Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.280
Filtrar
1.
Plant Cell Rep ; 43(7): 188, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960994

RESUMEN

KEY MESSAGE: BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance in Arabidopsis roots. The formative divisions of cortex/endodermis initials (CEIs) and CEI daughter cells (CEIDs) in Arabidopsis roots are coordinately controlled by the longitudinal auxin gradient and the radial SHORT ROOT (SHR) abundance. However, the mechanism underlying this coordination remains poorly understood. In this study, we demonstrate that BIG regulates ground tissue formative divisions by bridging the auxin gradient with SHR abundance. Mutations in BIG gene repressed cell cycle progression, delaying the formative divisions within the ground tissues and impairing the establishment of endodermal and cortical identities. In addition, we uncovered auxin's suppressive effect on BIG expression, triggering CYCLIND6;1 (CYCD6;1) activation in an SHR-dependent fashion. Moreover, the degradation of RETINOBLASTOMA-RELATED (RBR) is jointly regulated by BIG and CYCD6;1. The loss of BIG function led to RBR protein accumulation, detrimentally impacting the SHR/SCARECROW (SCR) protein complex and the CEI/CEID formative divisions. Collectively, these findings shed light on a fundamental mechanism wherein BIG intricately coordinates the interplay between SHR/SCR and auxin, steering ground tissue patterning within Arabidopsis root tissue.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Raíces de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/citología , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raíces de Plantas/citología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , División Celular Asimétrica , Mutación/genética , Células Madre/metabolismo , Células Madre/citología , Ciclinas/metabolismo , Ciclinas/genética , Proteínas de Unión a Calmodulina , Factores de Transcripción
2.
J Agric Food Chem ; 72(26): 14581-14591, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38957087

RESUMEN

Plants withstand pathogen attacks by recruiting beneficial bacteria to the rhizosphere and passing their legacy on to the next generation. However, the underlying mechanisms involved in this process remain unclear. In our study, we combined microbiomic and transcriptomic analyses to reveal how the rhizosphere microbiome assembled through multiple generations and defense-related genes expressed in Arabidopsis thaliana under pathogen attack stress. Our results showed that continuous exposure to the pathogen Pseudomonas syringae pv tomato DC3000 led to improved growth and increased disease resistance in a third generation of rps2 mutant Arabidopsis thaliana. It could be attributed to the enrichment of specific rhizosphere bacteria, such as Bacillus and Bacteroides. Pathways associated with plant immunity and growth in A. thaliana, such as MAPK signaling pathways, phytohormone signal transduction, ABC transporter proteins, and flavonoid biosynthesis, were activated under the influence of rhizosphere bacterial communities. Our findings provide a scientific basis for explaining the relationship between beneficial microbes and defense-related gene expression. Understanding microbial communities and the mechanisms involved in plant responses to disease can contribute to better plant management and reduction of pesticide use.


Asunto(s)
Arabidopsis , Resistencia a la Enfermedad , Enfermedades de las Plantas , Pseudomonas syringae , Rizosfera , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Microbiota , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiología del Suelo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Adaptación Fisiológica , Raíces de Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Proc Natl Acad Sci U S A ; 121(28): e2404887121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968100

RESUMEN

The timing of seed germination is controlled by the combination of internal dormancy and external factors. Temperature is a major environmental factor for seed germination. The permissive temperature range for germination is narrow in dormant seeds and expands during after-ripening (AR) (dormancy release). Quantitative trait loci analyses of preharvest sprouting in cereals have revealed that MKK3, a mitogen-activated protein kinase (MAPK) cascade protein, is a negative regulator of grain dormancy. Here, we show that the MAPKKK19/20-MKK3-MPK1/2/7/14 cascade modulates the germination temperature range in Arabidopsis seeds by elevating the germinability of the seeds at sub- and supraoptimal temperatures. The expression of MAPKKK19 and MAPKKK20 is induced around optimal temperature for germination in after-ripened seeds but repressed in dormant seeds. MPK7 activation depends on the expression levels of MAPKKK19/20, with expression occurring under conditions permissive for germination. Abscisic acid (ABA) and gibberellin (GA) are two major phytohormones which are involved in germination control. Activation of the MKK3 cascade represses ABA biosynthesis enzyme gene expression and induces expression of ABA catabolic enzyme and GA biosynthesis enzyme genes, resulting in expansion of the germinable temperature range. Our data demonstrate that the MKK3 cascade integrates temperature and AR signals to phytohormone metabolism and seed germination.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Temperatura , Germinación/fisiología , Germinación/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , MAP Quinasa Quinasa 3/metabolismo , MAP Quinasa Quinasa 3/genética , Sistema de Señalización de MAP Quinasas/fisiología , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética
4.
Proc Natl Acad Sci U S A ; 121(28): e2309244121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968115

RESUMEN

DNA is organized into chromatin-like structures that support the maintenance and regulation of genomes. A unique and poorly understood form of DNA organization exists in chloroplasts, which are organelles of endosymbiotic origin responsible for photosynthesis. Chloroplast genomes, together with associated proteins, form membrane-less structures known as nucleoids. The internal arrangement of the nucleoid, molecular mechanisms of DNA organization, and connections between nucleoid structure and gene expression remain mostly unknown. We show that Arabidopsis thaliana chloroplast nucleoids have a unique sequence-specific organization driven by DNA binding to the thylakoid membranes. DNA associated with the membranes has high protein occupancy, has reduced DNA accessibility, and is highly transcribed. In contrast, genes with low levels of transcription are further away from the membranes, have lower protein occupancy, and have higher DNA accessibility. Membrane association of active genes relies on the pattern of transcription and proper chloroplast development. We propose a speculative model that transcription organizes the chloroplast nucleoid into a transcriptionally active membrane-associated core and a less active periphery.


Asunto(s)
Arabidopsis , Cloroplastos , Tilacoides , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Tilacoides/metabolismo , Tilacoides/genética , Tilacoides/ultraestructura , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcripción Genética , ADN de Cloroplastos/genética , ADN de Cloroplastos/metabolismo
5.
Planta ; 260(2): 42, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958765

RESUMEN

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Dióxido de Nitrógeno , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Dióxido de Nitrógeno/farmacología , Dióxido de Nitrógeno/metabolismo , Regiones Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Mutación
6.
Planta ; 260(2): 47, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970694

RESUMEN

MAIN CONCLUSION: Transcription of PagMYB147 was induced in poplar infected by Melampsora magnusiana, and a decline in its expression levels increases the host's susceptibility, whereas its overexpression promotes resistance to rust disease. Poplars are valuable tree species with diverse industrial and silvicultural applications. The R2R3-MYB subfamily of transcription factors plays a crucial role in response to biotic stresses. However, the functional studies on poplar R2R3-MYB genes in resistance to leaf rust disease are still insufficient. We identified 191 putative R2R3-MYB genes in the Populus trichocarpa genome. A phylogenetic analysis grouped poplar R2R3-MYBs and Arabidopsis R2R3-MYBs into 33 subgroups. We detected 12 tandem duplication events and 148 segmental duplication events, with the latter likely being the main contributor to the expansion of poplar R2R3-MYB genes. The promoter regions of these genes contained numerous cis-acting regulatory elements associated with response to stress and phytohormones. Analyses of RNA-Seq data identified a multiple R2R3-MYB genes response to Melampsora magnusiana (Mmag). Among them, PagMYB147 was significantly up-regulated under Mmag inoculation, salicylic acid (SA) and methyl jasmonate (MeJA) treatment, and its encoded product was primarily localized to the cell nucleus. Silencing of PagMYB147 exacerbated the severity of Mmag infection, likely because of decreased reactive oxygen species (ROS) production and phenylalanine ammonia-lyase (PAL) enzyme activity, and up-regulation of genes related to ROS scavenging and down-regulation of genes related to PAL, SA and JA signaling pathway. In contrast, plants overexpressing PagMYB147 showed the opposite ROS accumulation, PAL enzyme activity, SA and JA-related gene expressions, and improved Mmag resistance. Our findings suggest that PagMYB147 acts as a positive regulatory factor, affecting resistance in poplar to Mmag by its involvement in the regulation of ROS homeostasis, SA and JA signaling pathway.


Asunto(s)
Basidiomycota , Ciclopentanos , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Filogenia , Enfermedades de las Plantas , Proteínas de Plantas , Populus , Factores de Transcripción , Populus/genética , Populus/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Oxilipinas/metabolismo , Oxilipinas/farmacología , Estudio de Asociación del Genoma Completo , Reguladores del Crecimiento de las Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Acetatos/farmacología , Arabidopsis/genética , Arabidopsis/microbiología
7.
Physiol Plant ; 176(4): e14411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973028

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are known for their role in ameliorating plant stress, including alkaline stress, yet the mechanisms involved are not fully understood. This study investigates the impact of various inoculum doses of Bacillus licheniformis Jrh14-10 on Arabidopsis growth under alkaline stress and explores the underlying mechanisms of tolerance enhancement. We found that all tested doses improved the growth of NaHCO3-treated seedlings, with 109 cfu/mL being the most effective. Transcriptome analysis indicated downregulation of ethylene-related genes and an upregulation of polyamine biosynthesis genes following Jrh14-10 treatment under alkaline conditions. Further qRT-PCR analysis confirmed the suppression of ethylene biosynthesis and signaling genes, alongside the activation of polyamine biosynthesis genes in NaHCO3-stressed seedlings treated with Jrh14-10. Genetic analysis showed that ethylene signaling-deficient mutants (etr1-3 and ein3-1) exhibited greater tolerance to NaHCO3 than the wild type, and the growth-promoting effect of Jrh14-10 was significantly diminished in these mutants. Additionally, Jrh14-10 was found unable to produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, indicating it does not reduce the ethylene precursor ACC in Arabidopsis. However, Jrh14-10 treatment increased the levels of polyamines (putrescine, spermidine, and spermine) in stressed seedlings, with spermidine particularly effective in reducing H2O2 levels and enhancing Fv/Fm under NaHCO3 stress. These findings reveal a novel mechanism of PGPR-induced alkaline tolerance, highlighting the crosstalk between ethylene and polyamine pathways, and suggest a strategic redirection of S-adenosylmethionine towards polyamine biosynthesis to combat alkaline stress.


Asunto(s)
Arabidopsis , Bacillus licheniformis , Etilenos , Poliaminas , Arabidopsis/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Arabidopsis/fisiología , Etilenos/metabolismo , Poliaminas/metabolismo , Bacillus licheniformis/metabolismo , Bacillus licheniformis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Plantones/metabolismo , Álcalis/farmacología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
8.
Physiol Plant ; 176(4): e14409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38973450

RESUMEN

Plants have evolved various mechanisms to adapt to the ever-changing external environment. Autophagy is one such mechanism and has been suggested to play a key role in responding to and adapting to abiotic stresses in plants. However, the role of autophagy in adaptation to cold and freezing stresses remains to be characterized in detail. Here, we investigated the role of autophagy in the low-temperature response of Arabidopsis using atg mutants. Both the atg5-1 and atg10-1 mutants exhibited normal freezing tolerance, regardless of cold acclimation. A comparison of fresh weights indicated that the difference in growth between the wild-type and atg plants under cold conditions was rather small compared with that under normal conditions. Analysis of COLD-REGULATED gene expression showed no significant differences between the atg mutants and wild type. Treatment with 3-methyladenine, an inhibitor of autophagy, did not impair the induction of COR15Apro::LUC expression upon exposure to low temperature. Evaluation of autophagic activity using transgenic plants expressing RBCS-mRFP demonstrated that autophagy was rarely induced by cold exposure, even in the dark. Taken together, these data suggest that autophagy is suppressed by low temperatures and is dispensable for cold acclimation and freezing tolerance in Arabidopsis.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Autofagia , Frío , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/fisiología , Autofagia/genética , Autofagia/fisiología , Aclimatación/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Congelación , Mutación , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo
9.
Planta ; 260(2): 38, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951258

RESUMEN

MAIN CONCLUSION: Our findings shed light on the regulation of anthocyanin and proanthocyanidin biosynthesis in chickpea seed coats. Expression of R2R3-MYB transcription factors CaLAP1 and CaLAP2 enhanced the anthocyanins and proanthocyanidins content in chickpea. The seed coat color is a major economic trait in leguminous crop chickpea (Cicer arietinum). Anthocyanins and proanthocyanidins (PAs) are two classes of flavonoids that mainly contribute to the flower, seed coat and color of Desi chickpea cultivars. Throughout the land plant lineage, the accumulation of anthocyanins and PAs is regulated by MYB and bHLH transcription factors (TFs), which form an MBW (MYB, bHLH, and WD40) complex. Here, we report two R2R3-MYB TFs in chickpea belonging to the anthocyanin-specific subgroup-6, CaLAP1 (Legume Anthocyanin Production 1), and CaLAP2 (Legume Anthocyanin Production 2), which are mainly expressed in the flowers and developmental stages of the seeds. CaLAP1 and CaLAP2 interact with TT8-like CabHLH1 and WD40, forming the MBW complex, and bind to the promoter sequences of anthocyanin- and PA biosynthetic genes CaCHS6, CaDFR2, CaANS, and CaANR, leading to anthocyanins and PA accumulation in the seed coat of chickpea. Moreover, these CaLAPs partially complement the anthocyanin-deficient phenotype in the Arabidopsis thaliana sextuple mutant seedlings. Overexpression of CaLAPs in chickpea resulted in significantly higher expression of anthocyanin and PA biosynthetic genes leading to a darker seed coat color with higher accumulation of anthocyanin and PA. Our findings show that CaLAPs positively modulate anthocyanin and PA content in seed coats, which might influence plant development and resistance to various biotic and abiotic stresses.


Asunto(s)
Antocianinas , Cicer , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proantocianidinas , Semillas , Factores de Transcripción , Cicer/genética , Cicer/metabolismo , Semillas/genética , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Antocianinas/biosíntesis , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis , Proantocianidinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Flores/crecimiento & desarrollo
10.
BMC Plant Biol ; 24(1): 613, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937682

RESUMEN

BACKGROUND: Salt is an important factor that affects crop productivity. Plant hexokinases (HXKs) are key enzymes in the glycolytic pathway and sugar signaling transduction pathways of plants. In previous studies, we identified and confirmed the roles of GmHXK2 in salt tolerance. RESULTS: In this study, we analyzed the tissue-specific expression of GmHXK2 at different growth stages throughout the plant's life cycle. The results showed that GmHXK2 was expressed significantly in all tissues at vegetative stages, including germination and seedling. However, no expression was detected in the pods, and there was little expression in flowers during the later mature period. Arabidopsis plants overexpressing the GmHXK2 (OE) had more lateral roots. The OE seedlings also produced higher levels of auxin and ascorbic acid (AsA). Additionally, the expression levels of genes PMM, YUC4/YUC6/YUC8, and PIN/LAX1,LAX3, which are involved respectively in the synthesis of AsA and auxin, as well as polar auxin transport, were upregulated in OE plants. This upregulation occurred specifically under exogenous glucose treatment. AtHKT1, AtSOS1, and AtNHX1 were up-regulated in OE plants under salt stress, suggesting that GmHXK2 may modulate salt tolerance by maintaining ion balance within the cells and alleviating damage caused by salt stress. Additionally, we further confirmed the interaction between GmHXK2 and the protein GmPMM through yeast two-hybridization and bimolecular fluorescence complementation assays, respectively. CONCLUSION: The expression of GmHXK2 gene in plants is organ-specific and developmental stage specific. GmHXK2 not only regulates the synthesis of AsA and the synthesis and distribution of auxin, but also promotes root elongation and induces lateral root formation, potentially enhancing soil water absorption. This study reveals the crosstalk between sugar signaling and hormone signaling in plants, where GmHXK2 acts as a glucose sensor through its interaction with GmPMM, and sheds light on the molecular mechanism by which GmHXK2 gene is involved in salt tolerance in plants.


Asunto(s)
Glycine max , Ácidos Indolacéticos , Tolerancia a la Sal , Plantones , Plantones/genética , Plantones/fisiología , Plantones/metabolismo , Plantones/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Tolerancia a la Sal/genética , Glycine max/genética , Glycine max/fisiología , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Ácido Ascórbico/metabolismo , Ácido Ascórbico/biosíntesis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente
11.
BMC Plant Biol ; 24(1): 615, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937722

RESUMEN

Amorphophallus is a perennial monocotyledonous herbaceous plant native to the southwestern region of China, widely used in various fields such as food processing, biomedicine and chemical agriculture. However, Amorphophallus is a typical thermolabile plant, and the continuous high temperature in summer have seriously affected the growth, development and economic yield of Amorphophallus in recent years. Calmodulin (CaM), a Ca2+ sensor ubiquitous in eukaryotes, is the most important multifunctional receptor protein in plant cells, which affects plant stress resistance by participating in the activities of a variety of signaling molecules. In this study, the key gene AaCaM3 for the Ca2+-CaM regulatory pathway was obtained from A. albus, the sequence analysis confirmed that it is a typical calmodulin. The qRT-PCR results demonstrated that with the passage of heat treatment time, the expression of AaCaM3 was significantly upregulated in A. albus leaves. Subcellular localization analysis revealed that AaCaM3 localized on the cytoplasm and nucleus. Meanwhile, heterologous transformation experiments have shown that AaCaM3 can significantly improve the heat tolerance of Arabidopsis under heat stress. The promoter region of AaCaM3 was sequenced 1,338 bp by FPNI-PCR and GUS staining assay showed that the promoter of AaCaM3 was a high-temperature inducible promoter. Yeast one-hybrid analysis and Luciferase activity reporting system analysis showed that the AaCaM3 promoter may interact with AaHSFA1, AaHSFA2c, AaHSP70, AaDREB2a and AaDREB2b. In conclusion, this study provides new ideas for further improving the signal transduction network of high-temperature stress in Amorphophallus.


Asunto(s)
Arabidopsis , Calmodulina , Proteínas de Plantas , Calmodulina/metabolismo , Calmodulina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Calor , Fabaceae/genética , Fabaceae/fisiología , Fabaceae/metabolismo , Plantas Modificadas Genéticamente , Estrés Fisiológico/genética , Regiones Promotoras Genéticas
13.
Proc Natl Acad Sci U S A ; 121(26): e2321877121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38905239

RESUMEN

How tissue-level information encoded by fields of regulatory gene activity is translated into the patterns of cell polarity and growth that generate the diverse shapes of different species remains poorly understood. Here, we investigate this problem in the case of leaf shape differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta that has complex leaves divided into leaflets. We show that patterned expression of the transcription factor CUP-SHAPED COTYLEDON1 in C. hirsuta (ChCUC1) is a key determinant of leaf shape differences between the two species. Through inducible genetic perturbations, time-lapse imaging of growth, and computational modeling, we find that ChCUC1 provides instructive input into auxin-based leaf margin patterning. This input arises via transcriptional regulation of multiple auxin homeostasis components, including direct activation of WAG kinases that are known to regulate the polarity of PIN-FORMED auxin transporters. Thus, we have uncovered a mechanism that bridges biological scales by linking spatially distributed and species-specific transcription factor expression to cell-level polarity and growth, to shape diverse leaf forms.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Polaridad Celular , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Hojas de la Planta , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Polaridad Celular/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cardamine/genética , Cardamine/metabolismo , Cardamine/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
14.
BMC Genomics ; 25(1): 649, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943073

RESUMEN

Despite the fact that introns mean an energy and time burden for eukaryotic cells, they play an irreplaceable role in the diversification and regulation of protein production. As a common feature of eukaryotic genomes, it has been reported that in protein-coding genes, the longest intron is usually one of the first introns. The goal of our work was to find a possible difference in the biological function of genes that fulfill this common feature compared to genes that do not. Data on the lengths of all introns in genes were extracted from the genomes of six vertebrates (human, mouse, koala, chicken, zebrafish and fugu) and two other model organisms (nematode worm and arabidopsis). We showed that more than 40% of protein-coding genes have the relative position of the longest intron located in the second or third tertile of all introns. Genes divided according to the relative position of the longest intron were found to be significantly increased in different KEGG pathways. Genes with the longest intron in the first tertile predominate in a range of pathways for amino acid and lipid metabolism, various signaling, cell junctions or ABC transporters. Genes with the longest intron in the second or third tertile show increased representation in pathways associated with the formation and function of the spliceosome and ribosomes. In the two groups of genes defined in this way, we further demonstrated the difference in the length of the longest introns and the distribution of their absolute positions. We also pointed out other characteristics, namely the positive correlation between the length of the longest intron and the sum of the lengths of all other introns in the gene and the preservation of the exact same absolute and relative position of the longest intron between orthologous genes.


Asunto(s)
Intrones , Intrones/genética , Animales , Humanos , Arabidopsis/genética , Empalmosomas/genética , Empalmosomas/metabolismo
15.
Physiol Plant ; 176(4): e14423, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945803

RESUMEN

Maize (Zea mays L.) is an important food crop with a wide range of uses in both industry and agriculture. Drought stress during its growth cycle can greatly reduce maize crop yield and quality. However, the molecular mechanisms underlying maize responses to drought stress remain unclear. In this work, a WRKY transcription factor-encoding gene, ZmWRKY30, from drought-treated maize leaves was screened out and characterized. ZmWRKY30 gene expression was induced by dehydration treatments. The ZmWRKY30 protein localized to the nucleus and displayed transactivation activity in yeast. Compared with wild-type (WT) plants, Arabidopsis lines overexpressing ZmWRKY30 exhibited a significantly enhanced drought stress tolerance, as evidenced by the improved survival rate, increased antioxidant enzyme activity by superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), elevated proline content, and reduced lipid peroxidation recorded after drought stress treatment. In contrast, the mutator (Mu)-interrupted ZmWRKY30 homozygous mutant (zmwrky30) was more sensitive to drought stress than its null segregant (NS), characterized by the decreased survival rate, reduced antioxidant enzyme activity (SOD, POD, and CAT) and proline content, as well as increased malondialdehyde accumulation. RNA-Seq analysis further revealed that, under drought conditions, the knockout of the ZmWRKY30 gene in maize affected the expression of genes involved in reactive oxygen species (ROS), proline, and myo-inositol metabolism. Meanwhile, the zmwrky30 mutant exhibited significant downregulation of myo-inositol content in leaves under drought stress. Combined, our results suggest that ZmWRKY30 positively regulates maize responses to water scarcity. This work provides potential target genes for the breeding of drought-tolerant maize.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Homeostasis , Inositol , Proteínas de Plantas , Especies Reactivas de Oxígeno , Zea mays , Zea mays/genética , Zea mays/fisiología , Zea mays/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inositol/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Plantas Modificadas Genéticamente , Estrés Fisiológico/genética , Antioxidantes/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Resistencia a la Sequía
16.
Elife ; 122024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38896460

RESUMEN

The abscission of floral organs and emergence of lateral roots in Arabidopsis is regulated by the peptide ligand inflorescence deficient in abscission (IDA) and the receptor protein kinases HAESA (HAE) and HAESA-like 2 (HSL2). During these cell separation processes, the plant induces defense-associated genes to protect against pathogen invasion. However, the molecular coordination between abscission and immunity has not been thoroughly explored. Here, we show that IDA induces a release of cytosolic calcium ions (Ca2+) and apoplastic production of reactive oxygen species, which are signatures of early defense responses. In addition, we find that IDA promotes late defense responses by the transcriptional upregulation of genes known to be involved in immunity. When comparing the IDA induced early immune responses to known immune responses, such as those elicited by flagellin22 treatment, we observe both similarities and differences. We propose a molecular mechanism by which IDA promotes signatures of an immune response in cells destined for separation to guard them from pathogen attack.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Inmunidad de la Planta , Arabidopsis/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo
17.
Biomolecules ; 14(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38927115

RESUMEN

Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.


Asunto(s)
Ingeniería Metabólica , Resveratrol , Sacarosa , Yarrowia , Resveratrol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ingeniería Metabólica/métodos , Sacarosa/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Vitis/microbiología , Vitis/genética , Vitis/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Malonil Coenzima A/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Rhodotorula/genética , Rhodotorula/metabolismo , Fermentación , Arabidopsis/genética , Arabidopsis/metabolismo , Amoníaco-Liasas , Proteínas Bacterianas
18.
Biomolecules ; 14(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927127

RESUMEN

Aluminum (Al) toxicity is one of the environmental stress factors that affects crop growth, development, and productivity. MYB transcription factors play crucial roles in responding to biotic or abiotic stresses. However, the roles of MYB transcription factors in Al tolerance have not been clearly elucidated. Here, we found that GmMYB183, a gene encoding a R2R3 MYB transcription factor, is involved in Al tolerance. Subcellular localization studies revealed that GmMYB183 protein is located in the nucleus, cytoplasm and cell membrane. Overexpression of GmMYB183 in Arabidopsis and soybean hairy roots enhanced plant tolerance towards Al stress compared to the wild type, with higher citrate secretion and less Al accumulation. Furthermore, we showed that GmMYB183 binds the GmMATE75 gene promoter encoding for a plasma-membrane-localized citrate transporter. Through a dual-luciferase reporter system and yeast one hybrid, the GmMYB183 protein was shown to directly activate the transcription of GmMATE75. Furthermore, the expression of GmMATE75 may depend on phosphorylation of Ser36 residues in GmMYB183 and two MYB sites in P3 segment of the GmMATE75 promoter. In conclusion, GmMYB183 conferred Al tolerance by promoting the secretion of citrate, which provides a scientific basis for further elucidating the mechanism of plant Al resistance.


Asunto(s)
Aluminio , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Glycine max , Proteínas de Plantas , Regiones Promotoras Genéticas , Factores de Transcripción , Aluminio/toxicidad , Aluminio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Glycine max/genética , Glycine max/metabolismo , Glycine max/efectos de los fármacos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Estrés Fisiológico/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Proteínas Portadoras
19.
Genes (Basel) ; 15(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927601

RESUMEN

Apomixis is a common reproductive characteristic of Zanthoxylum plants, and RWP-RKs are plant-specific transcription factors known to regulate embryonic development. However, the genome-wide analysis and function prediction of RWP-RK family genes in Z. armatum are unclear. In this study, 36 ZaRWP-RK transcription factors were identified in the genome of Z. armatum, among which 15 genes belonged to the RKD subfamily and 21 belonged to the NLP subfamily. Duplication events of ZaRWP-RK genes were mainly segmental duplication, and synteny analysis revealed a close phylogenetic relationship between Z. armatum and Arabidopsis. The analysis of cis-elements indicated that ZaRWP-RK genes may be involved in the regulation of the embryonic development of Z. armatum by responding to plant hormones such as abscisic acid, auxin, and gibberellin. Results of a real-time PCR showed that the expression levels of most ZaRWP-RK genes were significantly increased from flowers to young fruits. Protein-protein interaction network analysis further revealed the potential roles of the ZaRWP-RK proteins in apomixis. Collectively, this study is expected to improve our understanding of ZaRWP-RK transcription factors and provide a theoretical basis for future investigations into the ZaRWP-RK genes and their regulatory mechanisms in the apomixis process of Z. armatum.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Factores de Transcripción , Zanthoxylum , Zanthoxylum/genética , Zanthoxylum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma de Planta , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Apomixis/genética , Arabidopsis/genética
20.
Genes (Basel) ; 15(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38927612

RESUMEN

The current investigation endeavors to identify differentially expressed alternatively spliced (DAS) genes that exhibit concordant expression with splicing factors (SFs) under diverse multifactorial abiotic stress combinations in Arabidopsis seedlings. SFs serve as the post-transcriptional mechanism governing the spatiotemporal dynamics of gene expression. The different stresses encompass variations in salt concentration, heat, intensive light, and their combinations. Clusters demonstrating consistent expression profiles were surveyed to pinpoint DAS/SF gene pairs exhibiting concordant expression. Through rigorous selection criteria, which incorporate alignment with documented gene functionalities and expression patterns observed in this study, four members of the serine/arginine-rich (SR) gene family were delineated as SFs concordantly expressed with six DAS genes. These regulated SF genes encompass cactin, SR1-like, SR30, and SC35-like. The identified concordantly expressed DAS genes encode diverse proteins such as the 26.5 kDa heat shock protein, chaperone protein DnaJ, potassium channel GORK, calcium-binding EF hand family protein, DEAD-box RNA helicase, and 1-aminocyclopropane-1-carboxylate synthase 6. Among the concordantly expressed DAS/SF gene pairs, SR30/DEAD-box RNA helicase, and SC35-like/1-aminocyclopropane-1-carboxylate synthase 6 emerge as promising candidates, necessitating further examinations to ascertain whether these SFs orchestrate splicing of the respective DAS genes. This study contributes to a deeper comprehension of the varied responses of the splicing machinery to abiotic stresses. Leveraging these DAS/SF associations shows promise for elucidating avenues for augmenting breeding programs aimed at fortifying cultivated plants against heat and intensive light stresses.


Asunto(s)
Empalme Alternativo , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estrés Fisiológico/genética , Plantones/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...