Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.170
Filtrar
1.
J Transl Med ; 22(1): 679, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054481

RESUMEN

BACKGROUND: The immunogenicity of the antigen-recognition domains of chimeric antigen receptor (CAR)-T cells leads to immune responses that may compromise the antitumor effects of the adoptively transferred T cells. Herein, we attempt to humanize a CD19-specific VHH (named H85) using in silico techniques and investigate the impact of antigen-recognition domain humanization on CAR expression and density, cytokine secretion, and cytolytic reactivity of CAR-T cells based on the humanized VHH. METHODS: H85 was humanized (named HuH85), and then HuH85 was compared with H85 in terms of conformational structure, physicochemical properties, antigenicity and immunogenicity, solubility, flexibility, stability, and CD19-binding capacity using in silico techniques. Next, H85CAR-T cells and HuH85CAR-T cells were developed and CAR expression and surface density were assessed via flow cytometry. Ultimately, the antitumor reactivity and secreted levels of IFN-γ, IL-2, and TNF-α were assessed following the co-cultivation of the CAR-T cells with Ramos, Namalwa, and K562 cells. RESULTS: In silico findings demonstrated no negative impacts on HuH85 as a result of humanization. Ultimately, H85CAR and HuH85CAR could be surface-expressed on transduced T cells at comparable levels as assessed via mean fluorescence intensity. Moreover, H85CAR-T cells and HuH85CAR-T cells mediated comparable antitumor effects against Ramos and Namalwa cells and secreted comparable levels of IFN-γ, IL-2, and TNF-α following co-cultivation. CONCLUSION: HuH85 can be used to develop immunotherapeutics against CD19-associated hematologic malignancies. Moreover, HuH85CAR-T cells must be further investigated in vitro and in preclinical xenograft models of CD19+ leukemias and lymphomas before advancing into clinical trials.


Asunto(s)
Antígenos CD19 , Citocinas , Receptores Quiméricos de Antígenos , Anticuerpos de Dominio Único , Humanos , Anticuerpos de Dominio Único/inmunología , Citocinas/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Línea Celular Tumoral , Unión Proteica , Inmunoterapia Adoptiva/métodos , Células K562 , Linfocitos T/inmunología , Dominios Proteicos
2.
J Transl Med ; 22(1): 613, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956649

RESUMEN

BACKGROUND: CD19-targeted chimeric antigen receptor T (CAR-T) cell therapy stands out as a revolutionary intervention, exhibiting remarkable remission rates in patients with refractory/relapsed (R/R) B-cell malignancies. However, the potential side effects of therapy, particularly cytokine release syndrome (CRS) and infections, pose significant challenges due to their overlapping clinical features. Promptly distinguishing between CRS and infection post CD19 target CAR-T cell infusion (CTI) remains a clinical dilemma. Our study aimed to analyze the incidence of infections and identify key indicators for early infection detection in febrile patients within 30 days post-CTI for B-cell malignancies. METHODS: In this retrospective cohort study, a cohort of 104 consecutive patients with R/R B-cell malignancies who underwent CAR-T therapy was reviewed. Clinical data including age, gender, CRS, ICANS, treatment history, infection incidence, and treatment responses were collected. Serum biomarkers procalcitonin (PCT), interleukin-6 (IL-6), and C-reactive protein (CRP) levels were analyzed using chemiluminescent assays. Statistical analyses employed Pearson's Chi-square test, t-test, Mann-Whitney U-test, Kaplan-Meier survival analysis, Cox proportional hazards regression model, Spearman rank correlation, and receiver operating characteristic (ROC) curve analysis to evaluate diagnostic accuracy and develop predictive models through multivariate logistic regression. RESULTS: In this study, 38 patients (36.5%) experienced infections (30 bacterial, 5 fungal, and 3 viral) within the first 30 days of CAR T-cell infusion. In general, bacterial, fungal, and viral infections were detected at a median of 7, 8, and 9 days, respectively, after CAR T-cell infusion. Prior allogeneic hematopoietic cell transplantation (HCT) was an independent risk factor for infection (Hazard Ratio [HR]: 4.432 [1.262-15.565], P = 0.020). Furthermore, CRS was an independent risk factor for both infection ((HR: 2.903 [1.577-5.345], P < 0.001) and severe infection (9.040 [2.256-36.232], P < 0.001). Serum PCT, IL-6, and CRP were valuable in early infection prediction post-CAR-T therapy, particularly PCT with the highest area under the ROC curve (AUC) of 0.897. A diagnostic model incorporating PCT and CRP demonstrated an AUC of 0.903 with sensitivity and specificity above 83%. For severe infections, a model including CRS severity and PCT showed an exceptional AUC of 0.991 with perfect sensitivity and high specificity. Based on the aforementioned analysis, we proposed a workflow for the rapid identification of early infection during CAR-T cell therapy. CONCLUSIONS: CRS and prior allogeneic HCT are independent infection risk factors post-CTI in febrile B-cell malignancy patients. Our identification of novel models using PCT and CRP for predicting infection, and PCT and CRS for predicting severe infection, offers potential to guide therapeutic decisions and enhance the efficacy of CAR-T cell therapy in the future.


Asunto(s)
Antígenos CD19 , Fiebre , Inmunoterapia Adoptiva , Humanos , Femenino , Masculino , Persona de Mediana Edad , Inmunoterapia Adoptiva/métodos , Adulto , Antígenos CD19/metabolismo , Infecciones/sangre , Anciano , Curva ROC , Adulto Joven , Estudios Retrospectivos
3.
Cell Rep ; 43(6): 114332, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38850533

RESUMEN

The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track co-receptor signaling dynamics in Raji cells from 10 s to 2 h after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the signaling subunit of the co-receptor complex. We detail the recruitment kinetics of signaling effectors to CD19 and identify previously uncharacterized mediators of B cell activation. We show that the glutamate transporter SLC1A1 is responsible for mediating rapid metabolic reprogramming and for maintaining redox homeostasis during B cell activation. This study provides a comprehensive map of BCR signaling and a rich resource for uncovering the complex signaling networks that regulate activation.


Asunto(s)
Linfocitos B , Activación de Linfocitos , Receptores de Antígenos de Linfocitos B , Transducción de Señal , Humanos , Linfocitos B/metabolismo , Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Antígenos CD19/metabolismo , Línea Celular Tumoral , Oxidación-Reducción
4.
J Immunother Cancer ; 12(6)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38925679

RESUMEN

BACKGROUND: Despite continuous improvements in the new target and construction of chimeric antigen receptor (CAR)-T, relapse remains a significant challenge following CAR-T therapy. Tumor microenvironment (TME) strongly correlates with the efficacy of CAR-T therapy. V-domain Ig suppressor of T-cell activation (VISTA), which exerts a multifaceted and controversial role in regulating the TME, acts not only as a ligand on antigen-presenting cells but also functions as a receptor on T cells. However, the characteristics and underlying mechanisms governing endogenous T-cell activation by VISTA, which are pivotal for reshaping the TME, remain incompletely elucidated. METHODS: The immunocompetent B acute lymphoblastic leukemia (B-ALL), lymphoma, and melanoma murine models were employed to investigate the characteristics of endogenous T cells within the TME following CD19 and hCAIX CAR-T cell therapy, respectively. Furthermore, we examined the role of VISTA controlled by interferon (IFN)-γ signaling in regulating endogenous T-cell activation and functionality in B-ALL mice. RESULTS: We demonstrated that the administration of CD19 CAR-T or hCAIX CAR-T cell therapy elicited augmented immune responses of endogenous T cells within the TME of B-ALL, lymphoma, and melanoma mice, thereby substantiating the efficacy of CAR-T cell efficacy. However, in the TME lacking IFN-γ signaling, VISTA levels remained elevated, resulting in attenuated cytotoxicity of endogenous T cells and reduced B-ALL recipient survival. Mice treated with CD19 CAR-T cells exhibited increased proportions of endogenous memory T cells during prolonged remission, which possessed the tumor-responsive capabilities to protect against B-ALL re-challenge. Compared with wild-type (WT) CAR-T treated mice, the administration of IFN-γ-/- CAR-T to both WT and IFN-γ-/- recipients resulted in a reduction in the numbers of endogenous CD4+ and CD8+ effectors, while exhibiting increased populations of naïve-like CD4+ T and memory CD8+ T cells. VISTA expression consistently remained elevated in resting or memory CD4+ T cells, with distinct localization from programmed cell death protein-1 (PD-1) expressing T subsets. Blocking the VISTA signal enhanced dendritic cell-induced proliferation and cytokine production by syngeneic T cells. CONCLUSION: Our findings confirm that endogenous T-cell activation and functionality are regulated by VISTA, which is associated with the therapeutic efficiency of CAR-T and provides a promising therapeutic strategy for relapse cases in CAR-T therapy.


Asunto(s)
Interferón gamma , Animales , Ratones , Interferón gamma/metabolismo , Inmunoterapia Adoptiva/métodos , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Microambiente Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Humanos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Antígenos B7/metabolismo , Activación de Linfocitos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Proteínas de la Membrana
5.
Immunohorizons ; 8(6): 404-414, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38864817

RESUMEN

T cell activation is an essential step in chimeric Ag receptor (CAR) T (CAR T) cell manufacturing and is accomplished by the addition of activator reagents that trigger the TCR and provide costimulation. We explore several T cell activation reagents and examine their effects on key attributes of CAR T cell cultures, such as activation/exhaustion markers, cell expansion, gene expression, and transduction efficiency. Four distinct activators were examined, all using anti-CD3 and anti-CD28, but incorporating different mechanisms of delivery: Dynabeads (magnetic microspheres), TransAct (polymeric nanomatrix), Cloudz (alginate hydrogel), and Microbubbles (lipid membrane containing perfluorocarbon gas). Clinical-grade lentiviral vector was used to transduce cells with a bivalent CD19/CD22 CAR, and cell counts and flow cytometry were used to monitor the cells throughout the culture. We observed differences in CD4/CD8 ratio when stimulating with the Cloudz activator, where there was a significant skewing toward CD8 T cells. The naive T cell subset expressing CD62L+CCR7+CD45RA+ was the highest in all donors when stimulating with Dynabeads, whereas effector/effector memory cells were highest when using the Cloudz. Functional assays demonstrated differences in killing of target cells and proinflammatory cytokine secretion, with the highest killing from the Cloudz-stimulated cells among all donors. This study demonstrates that the means by which these stimulatory Abs are presented to T cells contribute to the activation, resulting in differing effects on CAR T cell function. These studies highlight important differences in the final product that should be considered when manufacturing CAR T cells for patients in the clinic.


Asunto(s)
Activación de Linfocitos , Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Humanos , Activación de Linfocitos/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos T CD8-positivos/inmunología , Linfocitos T/inmunología , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Antígenos CD19/inmunología , Antígenos CD19/metabolismo
6.
Clin Chim Acta ; 561: 119758, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38848898

RESUMEN

BACKGROUND AND AIMS: Modern mass spectrometry imaging (MSI) enables single cells' metabolism exploration. Aims of this study were development of the single-cell MSI of human CD19+ lymphocytes and metabolic profiling of chronic lymphocytic leukemia (CLL). MATERIALS AND METHODS: Blood donor (BD) samples were used for the optimization of CD19+ lymphocyte isolation and single-cell matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) MSI. Independent set of 200 CD19+ lymphocytes coming from 5 CLL patients and 5 BD was used for the CD19+ lymphocytes classification assessment and the untargeted metabolic profiling. CLL vs BD lymphocyte classification was performed using partial least squares-discriminant analysis (PLS-DA) using normalized single-cell mass spectra recorded in 300-600 and 600-950 Da ranges was applied. RESULTS: Accuracy assessed by 10-fold cross-validation of CD19+ lymphocyte PLS-DA classification reached >90.0 %. Volcano plots showed 106 significantly altered m/z signals in CLL of which 9 were tentatively annotated. Among tentatively annotated m/z signals formaldehyde and glutathione metabolites and tetrahydrofolate stand out. CONCLUSION: A method for single-cell MALDI TOF MSI of CD19+ lymphocytes was successfully developed. The method confirmed the significance of oxidative stress and single-carbon metabolism, pyruvate and fatty acid metabolism and apoptosis in CLL and it provided metabolic candidates for diagnostic applications.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Análisis de la Célula Individual , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Humanos , Antígenos CD19/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/patología , Linfocitos/metabolismo , Metabolómica/métodos
7.
J Neuroimmunol ; 391: 578365, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38723577

RESUMEN

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by deficiencies in communication, repetitive and stereotyped behavioral patterns, and difficulties in reciprocal social engagement. The presence of immunological dysfunction in ASD has been well established. Aflatoxin B1 (AFB1) is a prevalent mycotoxin found in food and feed, causing immune toxicity and hepatotoxicity. AFB1 is significantly elevated in several regions around the globe. Existing research indicates that prolonged exposure to AFB1 results in neurological problems. The BTBR T+ Itpr3tf/J (BTBR) mice, which were used as an autism model, exhibit the primary behavioral traits that define ASD, such as repeated, stereotyped behaviors and impaired social interactions. The main objective of this work was to assess the toxic impact of AFB1 in BTBR mice. This work aimed to examine the effects of AFB1 on the expression of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 by CD19+ B cells in the spleen of the BTBR using flow cytometry. We also verified the impact of AFB1 exposure on the mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain of BTBR mice using real-time PCR. The findings of our study showed that the mice treated with AFB1 in the BTBR group exhibited a substantial increase in the presence of CD19+Notch-1+, CD19+IL-6+, CD19+MCP-1+, CD19+iNOS+, CD19+GM-CSF+, and CD19+NF-κB p65+ compared to the mice in the BTBR group that were treated with saline. Our findings also confirmed that administering AFB1 to BTBR mice leads to elevated mRNA expression levels of Notch-1, IL-6, MCP-1, iNOS, GM-CSF, and NF-κB p65 in the brain, in comparison to BTBR mice treated with saline. The data highlight that exposure to AFB1 worsens immunological abnormalities by increasing the expression of inflammatory mediators in BTBR mice.


Asunto(s)
Aflatoxina B1 , Antígenos CD19 , Modelos Animales de Enfermedad , Animales , Ratones , Aflatoxina B1/toxicidad , Antígenos CD19/metabolismo , Masculino , Mediadores de Inflamación/metabolismo , Trastorno Autístico/inducido químicamente , Trastorno Autístico/inmunología , Trastorno Autístico/metabolismo , Ratones Transgénicos
8.
Leukemia ; 38(7): 1534-1540, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38714877

RESUMEN

CD19 CAR-T cells have led to durable remissions in patients with refractory B-cell malignancies; nevertheless, most patients eventually relapse in the long term. Many interventions aimed at improving current products have been reported, with a subset of them focusing on a direct or indirect link to the metabolic state of the CAR-T cells. We assessed clinical products from an ongoing clinical trial utilizing CD19-28z CAR-T cells from patients with acute lymphoblastic leukemia. CAR-T clinical products leading to a complete response had significantly higher mitochondrial function (by oxygen consumption rate) irrespective of mitochondrial content. Next, we replaced the carbon source of the media from glucose to galactose to impact cellular metabolism. Galactose-containing media increased mitochondrial activity in CAR-T cells, and improved in in-vitro efficacy, without any consistent phenotypic change in memory profile. Finally, CAR-T cells produced in galactose-based glucose-free media resulted in increased mitochondrial activity. Using an in-vivo model of Nalm6 injected mice, galactose-primed CAR-T cells significantly improved leukemia-free survival compared to standard glucose-cultured CAR-T cells. Our results prove the significance of mitochondrial metabolism on CAR-T cell efficacy and suggest a translational pathway to improve clinical products.


Asunto(s)
Galactosa , Inmunoterapia Adoptiva , Mitocondrias , Galactosa/metabolismo , Animales , Ratones , Mitocondrias/metabolismo , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Antígenos CD19/metabolismo , Linfocitos T/metabolismo , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Hepatobiliary Pancreat Dis Int ; 23(5): 472-480, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38724321

RESUMEN

BACKGROUND: Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS: miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.


Asunto(s)
Antígenos CD19 , Linfocitos B Reguladores , Antígeno CD24 , Diferenciación Celular , Trasplante de Hígado , MicroARNs , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Linfocitos B Reguladores/inmunología , Linfocitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/genética , Masculino , Antígeno CD24/metabolismo , Antígeno CD24/genética , Transducción de Señal , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Femenino , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Persona de Mediana Edad , Tolerancia Inmunológica , Células Cultivadas , Adulto , Fenotipo , Memoria Inmunológica
10.
JCI Insight ; 9(12)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722688

RESUMEN

Applying advanced molecular profiling together with highly specific targeted therapies offers the possibility to better dissect the mechanisms underlying immune-mediated inflammatory diseases such as systemic lupus erythematosus (SLE) in humans. Here we apply a combination of single-cell RNA-Seq and T/B cell repertoire analysis to perform an in-depth characterization of molecular changes in the immune-signature upon CD19 CAR T cell-mediated depletion of B cells in patients with SLE. The resulting data sets not only confirm a selective CAR T cell-mediated reset of the B cell response but simultaneously reveal consequent changes in the transcriptional signature of monocyte and T cell subsets that respond with a profound reduction in type I IFN signaling. Our current data, thus, provide evidence for a causal relationship between the B cell response and the increased IFN signature observed in SLE and additionally demonstrate the usefulness of combining targeted therapies and analytic approaches to decipher molecular mechanisms of immune-mediated inflammatory diseases in humans.


Asunto(s)
Linfocitos B , Lupus Eritematoso Sistémico , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/genética , Humanos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Inmunoterapia Adoptiva/métodos , Femenino , Análisis de la Célula Individual/métodos , Masculino , Interferón Tipo I/metabolismo , Adulto , RNA-Seq , Depleción Linfocítica , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Transcriptoma
11.
Nat Commun ; 15(1): 4182, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38755157

RESUMEN

Bone marrow plasma cells (BMPC) are the correlate of humoral immunity, consistently releasing antibodies into the bloodstream. It remains unclear if BMPC reflect different activation environments or maturation of their precursors. Here we define human BMPC heterogeneity and track the recruitment of antibody-secreting cells (ASC) from SARS-CoV-2 vaccine immune reactions to the bone marrow (BM). Trajectories based on single-cell transcriptomes and repertoires of peripheral and BM ASC reveal sequential colonisation of BMPC compartments. In activated B cells, IL-21 suppresses CD19 expression, indicating that CD19low-BMPC are derived from follicular, while CD19high-BMPC originate from extrafollicular immune reactions. In primary immune reactions, both CD19low- and CD19high-BMPC compartments are populated. In secondary immune reactions, most BMPC are recruited to CD19high-BMPC compartments, reflecting their origin from extrafollicular reactivations of memory B cells. A pattern also observable in vaccinated-convalescent individuals and upon diphtheria/tetanus/pertussis recall-vaccination. Thus, BMPC diversity reflects the evolution of a given humoral immune response.


Asunto(s)
Antígenos CD19 , Médula Ósea , Interleucinas , Células Plasmáticas , Humanos , Células Plasmáticas/inmunología , Interleucinas/inmunología , Interleucinas/metabolismo , Médula Ósea/inmunología , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Inmunidad Humoral/inmunología , COVID-19/inmunología , COVID-19/virología , SARS-CoV-2/inmunología , Células de la Médula Ósea/inmunología , Células de la Médula Ósea/citología , Análisis de la Célula Individual , Adulto , Linfocitos B/inmunología , Células Productoras de Anticuerpos/inmunología , Femenino , Masculino , Vacunación , Persona de Mediana Edad , Vacuna contra Difteria, Tétanos y Tos Ferina/inmunología
12.
Nat Commun ; 15(1): 4327, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773088

RESUMEN

The antitumor efficacy of adoptively transferred T cells is limited by their poor persistence, in part due to exhaustion, but the underlying mechanisms and potential interventions remain underexplored. Here, we show that targeting histone demethylase LSD1 by chemical inhibitors reshapes the epigenome of in vitro activated and expanded CD8+ T cells, and potentiates their antitumor efficacy. Upon T cell receptor activation and IL-2 signaling, a timely and transient inhibition of LSD1 suffices to improve the memory phenotype of mouse CD8+ T cells, associated with a better ability to produce multiple cytokines, resist exhaustion, and persist in both antigen-dependent and -independent manners after adoptive transfer. Consequently, OT1 cells primed with LSD1 inhibitors demonstrate an enhanced antitumor effect in OVA-expressing solid tumor models implanted in female mice, both as a standalone treatment and in combination with PD-1 blockade. Moreover, priming with LSD1 inhibitors promotes polyfunctionality of human CD8+ T cells, and increases the persistence and antitumor efficacy of human CD19-CAR T cells in both leukemia and solid tumor models. Thus, pharmacological inhibition of LSD1 could be exploited to improve adoptive T cell therapy.


Asunto(s)
Linfocitos T CD8-positivos , Histona Demetilasas , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Animales , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Ratones , Humanos , Femenino , Ratones Endogámicos C57BL , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Activación de Linfocitos/efectos de los fármacos , Traslado Adoptivo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Interleucina-2/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Memoria Inmunológica/efectos de los fármacos
13.
J Transl Med ; 22(1): 482, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773607

RESUMEN

BACKGROUND: Cellular immunotherapy, represented by the chimeric antigen receptor T cell (CAR-T), has exhibited high response rates, durable remission, and safety in vitro and in clinical trials. Unfortunately, anti-CD19 CAR-T (CART-19) treatment alone is prone to relapse and has a particularly poor prognosis in relapsed/refractory (r/r) B-ALL patients. To date, addressing or reducing relapse remains one of the research priorities to achieve broad clinical application. METHODS: We manufactured second generation CART-19 cells and validated their efficacy and safety in vitro and in vivo. Through co-culture of Nalm-6 cells with short-term cultured CART-19 cells, CD19-negative Nalm-6 cells were detected by flow cytometry, and further investigation of the relapsed cells and their resistance mechanisms was evaluated in vitro. RESULTS: In this study, we demonstrated that CART-19 cells had enhanced and specific antileukemic activities, and the survival of B-ALL mouse models after CART-19 treatment was significantly prolonged. We then shortened the culture time and applied the serum-free culture to expand CAR-T cells, followed by co-culturing CART-19 cells with Nalm-6 cells. Surprisingly, we observed the proliferation of CD19-negative Nalm-6 cells around 28 days. Identification of potential resistance mechanisms showed that the relapsed cells express truncated CD19 proteins with decreased levels and, more importantly, CAR expression was detected on the relapsed cell surface, which may ultimately keep them antigen-negative. Furthermore, it was validated that CART-22 and tandem CART-22/19 cells could effectively kill the relapsed cells, but neither could completely eradicate them. CONCLUSIONS: We successfully generated CART-19 cells and obtained a CD19-negative refractory relapsed B-ALL cell line, providing new insights into the underlying mechanisms of resistance and a new in vitro model for the treatment of r/r B-ALL patients with low antigen density.


Asunto(s)
Antígenos CD19 , Receptores Quiméricos de Antígenos , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Animales , Humanos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Resistencia a Antineoplásicos , Ratones , Técnicas de Cocultivo , Ensayos Antitumor por Modelo de Xenoinjerto , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/inmunología
14.
BMC Immunol ; 25(1): 25, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702630

RESUMEN

BACKGROUND: Breast cancer is the most common cancer in females. The immune system has a crucial role in the fight against cancer. B and T cells, the two main components of the adaptive immunity, are critical players that specifically target tumor cells. However, B cells, in contrast to T cells, and their role in cancer inhibition or progression is less investigated. Accordingly, in this study, we assessed and compared the frequency of naïve and different subsets of memory B cells in the peripheral blood of patients with breast cancer and healthy women. RESULTS: We found no significant differences in the frequencies of peripheral CD19+ B cells between the patients and controls. However, there was a significant decrease in the frequency of CD19+IgM+ B cells in patients compared to the control group (P=0.030). Moreover, the patients exhibited higher percentages of atypical memory B cells (CD19+CD27‒IgM‒, P=0.006) and a non-significant increasing trend in switched memory B cells (CD19+CD27+IgM‒, P=0.074). Further analysis revealed a higher frequency of atypical memory B cells (aMBCs) in the peripheral blood of patients without lymph node involvement as well as those with a tumor size greater than 2cm or with estrogen receptor (ER) negative/progesterone receptor (PR) negative tumors, compared with controls (P=0.030, P=0.040, P=0.031 and P=0.054, respectively). CONCLUSION: Atypical memory B cells (CD19+CD27‒IgM‒) showed a significant increase in the peripheral blood of patients with breast cancer compared to the control group. This increase seems to be associated with tumor characteristics. Nevertheless, additional research is necessary to determine the precise role of these cells during breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Ganglios Linfáticos , Células B de Memoria , Humanos , Femenino , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/sangre , Persona de Mediana Edad , Adulto , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Células B de Memoria/inmunología , Anciano , Antígenos CD19/metabolismo , Memoria Inmunológica , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Subgrupos de Linfocitos B/inmunología
15.
Mol Immunol ; 170: 46-56, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615627

RESUMEN

Peritoneal B cells can be divided into B1 cells (CD11b+CD19+) and B2 cells (CD11b-CD19+) based on CD11b expression. B1 cells play a crucial role in the innate immune response by producing natural antibodies and cytokines. B2 cells share similar traits with B1 cells, influenced by the peritoneal environment. However, the response of both B1 and B2 cells to the same stimuli in the peritoneum remains uncertain. We isolated peritoneal B1 and B2 cells from mice and assessed differences in Interleukin-10(IL-10) secretion, apoptosis, and surface molecule expression following exposure to LPS and Interleukin-21(IL-21). Our findings indicate that B1 cells are potent IL-10 producers, possessing surface molecules with an IgMhiCD43+CD21low profile, and exhibit a propensity for apoptosis in vitro. Conversely, B2 cells exhibit lower IL-10 production and surface markers characterized as IgMlowCD43-CD21hi, indicative of some resistance to apoptosis. LPS stimulates MAPK phosphorylation in B1 and B2 cells, causing IL-10 production. Furthermore, LPS inhibits peritoneal B2 cell apoptosis by enhancing Bcl-xL expression. Conversely, IL-21 has no impact on IL-10 production in these cells. Nevertheless, impeding STAT3 phosphorylation permits IL-21 to increase IL-10 production in peritoneal B cells. Moreover, IL-21 significantly raises apoptosis levels in these cells, a process independent of STAT3 phosphorylation and possibly linked to reduced Bcl-xL expression. This study elucidates the distinct functional and response profiles of B1 and B2 cells in the peritoneum to stimuli like LPS and IL-21, highlighting their differential roles in immunological responses and B cell diversity.


Asunto(s)
Apoptosis , Subgrupos de Linfocitos B , Interleucina-10 , Interleucinas , Lipopolisacáridos , Peritoneo , Animales , Ratones , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Subgrupos de Linfocitos B/efectos de los fármacos , Subgrupos de Linfocitos B/inmunología , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Proteína bcl-X/metabolismo , Proteína bcl-X/inmunología , Antígeno CD11b/metabolismo , Antígeno CD11b/inmunología , Interleucina-10/inmunología , Interleucina-10/metabolismo , Interleucinas/inmunología , Interleucinas/farmacología , Lipopolisacáridos/farmacología , Lipopolisacáridos/inmunología , Ratones Endogámicos C57BL , Peritoneo/inmunología , Peritoneo/citología , Fosforilación/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/inmunología
16.
Cell Transplant ; 33: 9636897241247951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38651796

RESUMEN

Hematological toxicity is a severe adverse event (AE) in anti-CD19 chimeric antigen receptor (CAR) T cell therapy for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL). However, the pathophysiological mechanism underlying prolonged cytopenia and the relationship between persistent cytopenia, efficacy, and AEs after anti-CD19 CAR T cell therapy are unknown. Therefore, this study explored whether persistent cytopenia after anti-CD19 CAR T cell therapy in patients with R/R DLBCL can predict therapeutic efficacy and AEs. Thirty-eight patients with R/R DLBCL were enrolled in an anti-CD19 CAR T cell therapy clinical trial. Patients received lymphodepleting chemotherapy with fludarabine and cyclophosphamide before CAR T cell therapy. The degree and duration of cytopenia, clinical response, proportion of CAR T cells, interleukin-6 (IL-6) levels, AEs, and follow-up were observed after therapy. Grades 3-4 persistent cytopenia occurred in 14 patients with R/R DLBCL, who recovered 8-18 weeks after CAR T cell infusion. These patients achieved an objective response rate (ORR) for anti-CD19 CAR T cell therapy. In patients who achieved ORR, the incidence of Grades 3-4 persistent cytopenia was higher in patients with a high tumor load than in those without a high tumor load. The mean peaks of IL-6 and anti-CD19 CAR T cells and the cytokine release syndrome grade in patients with Grades 3-4 persistent cytopenia were higher than those in patients without persistent cytopenia. Anti-CD19 CAR T cells were observed 21 and 28 days after infusion, and patients had Grades 3-4 persistent cytopenia. Progression-free and overall survival were higher in patients with Grades 3-4 persistent cytopenia than in those without cytopenia. Therefore, persistent cytopenia after anti-CD19 CAR T cell therapy in patients with R/R DLBCL can predict therapeutic efficacy and AEs, allowing clinicians to determine the efficiency of CD-19 CAR T cell therapy and the associated AEs.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Linfoma de Células B Grandes Difuso , Humanos , Linfoma de Células B Grandes Difuso/terapia , Masculino , Femenino , Persona de Mediana Edad , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Adulto , Antígenos CD19/metabolismo , Anciano , Receptores Quiméricos de Antígenos/uso terapéutico , Adulto Joven , Citopenia
17.
EBioMedicine ; 103: 105098, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608514

RESUMEN

BACKGROUND: The widespread involvement of tumor-infiltrating B cells highlights their potential role in tumor behavior. However, B cell heterogeneity in PDAC remains unexplored. Studying TIL-Bs in PDAC aims to identify new treatment strategies. METHODS: We performed single-cell RNA sequencing to study the heterogeneity of B cells in PDAC. The prognostic and immunologic value of the identified CD38+ B cells was explored in FUSCC (n = 147) and TCGA (n = 176) cohorts. Flow cytometry was conducted to characterize the relationship between CD38+ B cells and other immune cells, as well as their phenotypic features. In vitro and in vivo experiments were performed to assess the putative effect of CD38+ B cells on antitumor immunity. FINDINGS: The presence of CD38+ B cells in PDAC was associated with unfavorable clinicopathological features and poorer overall survival (p < 0.001). Increased infiltration of CD38+ B cells was accompanied by reduced natural killer (NK) cells (p = 0.021) and increased regulatory T cells (p = 0.016). Molecular profiling revealed high expression of IL-10, IL-35, TGF-ß, GZMB, TIM-1, CD5 and CD21, confirming their putative regulatory B cell-like features. Co-culture experiments demonstrated suppression of NK cell cytotoxicity by CD38+ B cell-derived IL-10 (p < 0.001). Finally, in vivo experiments suggested adoptive transfer of CD38+ B cells reduced antitumor immunity and administration of a CD38 inhibitor hampered tumor growth (p < 0.001). INTERPRETATION: We discovered regulatory B cell-like CD38+ B cell infiltration as an independent prognostic factor in PDAC. The use of CD38 inhibitor may provide new possibilities for PDAC immunotherapy. FUNDING: This study was supported by the National Natural Science Foundation of China (U21A20374), Shanghai Municipal Science and Technology Major Project (21JC1401500), Scientific Innovation Project of Shanghai Education Committee (2019-01-07-00-07-E00057), Special Project for Clinical Research in the Health Industry of the Shanghai Health Commission (No. 20204Y0265) and Natural Science Foundation of Shanghai (23ZR1479300).


Asunto(s)
ADP-Ribosil Ciclasa 1 , Carcinoma Ductal Pancreático , Humanos , ADP-Ribosil Ciclasa 1/metabolismo , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Animales , Ratones , Pronóstico , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Femenino , Masculino , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Línea Celular Tumoral , Microambiente Tumoral/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Persona de Mediana Edad , Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Terapia de Inmunosupresión
18.
Front Immunol ; 15: 1362995, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596676

RESUMEN

Introduction: Common Variable Immunodeficiency (CVID) patients are characterized by hypogammaglobulinemia and poor response to vaccination due to deficient generation of memory and antibody-secreting B cells. B lymphocytes are essential for the development of humoral immune responses, and mitochondrial function, hreactive oxygen species (ROS) production and autophagy are crucial for determining B-cell fate. However, the role of those basic cell functions in the differentiation of human B cells remains poorly investigated. Methods: We used flow cytometry to evaluate mitochondrial function, ROS production and autophagy processes in human naïve and memory B-cell subpopulations in unstimulated and stimulated PBMCs cultures. We aimed to determine whether any alterations in these processes could impact B-cell fate and contribute to the lack of B-cell differentiation observed in CVID patients. Results: We described that naïve CD19+CD27- and memory CD19+CD27+ B cells subpopulations from healthy controls differ in terms of their dependence on these processes for their homeostasis, and demonstrated that different stimuli exert a preferential cell type dependent effect. The evaluation of mitochondrial function, ROS production and autophagy in naïve and memory B cells from CVID patients disclosed subpopulation specific alterations. Dysfunctional mitochondria and autophagy were more prominent in unstimulated CVID CD19+CD27- and CD19+CD27+ B cells than in their healthy counterparts. Although naïve CD19+CD27- B cells from CVID patients had higher basal ROS levels than controls, their ROS increase after stimulation was lower, suggesting a disruption in ROS homeostasis. On the other hand, memory CD19+CD27+ B cells from CVID patients had both lower ROS basal levels and a diminished ROS production after stimulation with anti-B cell receptor (BCR) and IL-21. Conclusion: The failure in ROS cell signalling could impair CVID naïve B cell activation and differentiation to memory B cells. Decreased levels of ROS in CVID memory CD19+CD27+ B cells, which negatively correlate with their in vitro cell death and autophagy, could be detrimental and lead to their previously demonstrated premature death. The final consequence would be the failure to generate a functional B cell compartment in CVID patients.


Asunto(s)
Inmunodeficiencia Variable Común , Humanos , Especies Reactivas de Oxígeno/metabolismo , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Linfocitos B , Antígenos CD19/metabolismo , Autofagia , Mitocondrias/metabolismo
19.
Cytotherapy ; 26(5): 506-511, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38483365

RESUMEN

BACKGROUND AIMS: The successful development of CD19-targeted chimeric antigen receptor (CAR) T-cell therapies has led to an exponential increase in the number of patients recieving treatment and the advancement of novel CAR T products. Therefore, there is a strong need to develop streamlined platforms that allow rapid, cost-effective, and accurate measurement of the key characteristics of CAR T cells during manufacturing (i.e., cell number, cell size, viability, and basic phenotype). METHODS: In this study, we compared the novel benchtop cell analyzer Moxi GO II (ORFLO Technologies), which enables simultaneous evaluation of all the aforementioned parameters, with current gold standards in the field: the Multisizer Coulter Counter (cell counter) and the BD LSRFortessa (flow cytometer). RESULTS: Our results demonstrated that the Moxi GO II can accurately measure cell number and cell size (i.e., cell volume) while simultaneously assessing simple two-color flow cytometry parameters, such as CAR T-cell viability and CD4 or CAR expression. CONCLUSIONS: These measurements are comparable with those of gold standard instruments, demonstrating that the Moxi GO II is a promising platform for quickly monitoring CAR T-cell growth and phenotype in research-grade and clinical samples.


Asunto(s)
Supervivencia Celular , Citometría de Flujo , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Citometría de Flujo/métodos , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Antígenos CD19/inmunología , Antígenos CD19/metabolismo , Fenotipo , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Inmunofenotipificación/métodos , Tamaño de la Célula
20.
Biomed Pharmacother ; 174: 116436, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38508081

RESUMEN

In cancer immunotherapy, chimeric antigen receptors (CARs) targeting specific antigens have become a powerful tool for cell-based therapy. CAR-natural killer (NK) cells offer selective anticancer lysis with reduced off-tumor toxicity compared to CAR-T cells, which is beneficial in the heterogeneous milieu of solid tumors. In the tumor microenvironment (TME) of glioblastoma (GBM), pericytes not only support tumor growth but also contribute to immune evasion, underscoring their potential as therapeutic targets in GBM treatment. Given this context, our study aimed to target the GBM TME, with a special focus on pericytes expressing CD19, to evaluate the potential effectiveness of CD19 CAR-iNK cells against GBM. We performed CD19 CAR transduction in induced pluripotent stem cell-derived NK (iNK) cells. To determine whether CD19 CAR targets the TME pericytes in GBM, we developed GBM-blood vessel assembloids (GBVA) by fusing GBM spheroids with blood vessel organoids. When co-cultured with GBVA, CD19 CAR-iNK cells migrated towards the pericytes surrounding the GBM. Using a microfluidic chip, we demonstrated CD19 CAR-iNK cells' targeted action and cytotoxic effects in a perfusion-like environment. GBVA xenografts recapitulated the TME including human CD19-positive pericytes, thereby enabling the application of an in vivo model for validating the efficacy of CD19 CAR-iNK cells against GBM. Compared to GBM spheroids, the presence of pericytes significantly enhanced CD19 CAR-iNK cell migration towards GBM and reduced proliferation. These results underline the efficacy of CD19 CAR-iNK cells in targeting pericytes within the GBM TME, suggesting their potential therapeutic value for GBM treatment.


Asunto(s)
Antígenos CD19 , Movimiento Celular , Glioblastoma , Células Madre Pluripotentes Inducidas , Células Asesinas Naturales , Pericitos , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Pericitos/metabolismo , Pericitos/patología , Humanos , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/terapia , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/inmunología , Animales , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular Tumoral , Inmunoterapia Adoptiva/métodos , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA