asthmatic peripheral blood mononuclear cells (PBMCs), IALLIPF, Trp and MPP-Trp are able to significantly alleviate inflammation by inhibiting the yield of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß), especially MPP-Trp. MPP-Trp significantly upregulates Th1 cell levels while notably reducing Th2 cell levels. Furthermore, MPP-Trp effectively elevates the expression and production of interferon-gamma (IFN-γ), an essential cytokine from Th1 cells. Additionally, MPP-Trp markedly diminishes the mRNA expression and levels of key asthma pathogenesis cytokines, such as interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), in asthma PBMCs. MPP-Trp ameliorates pulmonary pathological alterations and significantly inhibits OVA-induced inflammation in mice with asthma. It has little influence on the cell viability in Asthma-PBMCs treated with various concentrations or durations of MPP-Trp. No pathological changes, including in the heart, liver, spleen, lung, and kidney tissues, are observed in non-sensitized and non-challenged mice treated with MPP-Trp (20 mg/kg). Discussion: Our research demonstrates that MPP-Trp has immunomodulatory effects on Th1/Th2 cell populations, essential in managing asthma. It considerably alleviates OVA-induced asthma by shifting the immune response towards a Th1-dominant profile, thereby reducing Th2-driven inflammation. Therefore, this novel bioactive peptide nanocarrier, MPP-Trp, holds promise as a candidate for asthma immunotherapy.


Asunto(s)
Asma , Catepsina B , Citocinas , Inmunoterapia , Animales , Asma/tratamiento farmacológico , Asma/inmunología , Ratones , Citocinas/metabolismo , Inmunoterapia/métodos , Catepsina B/metabolismo , Ratones Endogámicos BALB C , Nanopartículas/química , Óxido Nítrico , Portadores de Fármacos/química , Femenino , Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Células Th2/inmunología , Péptidos/química , Péptidos/farmacología , Péptidos/administración & dosificación , Humanos , Triptófano/química , Triptófano/farmacología , Triptófano/administración & dosificación , Células TH1/inmunología , Células TH1/efectos de los fármacos
17.
J Cell Mol Med ; 28(15): e18589, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39135202

RESUMEN

Sepsis causes systemic inflammatory responses and acute lung injury (ALI). Despite modern treatments, sepsis-related ALI mortality remains high. Aqueous extract of Descuraniae Semen (AEDS) exerts anti-endoplasmic reticulum (ER) stress, antioxidant and anti-inflammatory effects. AEDS alleviates inflammation and oedema in ALI. Sodium-potassium-chloride co-transporter isoform 1 (NKCC1) is essential for regulating alveolar fluid and is important in ALI. The NKCC1 activity is regulated by upstream with-no-lysine kinase-4 (WNK4) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). This study aimed to investigate the effects of AEDS on lipopolysaccharide (LPS)-induced ALI model in A549 cells, considering the regulation of ER stress, WNK4-SPAK-NKCC1 cascades, inflammation and apoptosis. Cell viability was investigated by the CCK-8 assay. The expressions of the proteins were assessed by immunoblotting analysis assays. The levels of pro-inflammatory cytokines were determined by ELISA. The expression of cytoplasmic Ca2+ in A549 cells was determined using Fluo-4 AM. AEDS attenuates LPS-induced inflammation, which is associated with increased pro-inflammatory cytokine expression and activation of the WNK4-SPAK-NKCC1 pathway. AEDS inhibits the WNK4-SPAK-NKCC1 pathway by regulating of Bcl-2, IP3R and intracellular Ca2+. WNK4 expression levels are significantly higher in the WNK4-overexpressed transfected A549 cells and significantly decrease after AEDS treatment. AEDS attenuates LPS-induced inflammation by inhibiting the WNK4-SPAK-NKCC1 cascade. Therefore, AEDS is regarded as a potential therapeutic agent for ALI.


Asunto(s)
Estrés del Retículo Endoplásmico , Inflamación , Lipopolisacáridos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Miembro 2 de la Familia de Transportadores de Soluto 12 , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células A549 , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/metabolismo , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Extractos Vegetales/farmacología , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Antiinflamatorios/farmacología
18.
Int J Immunopathol Pharmacol ; 38: 3946320241276894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135409

RESUMEN

Background: Pentagalloyl glucose (PGG) is a polyphenol with vasoprotective properties. Targeted delivery of PGG reversed aortic aneurysm growth in several rodent models associated with decreased number of macrophages and transforming growth factor-ß (TGF-ß) expression. Thus, we sought to determine cellular mechanisms by which PGG reduces macrophage-induced aortic pathogenicity and its relationship to TGF-ß. Methods: Using THP-1 cells, primary human aortic cells, and explanted rat aortas, we assessed the anti-inflammatory effect of PGG. Expression of pro/anti-inflammatory macrophage markers was analyzed. Adhesion of monocytes as well as oxidative stress status, viability, and TGF-ß expression after primary aortic cell exposure to macrophage-conditioned medium with and without PGG were assessed. The release of TGF-ß was also examined in elastase-treated cultured rat aortas. Results: PGG pre-treatment of human aortic cell monolayers reduced the adhesion of THP-1 monocytes. PGG enhanced the expression of anti-inflammatory markers in THP-1-derived macrophages, and increased mitochondrial reactive oxygen species as well as mitochondrial polarization. Conditioned medium from THP-1-derived macrophages induced reactive oxygen species, cell death, and TGF-ß release from human aortic cells, which was suppressed by PGG. In explanted rat aortas, PGG reduced elastase mediated TGF-ß release. Conclusions: Combining anti-inflammatory, cytotoxic, and oxidative effects, PGG has high cardiovascular therapeutic potential. We confirmed previous in vivo observations whereby PGG suppressed TGF-ß response associated with disease resolution.


Asunto(s)
Antiinflamatorios , Aorta , Taninos Hidrolizables , Macrófagos , Factor de Crecimiento Transformador beta , Taninos Hidrolizables/farmacología , Humanos , Animales , Factor de Crecimiento Transformador beta/metabolismo , Células THP-1 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Antiinflamatorios/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Masculino , Adhesión Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
19.
Nutrients ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125389

RESUMEN

Methylsulfinyl hexyl isothiocyanate (6-MSITC) isolated from Eutrema japonicum is a promising candidate for the treatment of breast cancer, colorectal and stomach cancer, metabolic syndrome, heart diseases, diabetes, and obesity due to its anti-inflammatory and antioxidant properties. Also, its neuroprotective properties, improving cognitive function and protecting dopaminergic neurons, make it an excellent candidate for treating neurodegenerative diseases like dementia, Alzheimer's, and Parkinson's disease. 6-MSITC acts on many signaling pathways, such as PPAR, AMPK, PI3K/AKT/mTOR, Nrf2/Keap1-ARE, ERK1/2-ELK1/CHOP/DR5, and MAPK. However, despite the very promising results of in vitro and in vivo animal studies and a few human studies, the molecule has not yet been thoroughly tested in the human population. Nonetheless, wasabi should be classified as a "superfood" for the primary and secondary prevention of human diseases. This article reviews the current state-of-the-art research on 6-MSITC and its potential clinical uses, discussing in detail the signaling pathways activated by the molecule and their interactions.


Asunto(s)
Enfermedad de Alzheimer , Isotiocianatos , Neoplasias , Obesidad , Wasabia , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Obesidad/tratamiento farmacológico , Animales , Wasabia/química , Transducción de Señal/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Antioxidantes/farmacología , Antiinflamatorios/farmacología
20.
Nutrients ; 16(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39125398

RESUMEN

Persimmon fruit processing-derived waste and by-products, such as peels and pomace, are important sources of dietary fiber and phytochemicals. Revalorizing these by-products could help promote circular nutrition and agricultural sustainability while tackling dietary deficiencies and chronic diseases. In this study, fiber-rich fractions were prepared from the by-products of Sharoni and Brilliant Red persimmon varieties. These fractions were quantified for their phenolic composition and assessed for their ability to promote the growth of beneficial human colonic Firmicutes species and for their in vitro anti-inflammatory potential. Gallic and protocatechuic acids, delphinidin, and cyanidin were the main phenolics identified. Faecalibacterium prausnitzii strains showed significantly higher growth rates in the presence of the Brilliant Red fraction, generating more than double butyrate as a proportion of the total short-chain fatty acids (39.5% vs. 17.8%) when compared to glucose. The fiber-rich fractions significantly decreased the inflammatory effect of interleukin-1ß in Caco-2 cells, and the fermented fractions (both from Sharoni and Brilliant Red) significantly decreased the inflammatory effect of interleukin-6 and tumor necrosis factor-α in the RAW 264.7 cells. Therefore, fiber-rich fractions from persimmon by-products could be part of nutritional therapies as they reduce systemic inflammation, promote the growth of beneficial human gut bacteria, and increase the production of beneficial microbial metabolites such as butyrate.


Asunto(s)
Antiinflamatorios , Colon , Fibras de la Dieta , Diospyros , Humanos , Fibras de la Dieta/farmacología , Fibras de la Dieta/análisis , Diospyros/química , Ratones , Antiinflamatorios/farmacología , Colon/microbiología , Colon/efectos de los fármacos , Colon/metabolismo , Animales , Células RAW 264.7 , Células CACO-2 , Microbioma Gastrointestinal/efectos de los fármacos , Firmicutes , Faecalibacterium prausnitzii , Frutas/química , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Hidroxibenzoatos/farmacología , Hidroxibenzoatos/análisis , Fenoles/farmacología , Fenoles/análisis , Fermentación , Ácido Gálico/farmacología , Antocianinas/farmacología , Antocianinas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA