Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.922
Filtrar
1.
Atherosclerosis ; 397: 118582, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39260002

RESUMEN

BACKGROUND AND AIMS: Lysyl oxidase (LOX) catalyzes the crosslinking of collagen and elastin to maintain tensile strength and structural integrity of the vasculature. Excessive LOX activity increases vascular stiffness and the severity of occlusive diseases. Herein, we investigated the mechanisms by which LOX controls atherogenesis and osteogenic differentiation of vascular smooth muscle cells (SMC) in hyperlipidemic mice. METHODS: Gene inactivation of Lox in SMC was achieved in conditional knockout mice after tamoxifen injections. Atherosclerosis burden and vascular calcification were assessed in hyperlipidemic conditional [Loxf/fMyh11-CreERT2ApoE-/-] and sibling control mice [Loxwt/wtMyh11-CreERT2ApoE-/-]. Mechanistic studies were performed with primary aortic SMC from Lox mutant and wild type mice. RESULTS: Inactivation of Lox in SMCs decreased > 70 % its RNA expression and protein level in the aortic wall and significantly reduced LOX activity without compromising vascular structure and function. Moreover, LOX deficiency protected mice against atherosclerotic burden (13 ± 2 versus 23 ± 1 %, p < 0.01) and plaque calcification (5 ± 0.4 versus 11.8 ± 3 %, p < 0.05) compared to sibling controls. Interestingly, gene inactivation of Lox in SMCs preserved the contractile phenotype of vascular SMC under hyperlipidemic conditions as demonstrated by single-cell RNA sequencing and immunofluorescence. Mechanistically, the absence of LOX in SMC prevented excessive collagen crosslinking and the subsequent activation of the pro-osteogenic FAK/ß-catenin signaling axis. CONCLUSIONS: Lox inactivation in SMC protects mice against atherosclerosis and plaque calcification by reducing SMC modulation and FAK/ß-catenin signaling.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Hiperlipidemias , Ratones Noqueados , Músculo Liso Vascular , Miocitos del Músculo Liso , Placa Aterosclerótica , Proteína-Lisina 6-Oxidasa , Calcificación Vascular , Animales , Proteína-Lisina 6-Oxidasa/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Miocitos del Músculo Liso/enzimología , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Aterosclerosis/genética , Aterosclerosis/enzimología , Aterosclerosis/patología , Aterosclerosis/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/enzimología , Músculo Liso Vascular/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología , Calcificación Vascular/enzimología , Calcificación Vascular/prevención & control , Calcificación Vascular/metabolismo , Hiperlipidemias/genética , Hiperlipidemias/enzimología , Hiperlipidemias/complicaciones , Hiperlipidemias/metabolismo , Ratones , Osteogénesis , Células Cultivadas , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/metabolismo , Aorta/patología , Aorta/enzimología , Aorta/metabolismo , Masculino , Ratones Endogámicos C57BL , beta Catenina/metabolismo , Transducción de Señal , Proteínas de la Matriz Extracelular
2.
Atherosclerosis ; 397: 118570, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39276419

RESUMEN

BACKGROUND AND AIMS: CCN4/WISP-1 regulates various cell behaviours that contribute to atherosclerosis progression, including cell adhesion, migration, proliferation and survival. We therefore hypothesised that CCN4 regulates the development and progression of atherosclerotic plaques. METHODS: We used a high fat fed ApoE-/- mouse model to study atherosclerotic plaque progression in the brachiocephalic artery and aortic root. In protocol 1, male ApoE-/- mice with established plaques were given a CCN4 helper-dependent adenovirus to see the effect of treatment with CCN4, while in protocol 2 male CCN4-/-ApoE-/- were compared to CCN4+/+ApoE-/- mice to assess the effect of CCN4 deletion on plaque progression. RESULTS: CCN4 overexpression resulted in reduced occlusion of the brachiocephalic artery with less apoptosis, fewer macrophages, and attenuated lipid core size. The amount of plaque found on the aortic root was also reduced. CCN4 deficiency resulted in increased apoptosis and occlusion of the brachiocephalic artery as well as increased plaque in the aortic root. Additionally, in vitro cells from CCN4-/-ApoE-/- mice had higher apoptotic levels. CCN4 deficiency did not significantly affect blood cholesterol levels or circulating myeloid cell populations. CONCLUSIONS: We conclude that in an atherosclerosis model the most important action of CCN4 is the effect on cell apoptosis. CCN4 provides pro-survival signals and leads to reduced cell death, lower macrophage number, smaller lipid core size and reduced atherosclerotic plaque burden. As such, the pro-survival effect of CCN4 is worthy of further investigation, in a bid to find a therapeutic for atherosclerosis.


Asunto(s)
Apoptosis , Aterosclerosis , Modelos Animales de Enfermedad , Ratones Noqueados para ApoE , Placa Aterosclerótica , Animales , Masculino , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Proteínas CCN de Señalización Intercelular/metabolismo , Proteínas CCN de Señalización Intercelular/genética , Ratones Endogámicos C57BL , Tronco Braquiocefálico/patología , Tronco Braquiocefálico/metabolismo , Ratones , Macrófagos/metabolismo , Progresión de la Enfermedad , Dieta Alta en Grasa , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aorta/patología , Aorta/metabolismo
3.
Drug Des Devel Ther ; 18: 3841-3851, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39219698

RESUMEN

Introduction: Apigenin is a natural flavonoid compound with promising potential for the attenuation of myocardial hypertrophy (MH). The compound can also modulate the expression of miR-185-5p that both promote MH and suppress autophagy. The current attempts to explain the anti-MH effect of apigenin by focusing on changes in miR-185-5p-mediated autophagy. Methods: Hypertrophic symptoms were induced in rats using transverse aortic constriction (TAC) method and in cardiomyocytes using Ang II and then handled with apigenin. Changes in myocardial function and structure and cell viability and surface area were measured. The role of miR-185-5p in the anti-MH function of apigenin was explored by detecting changes in autophagic processes and miR-185-5p/SREBP2 axis. Results: TAC surgery induced weight increase, structure destruction, and collagen deposition in hearts of model rats. Ang II suppresses cardiomyocyte viability and increased cell surface area. All these impairments were attenuated by apigenin and were associated with the restored level of autophagy. At the molecular level, the expression of miR-185-5p was up-regulated by TAC, while the expression of SREBP2 was down-regulated, which was reserved by apigenin both in vivo and in vitro. The induction of miR-185-5p in cardiomyocytes could counteracted the protective effects of apigenin. Discussion: Collectively, the findings outlined in the current study highlighted that apigenin showed anti-MH effects. The effects were related to the inhibition of miR-185-5p and activation of SREBP, which contributed to the increased autophagy.


Asunto(s)
Apigenina , Autofagia , Cardiomegalia , MicroARNs , Ratas Sprague-Dawley , Animales , MicroARNs/metabolismo , MicroARNs/genética , Apigenina/farmacología , Autofagia/efectos de los fármacos , Ratas , Masculino , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Células Cultivadas , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Supervivencia Celular/efectos de los fármacos
4.
Clin Dysmorphol ; 33(4): 176-182, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39140378

RESUMEN

INTRODUCTION: Neurodevelopmental disorders (NDDs) comprise conditions that emerge during the child's development and contribute significantly to global health and economic burdens. De novo variants in CNOT3 have been linked to NDDs and understanding the genotype-phenotype relationship between CNOT3 and NDDs will aid in improving diagnosis and management. METHODS: In this study, we report a case of a patient with CNOT3 -related NDD who presented with progressive aortic dilatation, a feature not reported previously. RESULTS: Our patient presented with intellectual disorder, dysmorphic facial features, and cardiac anomalies, notably progressive aortic dilatation - a novel finding in CNOT3 -related NDD. Genetic testing identified a de novo 6.3 kbp intragenic deletion in CNOT3 , providing a possible genetic basis for her condition. CONCLUSION: This study presents the first case of CNOT3 -related NDD in Southeast Asia, expanding the phenotype to include progressive aortic dilatation and suggesting merit in cardiac surveillance of patients with CNOT3 -related NDD. It also emphasizes the importance of genetic testing in diagnosing complex NDD cases as well as reanalysis of 'negative' cases using advanced sequencing technologies to uncover potential hidden genetic etiologies in undiagnosed NDDs.


Asunto(s)
Trastornos del Neurodesarrollo , Fenotipo , Factores de Transcripción , Humanos , Femenino , Factores de Transcripción/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/diagnóstico , Estudios de Asociación Genética , Aorta/patología , Predisposición Genética a la Enfermedad
5.
Sci Rep ; 14(1): 18377, 2024 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-39112593

RESUMEN

The effects of calcitonin gene-related peptide (CGRP) on atherosclerosis remain unclear. We used apolipoprotein E-deficient (ApoE-/-) mice to generate double-knockout ApoE-/-:CGRP-/- mice lacking alpha CGRP. ApoE-/-:CGRP-/- mice exhibited larger atherosclerotic plaque areas, peritoneal macrophages with enhanced migration functions, and elevated levels of the inflammatory cytokine tumor necrosis factor (TNF)-⍺. Thus, we also explored whether inhibiting TNF-⍺ could improve atherosclerosis in ApoE-/-:CGRP-/- mice by administering etanercept intraperitoneally once a week (5 mg/kg) alongside a high-fat diet for 2 weeks. This treatment led to significant reductions in aortic root lesion size, atherosclerotic plaque area and macrophage migration in ApoE-/-:CGRP-/- mice compared with mice treated with human IgG (5 mg/kg). We further examined whether results observed in ApoE-/-:CGRP-/- mice could similarly be obtained by administering a humanized monoclonal CGRP antibody, galcanezumab, to ApoE-/- mice. ApoE-/- mice were subcutaneously administered galcanezumab at an initial dose of 50 mg/kg, followed by a dose of 30 mg/kg in the second week. Galcanezumab administration did not affect systolic blood pressure, serum lipid levels, or macrophage migration but led to a significant increase in lipid deposition at the aortic root. These findings suggest that alpha CGRP plays a critical role in inhibiting the progression of atherosclerosis.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Péptido Relacionado con Gen de Calcitonina , Ratones Noqueados , Placa Aterosclerótica , Animales , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ratones , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/genética , Dieta Alta en Grasa/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Masculino , Ratones Noqueados para ApoE , Modelos Animales de Enfermedad , Humanos , Anticuerpos Monoclonales Humanizados/farmacología , Etanercept/farmacología , Ratones Endogámicos C57BL , Movimiento Celular/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Aorta/efectos de los fármacos
6.
Sci Rep ; 14(1): 18602, 2024 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127712

RESUMEN

Consumption of high-caloric diets contributes to the alarming number of overweight and obese individuals worldwide, which in turn leads to several diseases and multiple organ dysfunction. Not only has the number of calories taken per day but also the type of fat in the diet has an important impact on health. Accordingly, the purpose of the current study was to examine the impact of different types of high-caloric fat diets on the metabolic status and the integrity of the liver and aorta in albino rats. Adult male albino rats were divided into 6 groups: Control group, long chain-saturated fat group (SFD), long chain-monounsaturated fat (MUFAs) group, long chain-polyunsaturated fat (PUFAs) group, medium-chain fat (MCFAs) group, and short-chain fat (SCFAs) group. Body mass index (BMI), Lee index, and visceral fat amount were reported. Serum levels of insulin, liver transaminases, lipid profile, and different oxidative stress and inflammatory markers were evaluated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), and adiponectin/leptin ratio were also calculated. Histopathological examinations of liver and aorta with Masson's trichrome stain, and immune-staining for Nuclear Factor Erythroid-2-Related Factor-2 (Nrf2) were also done. SFD group showed significantly elevated liver transaminases, inflammatory markers, HOMA-IR, dyslipidemia, reduced adiponectin, and deficient anti-oxidative response compared to other groups together with disturbed hepatic and aortic architecture. Other treated groups showed an improvement. PUFAs group showed the highest level of improvement. Not all high-fat diets are hazardous. Diets rich in PUFAs, MUFAs, MCFAs, or SCFAs may protect against the hazards of high caloric diet.


Asunto(s)
Aorta , Dieta Alta en Grasa , Hígado , Animales , Hígado/metabolismo , Hígado/patología , Ratas , Masculino , Dieta Alta en Grasa/efectos adversos , Aorta/metabolismo , Aorta/patología , Estrés Oxidativo , Resistencia a la Insulina , Insulina/sangre , Insulina/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo
7.
J Mol Med (Berl) ; 102(10): 1217-1227, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39136767

RESUMEN

One of the hallmarks of chronic kidney disease (CKD) is the development of vascular calcification. Inorganic pyrophosphate is a potent inhibitor of calcification, and previous studies have reported low plasma pyrophosphate levels in hemodialysis patients. A long-term mouse model of CKD-accelerated vascular calcification was developed to study pyrophosphate metabolism and to test whether oral pyrophosphate supplementation attenuates the propensity for arterial calcification. CKD was induced by repeated injections of aristolochic acid in wild-type and Abcc6-/- mice, which tend to develop vascular calcifications. CKD accelerated the development of vascular calcifications in Abcc6-/- mice, in the aorta and small renal arteries, and decreased circulating pyrophosphate levels. Oral pyrophosphate supplementation for 6 months attenuated CKD-induced vascular calcification in this model. These results show that oral pyrophosphate may be of interest in preventing vascular calcification in patients with CKD. KEY MESSAGES: Chronic kidney disease accelerates the development of vascular calcification in pyrophosphate-deficient mice. Oral pyrophosphate supplementation for 6 months attenuates chronic kidney disease-induced vascular calcification in a mouse model. Oral pyrophosphate may be of interest in preventing vascular calcification in patients with chronic kidney disease.


Asunto(s)
Difosfatos , Modelos Animales de Enfermedad , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Insuficiencia Renal Crónica , Calcificación Vascular , Animales , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/prevención & control , Calcificación Vascular/etiología , Calcificación Vascular/prevención & control , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Ratones , Masculino , Administración Oral , Ratones Endogámicos C57BL , Aorta/patología , Aorta/metabolismo
8.
Cells ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120288

RESUMEN

Vascular smooth muscle cells (VSMCs) play a critical role in maintaining vascular integrity. VSMC dysfunction leads to numerous vascular diseases. Adenosine deaminases acting on RNA 1 (ADAR1), an RNA editing enzyme, has shown both RNA editing and non-editing functions. Global deletion of ADAR1 causes embryonic lethality, but the phenotype of homozygous ADAR1 deletion specifically in SMCs (ADAR1sm-/-) remains to be determined. By crossing ADAR1fl/fl mice with Myh11-CreERT2 mice followed by Tamoxifen induction, we found that ADAR1sm-/- leads to lethality in adult mice 14 days after the induction. Gross examination revealed extensive hemorrhage and detrimental vascular damage in different organs. Histological analyses revealed destruction of artery structural integrity with detachment of elastin laminae from VSMCs in ADAR1sm-/- aortas. Furthermore, ADAR1sm-/- resulted in severe VSMC apoptosis and mitochondrial dysfunction. RNA sequencing analyses of ADAR1sm-/- aorta segments demonstrated profound transcriptional alteration of genes impacting vascular health including a decrease in fibrillin-1 expression. More importantly, ADAR1sm-/- disrupts the elastin and fibrillin-1 interaction, a molecular event essential for artery structure. Our results indicate that ADAR1 plays a critical role in maintaining SMC survival and vascular stability and resilience.


Asunto(s)
Adenosina Desaminasa , Homeostasis , Músculo Liso Vascular , Miocitos del Músculo Liso , Animales , Adenosina Desaminasa/metabolismo , Adenosina Desaminasa/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Ratones , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Aorta/metabolismo , Aorta/patología , Apoptosis/genética , Fibrilina-1/genética , Fibrilina-1/metabolismo , Elastina/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
9.
Atherosclerosis ; 396: 118544, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39126769

RESUMEN

BACKGROUND AND AIMS: Inflammatory cells within atherosclerotic lesions secrete proteolytic enzymes that contribute to lesion progression and destabilization, increasing the risk for an acute cardiovascular event. Elastase is a serine protease, secreted by macrophages and neutrophils, that may contribute to the development of unstable plaque. We previously reported interaction of endogenous protease-inhibitor proteins with high-density lipoprotein (HDL), including alpha-1-antitrypsin, an inhibitor of elastase. These findings support a potential role for HDL as a modulator of protease activity. In this study, we test the hypothesis that enhancement of HDL-associated elastase inhibitor activity is protective against atherosclerotic lesion progression. METHODS: We designed an HDL-targeting protease inhibitor (HTPI) that binds to HDL and confers elastase inhibitor activity. Lipoprotein binding and the impact of HTPI on atherosclerosis were examined using mouse models. Histology and immunofluorescence staining of aortic root sections were used to examine the impact of HTPI on lesion morphology and inflammatory features. RESULTS: HTPI is a small (1.6 kDa) peptide with an elastase inhibitor domain, a soluble linker, and an HDL-targeting domain. When incubated with human plasma ex vivo, HTPI predominantly binds to HDL. Intravenous administration of HTPI to mice resulted in its binding to plasma HDL and increased elastase inhibitor activity on isolated HDL. Accumulation of HTPI within plaque was observed after administration to Apoe-/- mice. To examine the effect of HTPI treatment on atherosclerosis, prevention and progression studies were performed using Ldlr-/- mice fed Western diet. In both study designs, HTPI-treated mice had reduced lipid deposition in plaque. CONCLUSIONS: These data support the hypothesis that HDL-associated anti-elastase activity can improve the atheroprotective potential of HDL and highlight the potential utility of HDL enrichment with anti-protease activity as an approach for stabilization of atherosclerotic lesions.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Lipoproteínas HDL , Animales , Aterosclerosis/patología , Aterosclerosis/prevención & control , Aterosclerosis/enzimología , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Lipoproteínas HDL/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones , Ratones Noqueados para ApoE , Placa Aterosclerótica , Masculino , Elastasa Pancreática/metabolismo , Aorta/patología , Aorta/efectos de los fármacos , Aorta/enzimología , Aorta/metabolismo , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/metabolismo , Inhibidores de Proteasas/farmacología , alfa 1-Antitripsina/farmacología , alfa 1-Antitripsina/metabolismo
10.
Int J Immunopathol Pharmacol ; 38: 3946320241276894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135409

RESUMEN

Background: Pentagalloyl glucose (PGG) is a polyphenol with vasoprotective properties. Targeted delivery of PGG reversed aortic aneurysm growth in several rodent models associated with decreased number of macrophages and transforming growth factor-ß (TGF-ß) expression. Thus, we sought to determine cellular mechanisms by which PGG reduces macrophage-induced aortic pathogenicity and its relationship to TGF-ß. Methods: Using THP-1 cells, primary human aortic cells, and explanted rat aortas, we assessed the anti-inflammatory effect of PGG. Expression of pro/anti-inflammatory macrophage markers was analyzed. Adhesion of monocytes as well as oxidative stress status, viability, and TGF-ß expression after primary aortic cell exposure to macrophage-conditioned medium with and without PGG were assessed. The release of TGF-ß was also examined in elastase-treated cultured rat aortas. Results: PGG pre-treatment of human aortic cell monolayers reduced the adhesion of THP-1 monocytes. PGG enhanced the expression of anti-inflammatory markers in THP-1-derived macrophages, and increased mitochondrial reactive oxygen species as well as mitochondrial polarization. Conditioned medium from THP-1-derived macrophages induced reactive oxygen species, cell death, and TGF-ß release from human aortic cells, which was suppressed by PGG. In explanted rat aortas, PGG reduced elastase mediated TGF-ß release. Conclusions: Combining anti-inflammatory, cytotoxic, and oxidative effects, PGG has high cardiovascular therapeutic potential. We confirmed previous in vivo observations whereby PGG suppressed TGF-ß response associated with disease resolution.


Asunto(s)
Antiinflamatorios , Aorta , Taninos Hidrolizables , Macrófagos , Factor de Crecimiento Transformador beta , Taninos Hidrolizables/farmacología , Humanos , Animales , Factor de Crecimiento Transformador beta/metabolismo , Células THP-1 , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología , Antiinflamatorios/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Masculino , Adhesión Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
11.
Biomed Pharmacother ; 178: 117244, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39116783

RESUMEN

Atherosclerosis, the leading cause of cardiovascular disease, cannot be sufficiently explained by established risk factors, including cholesterol. Elevated plasma homocysteine (Hcy) is an independent risk factor for atherosclerosis and is closely linked to cardiovascular mortality. However, its role in atherosclerosis has not been fully clarified yet. We have previously shown that rabbits fed a diet deficient in B vitamins and choline (VCDD), which are required for Hcy degradation, exhibit an accumulation of macrophages and lipids in the aorta, aortic stiffening and disorganization of aortic collagen in the absence of hypercholesterolemia, and an aggravation of atherosclerosis in its presence. In the current study, plasma Hcy levels were increased by intravenous injections of Hcy into balloon-injured rabbits fed VCDD (VCDD+Hcy) in the absence of hypercholesterolemia. While this treatment did not lead to thickening of aortic wall, intravenous injections of Hcy into rabbits fed VCDD led to massive accumulation of VLDL-triglycerides as well as significant impairment of vascular reactivity of the aorta compared to VCDD alone. In the aorta intravenous Hcy injections into VCDD-fed rabbits led to fragmentation of aortic elastin, accumulation of elastin-specific electron-dense inclusions, collagen disorganization, lipid degradation, and autophagolysosome formation. Furthermore, rabbits from the VCDD+Hcy group exhibited a massive decrease of total protein methylated arginine in blood cells and decreased creatine in blood cells, serum and liver compared to rabbits from the VCDD group. Altogether, we conclude that Hcy contributes to atherogenic transformation of the aorta not only in the presence but also in the absence of hypercholesterolemia.


Asunto(s)
Aorta , Aterosclerosis , Homocisteína , Hipercolesterolemia , Animales , Conejos , Aterosclerosis/patología , Aterosclerosis/metabolismo , Homocisteína/sangre , Aorta/patología , Aorta/metabolismo , Hipercolesterolemia/sangre , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patología , Masculino , Colina/administración & dosificación , Modelos Animales de Enfermedad , Elastina/metabolismo , Complejo Vitamínico B/administración & dosificación , Complejo Vitamínico B/farmacología
12.
Gen Physiol Biophys ; 43(5): 411-421, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39140684

RESUMEN

S-adenosylmethionine (SAM) is the main methyl group donor and has antioxidant potential. In this study, preventive and regressive potential of SAM were investigated in high fat/high cholesterol (HFHC) diet-induced non-alcoholic fatty liver disease (NAFLD) in guinea pigs. They were injected with SAM (50 mg/kg, i.p.) for 6 weeks along with HFHC diet or 4 weeks after HFHC diet. Serum transaminase activities, total cholesterol (TC), triglyceride (TG), cytochrome p450-2E1 (CYP2E1) and hydroxyproline (Hyp) levels, prooxidative and antioxidative parameters, protein expressions of α-smooth muscle actin (α-SMA) and transforming growth factor-ß1 (TGF-ß1) together with histopathological changes were examined in the liver. SAM treatment diminished HFHC diet-induced increases in serum transaminase activities and hepatic TC, TG, CYP2E1, Hyp, α-SMA and TGF-ß1 expressions and ameliorated prooxidant-antioxidant balance. Histopathological scores for hepatic steatosis, inflammation, and fibrosis were decreased by SAM treatment. Increases in TC, diene conjugate levels, and lipid vacuoles within the tunica media of the aorta were reduced in HFHC-fed animals treated with SAM. These protective effects were also detected in the regression period of HFHC-guinea pigs due to SAM. In conclusion, SAM treatment was found to be effective in prevention and regression of HFHC-induced hepatic and aortic lesions together with decreases in oxidative stress in guinea pigs with NAFLD.


Asunto(s)
Dieta Alta en Grasa , Hígado , Estrés Oxidativo , S-Adenosilmetionina , Animales , Cobayas , Estrés Oxidativo/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedades de la Aorta/prevención & control , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/etiología , Aorta/efectos de los fármacos , Aorta/patología , Aorta/metabolismo
13.
Vascul Pharmacol ; 156: 107420, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39182633

RESUMEN

Aortic dissection, characterized by a high immediate mortality, is primarily caused by excessive bleeding within the walls of the aorta or a severe tear within the intimal layer of the aorta. Inflammation, as well as oxidative stress and the degradation of extracellular matrix (ECM), are significant factors in the development and occurrence of aortic dissection. Matrix metalloproteinases (MMPs) are pivotal enzymes responsible for degrading the ECM. Inflammatory factors and oxidants can interact with MMPs, indicating the potential significance of MMPs in aortic dissection. A substantial body of evidence indicates that numerous MMPs are significantly upregulated in aortic dissection, playing a critical role in ECM degradation and the pathogenesis of aortic dissection. Furthermore, targeting these enzymes has demonstrated potential in facilitating ECM restoration and reducing the incidence of aortic dissection. This review initially provides a brief overview of MMP biology before delving into their expression patterns, regulatory mechanisms, and therapeutic applications in aortic dissection. A profound comprehension of the catabolic pathways associated with aortic dissection is imperative for the future development of potential preventive or therapeutic bio-interventions for aortic dissection.


Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Matriz Extracelular , Metaloproteinasas de la Matriz , Humanos , Disección Aórtica/enzimología , Disección Aórtica/patología , Disección Aórtica/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Animales , Aneurisma de la Aorta/enzimología , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/enzimología , Matriz Extracelular/patología , Inhibidores de la Metaloproteinasa de la Matriz/uso terapéutico , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Transducción de Señal , Aorta/enzimología , Aorta/patología , Aorta/metabolismo
14.
Cardiovasc Toxicol ; 24(10): 1077-1089, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39126580

RESUMEN

Human aortic vascular smooth muscle cells (HA-VSMCs) play vital roles in the pathogenesis of vascular diseases, including Atherosclerosis (AS). Circular RNAs (circRNAs) have been reported to regulate the biological functions of HA-VSMCs. Therefore, this study aimed to explore the role and mechanism of hsa_circRNA_102353 (circ_0007765) in platelet-derived growth factor-BB (PDGF-BB)-induced HA-VSMCs. Circ_0007765, microRNA-654-3p (miR-654-3p), and Fibroblast Growth Factor Receptor Substrate 2 (FRS2) expression were measured using real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferative ability, invasion, and migration were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), Transwell, and wound healing assays. CyclinD1, MMP2, and FRS2 protein levels were assessed using a Western blot assay. Binding between miR-654-3p and circ_0007765 or FRS2 was predicted by Circinteractome or TargetScan, and verified using dual-luciferase reporter and RNA pull-down assays. PDGF-BB induced HA-VSMC proliferation, invasion, and migration. Circ_0007765 and FRS2 expression levels were increased in PDGF-BB-treated HA-VSMCs, and the miR-654-3p level was reduced. Moreover, circ_0007765 absence hindered PDGF-BB-induced HA-VSMC proliferation, invasion, and migration in vitro. At the molecular level, circ_0007765 increased FRS2 expression by acting as a sponge for miR-654-3p. Our findings revealed that circ_0007765 boosted PDGF-BB-induced HA-VSMC proliferation and migration through elevating FRS2 expression via adsorbing miR-654-3p, providing a feasible therapeutic strategy for AS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Aterosclerosis , Becaplermina , Movimiento Celular , Proliferación Celular , Proteínas de la Membrana , MicroARNs , Músculo Liso Vascular , Miocitos del Músculo Liso , ARN Circular , Transducción de Señal , Humanos , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , ARN Circular/metabolismo , ARN Circular/genética , Becaplermina/farmacología , Movimiento Celular/efectos de los fármacos , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , MicroARNs/metabolismo , MicroARNs/genética , Aterosclerosis/patología , Aterosclerosis/metabolismo , Aterosclerosis/genética , Células Cultivadas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Aorta/patología , Aorta/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/genética , Regulación de la Expresión Génica , Ratones Noqueados para ApoE , Animales
15.
J Autoimmun ; 148: 103277, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972101

RESUMEN

BACKGROUND: Vascular fibrosis directly causes vascular thickening in Takayasu arteritis (TAK), in which sustained transforming growth factor beta (TGF-ß) activation is critical. Understanding TGF-ß activation regulation and blocking it might yield a therapeutic effect in TAK. Proprotein convertase subtilisin/kexin type 5 (PCSK5) rs6560480 (T/C) is associated with TAK development. In this study, we assessed the association between the PCSK5 rs6560480 genotype and PCSK5 expression in TAK and explored its molecular role in TGF-ß activation and vascular fibrosis development. METHODS: In TAK patients, PCSK5 and TGF-ß expression in plasma and aortic tissue was examined by ELISA and immunohistochemical staining, and PCSK5 rs6560480 was genotyped. The correlation between PCSK5 and extracellular matrix (ECM) expression was examined by Western blotting (WB) and immunohistochemistry staining. Detection by co-immunoprecipitation was performed to detect the interaction between PCSK5 and TGF-ß in adventitial fibroblasts (AAFs). Downstream signaling pathways were detected by WB and validated with appropriate inhibitors. Potential immunosuppressive agents to inhibit the effects of PCSK5 were explored in cell culture and TAK patients. RESULTS: Patients with PCSK5 rs6560480 TT patients had significantly higher PCSK5 levels and more thickened vascular lesions than patients with PCSK5 rs6560480 CT. PCSK5 expression was significantly increased in alpha smooth muscle actin (α-SMA)-positive myofibroblasts in TAK vascular lesions. Overexpressing PCSK5 facilitated TGF-ß and downstream SMAD2/3 activation and ECM expression in AAFs and aorta in in-vitro culture. The mechanistic study supported that PCSK5 activated precursor TGF-ß (pro-TGF-ß) to the mature form by binding the pro-TGF-ß cleavage site. Leflunomide inhibited PCSK5 and pro-TGF-ß binding, decreasing TGF-ß activation and ECM expression, which was also partially validated in leflunomide-treated patients. CONCLUSION: The findings revealed a novel pro-fibrotic mechanism of PCSK5 in TAK vascular fibrosis via TGF-ß and downstream SMAD2/3 pathway activation. Leflunomide might be anti-fibrotic by disrupting PCSK5 and pro-TGF-ß binding, presenting a new TAK treatment approach.


Asunto(s)
Fibrosis , Proproteína Convertasa 5 , Transducción de Señal , Proteína smad3 , Arteritis de Takayasu , Factor de Crecimiento Transformador beta , Humanos , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Arteritis de Takayasu/metabolismo , Arteritis de Takayasu/genética , Femenino , Masculino , Adulto , Proproteína Convertasa 5/metabolismo , Proproteína Convertasa 5/genética , Predisposición Genética a la Enfermedad , Fibroblastos/metabolismo , Fibroblastos/patología , Polimorfismo de Nucleótido Simple , Genotipo , Aorta/patología , Aorta/metabolismo
16.
PLoS One ; 19(7): e0306515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954721

RESUMEN

BACKGROUND: Bicuspid aortic valves (BAV) are frequently associated with ascending aortic aneurysms. The etiology is incompletely understood, but genetic factors, in addition to flow perturbations, are likely involved. Since loss of contractility and elaboration of extracellular matrix in the vessel wall are features of BAV-associated aortopathy, phenotypic modulation of smooth muscle cells (SMCs) may play a role. METHODS: Ascending aortic tissue was collected intra-operatively from 25 individuals with normal (i.e., tricuspid) aortic valves (TAV) and from 25 individuals with BAVs. For both TAV and BAV, 10 patients had non-dilated (ND) and 15 patients had dilated (D) aortas. SMCs were isolated and cultured from a subset of patients from each group. Aortic tissue and SMCs were fluorescently immunolabeled for SMC phenotypic markers (i.e., alpha-smooth muscle actin (ASMA, contractile), vimentin (synthetic) and p16INK4a and p21Cip1 (senescence). SMCs were also analyzed for replicative senescence in culture. RESULTS: In normal-sized and dilated BAV aortas, SMCs switched from the contractile state to either synthetic or senescent phenotypes, as observed by loss of ASMA (ND: P = 0.001, D: P = 0.002) and associated increases in vimentin (ND: P = 0.03, D: P = 0.004) or p16/p21 (ND: P = 0.03, D: P<0.0001) compared to TAV. Dilatation of the aorta exacerbated SMC phenotypic switching in both BAV and TAV aortas (all P<0.05). In SMCs cultured from normal and dilated aortas, those isolated from BAV reached replicative senescence faster than those from TAV aortas (all P = 0.02). Furthermore, there was a stark inverse correlation between ASMA and cell passage number in BAV SMCs (ND: P = 0.0006, D: P = 0.01), but not in TAV SMCs (ND: P = 0.93, D: P = 0.20). CONCLUSIONS: The findings of this study provide direct evidence from cell culture studies implying that SMCs switch from the contractile state to either synthetic or senescent phenotypes in the non-dilated BAV aorta. In cultured SMCs from both non-dilated and dilated aortas, we found that this process may precede dilatation and accompany aneurysm development in BAV. Our findings suggest that therapeutically targeting SMC phenotypic modulation in BAV patients may be a viable option to prevent or delay ascending aortic aneurysm formation.


Asunto(s)
Aorta , Válvula Aórtica , Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Miocitos del Músculo Liso , Fenotipo , Humanos , Válvula Aórtica/patología , Válvula Aórtica/metabolismo , Válvula Aórtica/anomalías , Enfermedad de la Válvula Aórtica Bicúspide/patología , Enfermedad de la Válvula Aórtica Bicúspide/metabolismo , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Enfermedades de las Válvulas Cardíacas/metabolismo , Enfermedades de las Válvulas Cardíacas/patología , Aorta/patología , Aorta/metabolismo , Masculino , Persona de Mediana Edad , Femenino , Dilatación Patológica , Adulto , Senescencia Celular , Células Cultivadas , Anciano , Actinas/metabolismo , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/patología , Vimentina/metabolismo
17.
J Immunol Res ; 2024: 5009637, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39081633

RESUMEN

It has been reported that carbonic anhydrase I (CA1) is a target for the diagnosis and therapy of atherosclerosis (AS) since CA1 can promote AS aortic calcification. We also found that methazolamide (MTZ), a drug for glaucoma treatment and an inhibitor of carbonic anhydrases, can treat AS by inhibiting calcification in aortic tissues. This study focused on the therapeutic mechanism of MTZ and the pathogenic mechanism of AS. In this study, a routine AS animal model was established in ApoE-/- mice, which were treated with MTZ. The aortic tissues were analyzed using single-cell sequencing. MTZ significantly increased the proportions of B-1/MZB B cells with high expressions of Nr4A1 and Ccr7, CD8+CD122+ Treg-like cells with high Nr4A1 expression, and smooth muscle cells with high Tpm2 expression. These cells or their marker genes were reported to exert immunosuppressive, anti-proinflammatory, and atheroprotective effects. MTZ also decreased the proportions of endothelial cells with high expressions of Retn, Apoc1, Lcn2, Mt1, Serpina3, Lpl, and Lgals3; nonclassical CD14+CD16++ monocytes with high expressions of Mt1, Tyrobp, Lgals3, and Cxcl2; and Spp1+ macrophages with high expressions of Mmp-12, Trem2, Mt1, Lgals3, Cxcl2, and Lpl. These cells or their marker genes have been reported to promote inflammation, calcification, tissue remodeling, and atherogenesis. A significant decrease in the proportion of CD8+CD183 (CXCR3)+ T cells, the counterpart of murine CD8+CD122+ T cells, was detected in the peripheral blood of newly diagnosed AS patients rather than in that of patients receiving anti-AS treatments. These results suggest that MTZ can treat AS by increasing immunosuppressive cells and decreasing expressions of genes related to inflammation, calcification, and tissue remodeling.


Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Inflamación , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/inmunología , Aterosclerosis/genética , Ratones , Inflamación/tratamiento farmacológico , Humanos , Aorta/patología , Aorta/metabolismo , Masculino , Regulación de la Expresión Génica/efectos de los fármacos , Apolipoproteínas E/genética , Calcinosis/tratamiento farmacológico , Calcinosis/genética
18.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39063104

RESUMEN

Acute-phase serum amyloid A (SAA) can disrupt vascular homeostasis and is elevated in subjects with diabetes, cardiovascular disease, and rheumatoid arthritis. Cyclic nitroxides (e.g., Tempo) are a class of piperidines that inhibit oxidative stress and inflammation. This study examined whether 4-methoxy-Tempo (4-MetT) inhibits SAA-mediated vascular and renal dysfunction. Acetylcholine-mediated vascular relaxation and aortic guanosine-3',5'-cyclic monophosphate (cGMP) levels both diminished in the presence of SAA. 4-MetT dose-dependently restored vascular function with corresponding increases in cGMP. Next, male ApoE-deficient mice were administered a vehicle (control, 100 µL PBS) or recombinant SAA (100 µL, 120 µg/mL) ± 4-MetT (at 15 mg/kg body weight via i.p. injection) with the nitroxide administered before (prophylaxis) or after (therapeutic) SAA. Kidney and hearts were harvested at 4 or 16 weeks post SAA administration. Renal inflammation increased 4 weeks after SAA treatment, as judged by the upregulation of IFN-γ and concomitant increases in iNOS, p38MAPK, and matrix metalloproteinase (MMP) activities and increased renal fibrosis (Picrosirius red staining) in the same kidneys. Aortic root lesions assessed at 16 weeks revealed that SAA enhanced lesion size (vs. control; p < 0.05), with plaque presenting with a diffuse fibrous cap (compared to the corresponding aortic root from control and 4-MetT groups). The extent of renal dysfunction and aortic lesion size was largely unchanged in 4-MetT-supplemented mice, although renal fibrosis diminished at 16 weeks, and aortic lesions presented with redistributed collagen networks. These outcomes indicate that SAA stimulates renal dysfunction through promoting the IFN-γ-iNOS-p38MAPK axis, manifesting as renal damage and enhanced atherosclerotic lesions, while supplementation with 4-MetT only affected some of these pathological changes.


Asunto(s)
Óxidos N-Cíclicos , Fibrosis , Riñón , Placa Aterosclerótica , Proteína Amiloide A Sérica , Animales , Ratones , Masculino , Proteína Amiloide A Sérica/metabolismo , Riñón/patología , Riñón/metabolismo , Riñón/efectos de los fármacos , Óxidos N-Cíclicos/farmacología , Placa Aterosclerótica/tratamiento farmacológico , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Colágeno/metabolismo , Aorta/patología , Aorta/efectos de los fármacos , Aorta/metabolismo , GMP Cíclico/metabolismo , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/etiología , Estrés Oxidativo/efectos de los fármacos , Ratones Endogámicos C57BL
19.
Clinics (Sao Paulo) ; 79: 100413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39024795

RESUMEN

OBJECTIVE: Atherosclerosis (AS) is a common pathogenesis of cardiovascular diseases. Puerarin (Pue) is a Chinese herbal remedy used to prevent and treat AS. Here, this research investigated the effect of Pue on AS progression. METHODS: ApoE-/- mice were induced with acrolein. Body weight, blood lipid index, inflammatory factors, mitochondrial oxidative stress, and lipid deposition were detected. IL-6 and TNF-α were detected by ELISA. Oil red staining and H&E staining were used to observe the aortic sinus plaque lesions. Serum expressions of inflammatory factors IL-6, TNF-a, SOD, GSH and MDA were detected by ELISA, the mRNA expression levels of HDAC1 in the aorta were detected by RT-qPCR, and IL-6 and TNF-α in the aorta were detected by immunohistochemistry. JNK, p-JNK, OPA-1, and HDAC1 were detected by Western blotting. RESULTS: Pue administration can effectively reduce lipid accumulation in AS mice induced by acrolein. Pue promoted the activity of SOD, GSH and MDA, and inhibited the formation of atherosclerotic plaques and the process of aortic histological changes. Pue reduced IL-6 and TNF-α. HDAC1 expression was down-regulated and p-JNK-1 and JNK protein expression was up-regulated. CONCLUSION: Pue reduces inflammation and alleviates AS induced by acrolein by mediating the JNK pathway to inhibit HDAC1-mediated oxidative stress disorder.


Asunto(s)
Acroleína , Aterosclerosis , Histona Desacetilasa 1 , Isoflavonas , Estrés Oxidativo , Animales , Aterosclerosis/inducido químicamente , Aterosclerosis/metabolismo , Aterosclerosis/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Histona Desacetilasa 1/metabolismo , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Acroleína/farmacología , Masculino , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Western Blotting , Aorta/efectos de los fármacos , Aorta/patología
20.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39000363

RESUMEN

Foods enriched with insects can potentially prevent several health disorders, including cardiovascular diseases, by reducing inflammation and improving antioxidant status. In this study, Tenebrio molitor and Gryllus assimilis were selected to determine the effect on the development of atherosclerosis in ApoE/LDLR-/- mice. Animals were fed AIN-93G-based diets (control) with 10% Tenebrio molitor (TM) and 10% Gryllus assimilis (GA) for 8 weeks. The nutritional value as well as antioxidant activity of selected insects were determined. The lipid profile, liver enzyme activity, and the fatty acid composition of liver and adipose tissue of model mice were evaluated. Quantitative analysis of atherosclerotic lesions in the entire aorta was performed using the en face method, and for aortic roots, the cross-section method was used. The antioxidant status of the GA cricket was significantly higher compared to the TM larvae. The results showed that the area of atherosclerosis (en face method) was not significantly different between groups. Dietary GA reduced plaque formation in the aortic root; additionally, significant differences were observed in sections at 200 and 300 µm compared to other groups. Furthermore, liver enzyme ALT activity was lower in insect-fed groups compared to the control group. The finding suggests that a diet containing edible insect GA potentially prevents atherosclerotic plaque development in the aortic root, due to its high antioxidant activity.


Asunto(s)
Apolipoproteínas E , Aterosclerosis , Receptores de LDL , Animales , Aterosclerosis/patología , Aterosclerosis/metabolismo , Ratones , Receptores de LDL/genética , Receptores de LDL/metabolismo , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Insectos Comestibles , Ratones Noqueados , Hígado/metabolismo , Hígado/patología , Antioxidantes/metabolismo , Masculino , Tenebrio , Dieta , Aorta/patología , Aorta/metabolismo , Modelos Animales de Enfermedad , Alimentación Animal , Placa Aterosclerótica/patología , Placa Aterosclerótica/metabolismo , Gryllidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA