Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.591
Filtrar
1.
Cell Physiol Biochem ; 58: 336-360, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39092511

RESUMEN

BACKGROUND/AIMS: Individual resistance to hypoxia is an important feature of the physiological profile of an organism, particularly in relation to lead-induced toxicity. METHODS: Our study focused on evaluating parameters of mitochondrial oxygen consumption, microsomal oxidation, intensity of lipoperoxidation processes and antioxidant defences in the liver of rats with low (LR) and high (HR) resistance to hypoxia to elucidate the mechanisms of action of L-arginine and the NO synthase inhibitor L-NNA before or after exposure to lead nitrate. RESULTS: Our study suggests that the redistribution of oxygen-dependent processes towards mitochondrial processes under the influence of the nitric oxide precursor amino acid L-arginine is an important mechanism for maintaining mitochondrial respiratory chain function during per os lead nitrate exposure (3.6 mg lead nitrate/kg bw per day for 30 days). Animals were given L-arginine at a dose of 600 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate or the NO synthase inhibitor Nω-nitro-L-arginine (L-NNA) at a dose of 35 mg/kg bw (i.p., 30 min) before and after exposure to lead nitrate. Our experiments demonstrated the efficacy of using lead nitrate to simulate lead-related toxic processes via Pb levels in liver tissue; we demonstrated significantly reduced levels of nitrites and nitrates, i.e. stable metabolites of the nitric oxide system, in both LR and HR animals. The effect of the amino acid L-arginine stabilised the negative effects of lead nitrate exposure in both groups of LR and HR rats. We observed the efficiency of mitochondrial energy supply processes and showed a greater vulnerability of NADH-dependent oxidation during lead nitrate exposure in the liver of HR rats. CONCLUSION: L-arginine initiated the processes of oxidation of NADH-dependent substrates in the LR group, whereas in the HR group this directionality of processes was more effective when the role of the nitric oxide system was reduced (use of L-NNA). Our study of key antioxidant enzyme activities in rat liver tissue during lead nitrate exposure revealed changes in the catalase-peroxidase activity ratio. We found different activities of antioxidant enzymes in the liver tissue of rats treated with lead nitrate and L-arginine or L-NNA, with a significant increase in GPx activity in the LR group when L-arginine was administered both before and after exposure to lead nitrate.


Asunto(s)
Arginina , Hipoxia , Plomo , Nitratos , Nitroarginina , Ratas Wistar , Animales , Arginina/metabolismo , Arginina/farmacología , Nitratos/metabolismo , Masculino , Ratas , Nitroarginina/farmacología , Hipoxia/metabolismo , Plomo/toxicidad , Hígado/metabolismo , Hígado/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Catalasa/metabolismo
2.
Pol Merkur Lekarski ; 52(3): 332-336, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007472

RESUMEN

OBJECTIVE: Aim: The aim of the research is to study the cytokine prof i le (IL-1ß, IL 6, TNF-α, IL-4, IL-10) in bronchoalveolar lavage of lungs in experimental APS and its correction with L-arginine and aminoguanidine. PATIENTS AND METHODS: Materials and Methods: Antiphospholipid syndrome was modeled on white female BALB/c mice. L-arginine (25 mg/kg) and aminoguanidine (10 mg/kg) were used for its correction. The concentration of cytokines in bronchoalveolar lavage from the lungs was assessed using the ELISA test. RESULTS: Results: It was established that in cases of APS the concentration of proinf l ammatory cytokines IL-1ß, IL-6 and TNF-a increased in 1.9, 2.3 and 6.6 times, respectively, compare to the control. At the same time a decrease of the IL-4 in 1.7 and IL-10 in 1.8 times was found in the APS group compare to the control. L-arginine reduced the level of proinf l ammatory cytokines IL-1ß by 22%, IL-6 - by 36%, and TNF-α - by 23% compare to the animals with APS. At the same time, the level of anti-inf l ammatory cytokines increased: IL-4 - by 46%, IL-10 - by 57% compare to the APS animal group. Aminoguanidine, a selective iNOS inhibitor, did not cause any signif i cant decrease in pro-inf l ammatory cytokines but the level of anti-inf l ammatory cytokines IL-4 increased by 44% and IL-10 - by 49%. CONCLUSION: Conclusions: The precursor of the NO synthesis L-arginine leads to a decrease in the concentrations of IL-1ß, IL-6, TNF-a and an increase of IL-4 and IL-10 compare to the group of BALB/c mice with APS.


Asunto(s)
Síndrome Antifosfolípido , Arginina , Citocinas , Guanidinas , Ratones Endogámicos BALB C , Animales , Síndrome Antifosfolípido/tratamiento farmacológico , Síndrome Antifosfolípido/metabolismo , Arginina/farmacología , Ratones , Femenino , Citocinas/metabolismo , Guanidinas/farmacología , Óxido Nítrico/metabolismo , Líquido del Lavado Bronquioalveolar/química , Modelos Animales de Enfermedad , Humanos , Interleucina-10/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
3.
Bull Exp Biol Med ; 177(1): 68-73, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38955855

RESUMEN

Substances of silver nanoparticles dialyzed through a 13 kDa membrane, synthesized in a medium of humic ligands modified with hydroquinone and 2-hydroxynaphthoquinone from PowHumus brown coal, specifically enhance the M2 properties of peritoneal macrophages due to inhibition of NO synthase and significant activation of arginase, thus enhancing anti-inflammatory properties of cells. In small, but effective concentrations, they do not have cytotoxic properties and do not contain pyrogenic impurities. The studied humates are able to influence the mechanisms of immune response formation and are an effective means for correcting inflammation and regeneration.


Asunto(s)
Arginasa , Arginina , Sustancias Húmicas , Macrófagos Peritoneales , Plata , Animales , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Ratones , Arginina/farmacología , Arginina/química , Arginasa/metabolismo , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Hidroquinonas/farmacología , Hidroquinonas/química , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Naftoquinonas/farmacología , Naftoquinonas/química
4.
Meat Sci ; 216: 109581, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38970933

RESUMEN

This study aimed to assess the effect of dietary arginine supplementation on muscle structure and meat characteristics of lambs also considering lipid oxidation products and to contribute to reveal its mechanisms of action using tandem mass tagging (TMT) proteomics. Eighteen lambs were allocated to two dietary treatment groups: control diet or control diet with the addition of 1% L-arginine. The results revealed that dietary arginine supplementation increased muscle fibre diameter and cross-sectional area (P < 0.05), which was attributable to protein deposition, as evidenced by increased RNA content, RNA/DNA ratio, inhibition of apoptotic enzyme activity, and alterations in the IGF-1/Akt signaling pathway (P < 0.05). In addition, dietary arginine elevated pH24h, a* values, and IMF content, decreased shear force value and backfat thickness (P < 0.05), as well as decreased the formation of lipid oxidation products involved in meat flavor including hexanal, heptanal, octanal, nonanal and 1-octen-3-ol by increasing the antioxidant capacity of the muscle (P < 0.05). The proteomics results suggested that seven enrichment pathways may be potential mechanisms by which arginine affected the muscle structure and meat characteristics of lambs. In summary, arginine supplementation in lamb diets provides a safe and effective way to improve meat quality, and antioxidant capacity of muscle of lamb.


Asunto(s)
Alimentación Animal , Arginina , Dieta , Suplementos Dietéticos , Músculo Esquelético , Carne Roja , Oveja Doméstica , Animales , Arginina/administración & dosificación , Arginina/farmacología , Carne Roja/análisis , Dieta/veterinaria , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/química , Alimentación Animal/análisis , Masculino , Oxidación-Reducción , Antioxidantes , Metabolismo de los Lípidos/efectos de los fármacos
5.
Int J Nanomedicine ; 19: 6659-6676, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975320

RESUMEN

Background: Vital pulp therapy (VPT) is considered a conservative treatment for preserving pulp viability in caries and trauma-induced pulpitis. However, Mineral trioxide aggregate (MTA) as the most frequently used repair material, exhibits limited efficacy under inflammatory conditions. This study introduces an innovative nanocomposite hydrogel, tailored to simultaneously target anti-inflammation and dentin mineralization, aiming to efficiently preserve vital pulp tissue. Methods: The L-(CaP-ZnP)/SA nanocomposite hydrogel was designed by combining L-Arginine modified calcium phosphate/zinc phosphate nanoparticles (L-(CaP-ZnP) NPs) with sodium alginate (SA), and was characterized with TEM, SEM, FTIR, EDX, ICP-AES, and Zeta potential. In vitro, we evaluated the cytotoxicity and anti-inflammatory properties. Human dental pulp stem cells (hDPSCs) were cultured with lipopolysaccharide (LPS) to induce an inflammatory response, and the cell odontogenic differentiation was measured and possible signaling pathways were explored by alkaline phosphatase (ALP)/alizarin red S (ARS) staining, qRT-PCR, immunofluorescence staining, and Western blotting, respectively. In vivo, a pulpitis model was utilized to explore the potential of the L-(CaP-ZnP)/SA nanocomposite hydrogel in controlling pulp inflammation and enhancing dentin mineralization by Hematoxylin and eosin (HE) staining and immunohistochemistry staining. Results: In vitro experiments revealed that the nanocomposite hydrogel was synthesized successfully and presented desirable biocompatibility. Under inflammatory conditions, compared to MTA, the L-(CaP-ZnP)/SA nanocomposite hydrogel demonstrated superior anti-inflammatory and pro-odontogenesis effects. Furthermore, the nanocomposite hydrogel significantly augmented p38 phosphorylation, implicating the involvement of the p38 signaling pathway in pulp repair. Significantly, in a rat pulpitis model, the L-(CaP-ZnP)/SA nanocomposite hydrogel downregulated inflammatory markers while upregulating mineralization-related markers, thereby stimulating the formation of robust reparative dentin. Conclusion: The L-(CaP-ZnP)/SA nanocomposite hydrogel with good biocompatibility efficiently promoted inflammation resolution and enhanced dentin mineralization by activating p38 signal pathway, as a pulp-capping material, offering a promising and advanced solution for treatment of pulpitis.


Asunto(s)
Alginatos , Antiinflamatorios , Pulpa Dental , Hidrogeles , Nanocompuestos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Nanocompuestos/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Alginatos/química , Alginatos/farmacología , Pulpitis/terapia , Células Madre/efectos de los fármacos , Células Madre/citología , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Silicatos/química , Silicatos/farmacología , Ratas , Diferenciación Celular/efectos de los fármacos , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Células Cultivadas , Compuestos de Aluminio/química , Compuestos de Aluminio/farmacología , Arginina/química , Arginina/farmacología , Ratas Sprague-Dawley , Combinación de Medicamentos , Masculino , Óxidos/química , Óxidos/farmacología
6.
Carbohydr Polym ; 342: 122396, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048233

RESUMEN

Diabetes-related slow healing of wounds is primarily driven by bacterial infections and angiogenesis disorder and presents a substantial hurdle in clinical treatment. To solve the above problems, an advanced multifunctional hydrogel system based on natural polymer was created here to facilitate wound healing in patients with chronic diabetes. The prepared dressing was composed of an outer hydrogel containing polyvinyl alcohol and hydroxypropyl methyl cellulose in dimethyl sulfoxide and water as binary solvents, and an inner hydrogel containing chitosan quaternary ammonium salt, flaxseed gum, and polyvinyl alcohol. Thus, a polysaccharide based bilayer hydrogel (BH) with superior mechanical strength and biocompatibility was created. This bilayer hydrogel could easily bind to dynamic tissue surfaces, thereby generating a protective barrier. Meanwhile, L-arginine-modified polyoxometalate (POM@L-Arg) nanoclusters were loaded in the inner hydrogel. They released NO when stimulated by the peroxide microenvironment of diabetic wounds. NO as a signal molecule regulated vascular tension and promoted cell proliferation and migration. Additionally, because of the synergistic effect of NO and the chitosan quaternary ammonium salt, the hydrogel system exhibited excellent antibacterial performance. The NO released reduced the levels of proinflammatory factors IL-6 and TNF-α in the diabetic wounds, which thus accelerated wound healing. In short, BH + POM@L-Arg is expected to serve as an ideal wound dressing as it exerts a good promotion effect on diabetes-related wound healing.


Asunto(s)
Antibacterianos , Arginina , Hidrogeles , Derivados de la Hipromelosa , Compuestos de Tungsteno , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Arginina/química , Arginina/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Antibacterianos/farmacología , Antibacterianos/química , Compuestos de Tungsteno/química , Compuestos de Tungsteno/farmacología , Derivados de la Hipromelosa/química , Vendajes , Masculino , Humanos , Quitosano/química , Quitosano/farmacología , Proliferación Celular/efectos de los fármacos , Ratones , Diabetes Mellitus Experimental/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley
7.
Med Sci Monit ; 30: e943739, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38896554

RESUMEN

BACKGROUND Carbon monoxide (CO) is a poisonous gas and causes tissue damage through oxidative stress. We aimed to investigate the protective value of curcumin in CO poisoning. MATERIAL AND METHODS Twenty-four female Spraque Dawley rats were divided into 4 subgroups: controls (n=6), curcumin group (n=6), CO group (n=6), and curcumin+CO group (n=6). The experimental group was exposed to 3 L/min of CO gas at 3000 ppm. Curcumin was administered intraperitoneally at a dosage of 50 mg/kg. Hippocampal tissues were removed and separated for biochemical and immunohistochemical analysis. Tissue malondialdehyde (MDA) levels, nitric oxide (NO) levels, and superoxide dismutase (SOD) and catalase (CAT) activities were assayed spectrophotometrically, and serum asymmetric dimethylarginine (ADMA) were measured using the ELISA technique. Tissue Bcl-2 levels were detected by the immunohistochemistry method. RESULTS Tissue CAT and SOD activities and NO levels were significantly lower, and MDA and serum ADMA levels were higher in the CO group than in the control group (P<0.001). The curcumin+CO group had higher CAT activities (P=0.007) and lower MDA than the CO group (P<0.001) and higher ADMA levels than the control group (P=0.023). However, there was no significant difference observed for tissue SOD activity or NO levels between these 2 groups. In the curcumin+CO group, the Bcl-2 level was higher than that in the CO group (P=0.017). CONCLUSIONS The positive effect of curcumin on CAT activities, together with suppression of MDA levels, has shown that curcumin may have a protective effect against CO poisoning.


Asunto(s)
Intoxicación por Monóxido de Carbono , Catalasa , Curcumina , Malondialdehído , Óxido Nítrico , Estrés Oxidativo , Ratas Sprague-Dawley , Superóxido Dismutasa , Animales , Curcumina/farmacología , Curcumina/uso terapéutico , Intoxicación por Monóxido de Carbono/tratamiento farmacológico , Intoxicación por Monóxido de Carbono/metabolismo , Femenino , Malondialdehído/metabolismo , Óxido Nítrico/metabolismo , Superóxido Dismutasa/metabolismo , Ratas , Estrés Oxidativo/efectos de los fármacos , Catalasa/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Arginina/farmacología , Arginina/metabolismo , Arginina/análogos & derivados , Monóxido de Carbono/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
8.
Cell Physiol Biochem ; 58(3): 226-249, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857359

RESUMEN

BACKGROUND/AIMS: Important benefits of intermittent hypoxic training (IHT) have emerged as an effective tool for enhancing adaptive potential in different pathological states, among which acute hypoxia dominates. Therefore, the aim of our study was to evaluate the mechanisms related to the effects of the nitric oxide system (nitrites, nitrates, carbamide, and total polyamine content) on ADP-stimulated oxygen consumption and oxidative phosphorylation in heart and liver mitochondria and biomarkers of oxidative stress in the blood, heart, and liver of rats exposed to the IHT method and acute hypoxia and treated with the amino acid L-arginine (600 mg/kg, 30 min) or the NO synthase inhibitor L-NNA (35 mg/kg, 30 min) prior to each IHT session. METHODS: We analysed the modulation of the system of oxygen-dependent processes (mitochondrial respiration with the oxygraphic method, microsomal oxidation, and lipoperoxidation processes using biochemical methods) in tissues during IHT in the formation of short-term and long-term effects (30, 60, and 180 days after the last IHT session) with simultaneous administration of L-arginine. In particular, we investigated how mitochondrial functions are modulated during intermittent hypoxia with the use of oxidation substrates (succinate or α-ketoglutarate) in bioenergetic mechanisms of cellular stability and adaptation. RESULTS: The IHT method is associated with a significant increase in the production of endogenous nitric oxide measured by the levels of its stable metabolite, nitrite anion, in both plasma (almost 7-fold) and erythrocytes (more than 7-fold) of rats. The intensification of nitric oxide-dependent pathways of metabolic transformations in the energy supply processes in the heart and liver, accompanied by oscillatory mechanisms of adaptation in the interval mode, causes a probable decrease in the production of urea and polyamines in plasma and liver, but not in erythrocytes. The administration of L-arginine prior to the IHT sessions increased the level of the nitrite-reducing component of the nitric oxide cycle, which persisted for up to 180 days of the experiment. CONCLUSION: Thus, the efficacy of IHT and its nitrite-dependent component shown in this study is associated with the formation of long-term adaptive responses by preventing the intensification of lipoperoxidation processes in tissues due to pronounced changes in the main enzymes of antioxidant defence and stabilisation of erythrocyte membranes, which has a pronounced protective effect on the system of regulation of oxygen-dependent processes as a whole.


Asunto(s)
Arginina , Hipoxia , Consumo de Oxígeno , Ratas Wistar , Animales , Masculino , Hipoxia/metabolismo , Ratas , Arginina/farmacología , Arginina/análogos & derivados , Arginina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Adaptación Fisiológica , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nitritos/metabolismo
9.
PLoS One ; 19(6): e0304112, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38900829

RESUMEN

The development and application of functional feed ingredients represents a great opportunity to advance fish growth and health, boost the immune system, and induce physiological benefits beyond those provided by traditional feeds. In the present study, we looked at the feasibility of in vitro methods for screening the qualities of functional feed ingredients using the fish cell line RTgill-W1, which has never been used in fish nutrition, and the culture of Paramoeba perurans. Five functional feed ingredients (arginine, ß-glucan, vitamin C, and two phytogenic feed additives) were selected to investigate their effects on cell viability and reactive oxygen species production. Three of the selected ingredients (arginine and two phytogenic feed additives) were additionally tested to assess their potential amoebicidal activity. As these functional ingredients are the core of a commercially available feed (Protec Gill, Skretting AS), their beneficial effects were further assessed in a field trial in fish affected by complex gill disease. Here, the analyzed parameters included the evaluation of macroscopic and histopathological gill conditions, pathogen detections, and analyses of plasma parameters. RTgill-W1 cell line assays were a good tool for screening functional ingredients and provided information about the optimal ingredient concentration ranges, which can be helpful for adjusting the concentrations in future feed diets. Through the culture of P. perurans, the tested ingredients showed a clear amoebicidal activity, suggesting that their inclusions in dietary supplements could be a viable way to prevent microbial infections. A three-week period of feeding Protec Gill slowed the disease progression, by reducing the pathogen load and significantly improving gill tissue conditions, as revealed by histological evaluation. The use of diets containing selected functional ingredients may be a feasible strategy for preventing or mitigating the increasingly common gill diseases, particularly in cases of complex gill disease, as documented in this study.


Asunto(s)
Alimentación Animal , Enfermedades de los Peces , Branquias , Salmo salar , Animales , Alimentación Animal/análisis , Enfermedades de los Peces/prevención & control , Branquias/patología , Branquias/parasitología , Branquias/efectos de los fármacos , Línea Celular , beta-Glucanos/farmacología , Arginina/farmacología , Ácido Ascórbico/farmacología , Especies Reactivas de Oxígeno/metabolismo , Suplementos Dietéticos , Amebiasis/parasitología , Supervivencia Celular/efectos de los fármacos
10.
Future Microbiol ; 19(8): 667-679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38864708

RESUMEN

Aim: The present study investigated the antimicrobial effectiveness of a rhamnolipid complexed with arginine (RLMIX_Arg) against planktonic cells and biofilms of methicillin-resistant Staphylococcus aureus (MRSA). Methodology: Susceptibility testing was performed using the Clinical & Laboratory Standards Institute protocol: M07-A10, checkerboard test, biofilm in plates and catheters and flow cytometry were used. Result: RLMIX_Arg has bactericidal and synergistic activity with oxacillin. RLMIX_Arg inhibits the formation of MRSA biofilms on plates at sub-inhibitory concentrations and has antibiofilm action against MRSA in peripheral venous catheters. Catheters impregnated with RLMIX_Arg reduce the formation of MRSA biofilms. Conclusion: RLMIX_Arg exhibits potential for application in preventing infections related to methicillin-resistant S. aureus biofilms.


[Box: see text].


Asunto(s)
Antibacterianos , Arginina , Biopelículas , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Tensoactivos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Arginina/farmacología , Arginina/química , Antibacterianos/farmacología , Antibacterianos/química , Humanos , Tensoactivos/farmacología , Tensoactivos/química , Glucolípidos/farmacología , Glucolípidos/química , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Infecciones Estafilocócicas/tratamiento farmacológico , Oxacilina/farmacología , Sinergismo Farmacológico
11.
Biomed Pharmacother ; 176: 116854, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38824834

RESUMEN

BACKGROUND: Acute pancreatitis (APS) is a prevalent acute pancreatic inflammation, where oxidative stress, inflammatory signaling pathways, and apoptosis activation contribute to pancreatic injury. METHODS: Pinocembrin, the predominant flavonoid in propolis, was explored for its likely shielding effect against APS provoked by two intraperitoneal doses of L-arginine (250 mg / 100 g) in a rat model. RESULTS: Pinocembrin ameliorated the histological and immunohistochemical changes in pancreatic tissues and lowered the activities of pancreatic amylase and lipase that were markedly elevated with L-arginine administration. Moreover, pinocembrin reinstated the oxidant/antioxidant equilibrium, which was perturbed by L-arginine, and boosted the pancreatic levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Pinocembrin markedly reduced the elevation in serum C-reactive protein (CRP) level induced by L-arginine. Additionally, it decreased the expression of high motility group box protein 1 (HMGB1), toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and NOD-like receptor (NLR) Family Pyrin Domain Containing 3 (NLRP3) inflammasome in the pancreas. Furthermore, it also reduced myeloperoxidase (MPO) activity. Pinocembrin markedly downregulated miR-34a-5p expression and upregulated the protein levels of peroxisome proliferator-activated receptor alpha (PPAR-α) and Sirtuin 1 (SIRT1) and the gene expression level of the inhibitor protein of NF-κB (IκB-α), along with normalizing the Bax/Bcl-2 ratio. CONCLUSIONS: Pinocembrin notably improved L-arginine-induced APS by its antioxidant, anti-inflammatory, and anti-apoptotic activities. Pinocembrin exhibited a protective role in APS by suppressing inflammatory signaling via the TLR4/NF-κB/NLRP3 pathway and enhancing cytoprotective signaling via the miR-34a-5p/SIRT1/Nrf2/HO-1 pathway.


Asunto(s)
Modelos Animales de Enfermedad , Flavanonas , Hemo Oxigenasa (Desciclizante) , MicroARNs , Factor 2 Relacionado con NF-E2 , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , Pancreatitis , Ratas Sprague-Dawley , Transducción de Señal , Sirtuina 1 , Receptor Toll-Like 4 , Animales , Pancreatitis/inducido químicamente , Pancreatitis/prevención & control , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/tratamiento farmacológico , Sirtuina 1/metabolismo , FN-kappa B/metabolismo , Receptor Toll-Like 4/metabolismo , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Flavanonas/farmacología , Transducción de Señal/efectos de los fármacos , Ratas , Hemo Oxigenasa (Desciclizante)/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Arginina/farmacología , Enfermedad Aguda , Páncreas/efectos de los fármacos , Páncreas/patología , Páncreas/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos
12.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892371

RESUMEN

The composition of skeletal muscle fiber types affects the quality of livestock meat and human athletic performance and health. L-arginine (Arg), a semi-essential amino acid, has been observed to promote the formation of slow-twitch muscle fibers in animal models. However, the precise molecular mechanisms are still unclear. This study investigates the role of Arg in skeletal muscle fiber composition and mitochondrial function through the mTOR signaling pathway. In vivo, 4-week C56BL/6J male mice were divided into three treatment groups and fed a basal diet supplemented with different concentrations of Arg in their drinking water. The trial lasted 7 weeks. The results show that Arg supplementation significantly improved endurance exercise performance, along with increased SDH enzyme activity and upregulated expression of the MyHC I, MyHC IIA, PGC-1α, and NRF1 genes in the gastrocnemius (GAS) and quadriceps (QUA) muscles compared to the control group. In addition, Arg activated the mTOR signaling pathway in the skeletal muscle of mice. In vitro experiments using cultured C2C12 myotubes demonstrated that Arg elevated the expression of slow-fiber genes (MyHC I and Tnnt1) as well as mitochondrial genes (PGC-1α, TFAM, MEF2C, and NRF1), whereas the effects of Arg were inhibited by the mTOR inhibitor rapamycin. In conclusion, these findings suggest that Arg modulates skeletal muscle fiber type towards slow-twitch fibers and enhances mitochondrial functions by upregulating gene expression through the mTOR signaling pathway.


Asunto(s)
Arginina , Fibras Musculares Esqueléticas , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Arginina/metabolismo , Arginina/farmacología , Masculino , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Ratones Endogámicos C57BL , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Línea Celular
13.
Acta Biomater ; 182: 245-259, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729545

RESUMEN

Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.


Asunto(s)
Glucosa Oxidasa , Estructuras Metalorgánicas , Óxido Nítrico , Cicatrización de Heridas , Zinc , Cicatrización de Heridas/efectos de los fármacos , Animales , Zinc/química , Zinc/farmacología , Óxido Nítrico/metabolismo , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Glucosa Oxidasa/farmacología , Glucosa Oxidasa/metabolismo , Diabetes Mellitus Experimental/patología , Microambiente Celular/efectos de los fármacos , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Staphylococcus aureus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Arginina/farmacología , Arginina/química
14.
J Ethnopharmacol ; 332: 118346, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-38782311

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pueraria lobata (Willd.) Ohwi is a typical medicinal and edible plant with a long application history in China and Southeast Asia. As a widely used traditional medicine, P. lobata exhibits the properties of anti-inflammatory, antipyretic, antioxidant, relieving cough and asthma. Particularly, the increasing evidence indicates that the P. lobata has the therapeutic effect on fibrotic-related diseases in terms of metabolic regulation. However, the mechanisms of P. lobata on pulmonary fibrosis (PF) has not been thoroughly explored. AIM OF THE STUDY: This study aimed to explore the effect of arginine metabolites of P. lobata against PF model by integrating metabolomics and network pharmacology analysis. It might provide a new idea for the target finding of P. lobata anti-pulmonary fibrosis. MATERIALS AND METHODS: In this study, the Sprague Dawley (SD) rats were randomly divided into five experimental groups: saline-treated control group, bleomycin-induced fibrosis group, prednisolone acetate group, P. lobata 3.2 g/kg group and P. lobata 6.4 g/kg group. The therapeutic effect of P. lobata on bleomycin-induced PF in rats was evaluated by clinical symptoms such as lung function, body weight, hematoxylin eosin staining (HE), Masson staining and hydroxyproline assay. Next, the plasma metabolomics analysis was carried out by LC-MS to explore the pathological differences between the group of control, PF and P. lobata-treated rats. Then, the network pharmacology study coupled with experimental validation was conducted to analysis the results of metabolic research. We constructed the "component-target-disease" network of P. lobata in the treatment of PF. In addition, the molecular docking method was used to verify the interaction between potential active ingredients and core targets of P. lobata. Finally, we tested NOS2 and L-OT in arginine-related metabolic pathway in plasma of the rats by enzyme-linked immunosorbent assay (ELISA). Real-time PCR was performed to observe the level of TNF-α mRNA and MMP9 mRNA. And we tested the expression of TNF-α and MMP9 by Western blot analysis. RESULTS: Our findings revealed that P. lobata improved lung function and ameliorated the pathological symptoms, such as pathological damage, collagen deposition, and body weight loss in PF rats. Otherwise, the plasma metabolomics were employed to screen the differential metabolites of amino acids, lipids, flavonoids, arachidonic acid metabolites, glycoside, etc. Finally, we found that the arginine metabolism signaling mainly involved in the regulating of P. lobata on the treatment of PF rats. Furtherly, the network pharmacology predicted that the arginine metabolism pathway was contained in the top 20 pathways. Next, we integrated metabolomics and network pharmacology that identified NOS2, MMP9 and TNF-α as the P. lobata regulated hub genes by molecular docking. Importantly, it indicated a strong affinity between the puerarin and the NOS2. P. lobata attenuated TNF-α, MMP-9 and NOS2 levels, suppressed TNF-α and MMP-9 protein expression, and decreased L-OT and NOS2 content in PF rats. These results indicated that the effects of P. lobata may ameliorated PF via the arginine metabolism pathway in rats. Therefore, P. lobata may be a potential therapeutic agent to ameliorated PF. CONCLUSION: In this work, we used metabolomics and network pharmacology to explore the mechanisms of P. lobata in the treatment of PF. Finally, we confirmed that P. lobata alleviated BLM-induced PF in rats by regulating arginine metabolism pathway based on reducing the L-OT and NOS2-related signal molecular. The search for the biomarkers finding of arginine metabolism pathway revealed a new strategy for P. lobata in the treatment of PF.


Asunto(s)
Arginina , Metabolómica , Farmacología en Red , Pueraria , Fibrosis Pulmonar , Ratas Sprague-Dawley , Animales , Pueraria/química , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Arginina/farmacología , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Ratas , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Bleomicina , Modelos Animales de Enfermedad , Metaloproteinasa 9 de la Matriz/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos
15.
Poult Sci ; 103(7): 103815, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38713988

RESUMEN

The objective of this study was to evaluate the effect of 25% arginine supplementation as a functional amino acid in partially alleviating the detrimental effects of necrotic enteritis (NE) on the growth performance, serum biochemistry, gut integrity, and the relative gene expression of tight junction proteins and inflammatory cytokines in broilers during NE. Three hundred and sixty 1-day-old chicks were randomly allocated to 4 treatments in a 2 × 2 factorial arrangement -basal diet and 125% arginine diet, with or without NE challenge. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21. The NE challenge had a significant effect on the BWG (p < 0.05), FCR (p < 0.05), serum AST (p < 0.05), GLU (p < 0.05), and K+ (p < 0.05) levels, and intestinal permeability (p < 0.05) and jejunal lesion score (p < 0.05). A significant challenge × diet interaction effect was observed in the cecal tonsil CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 28 (p < 0.05) and spleen CD8+: CD4+ T-cell ratio on d 21 (p < 0.05) and 35 (p < 0.05). Arginine supplementation significantly increased the CD8+: CD4+ T-cell ratio in uninfected birds but decreased the CD8+: CD4+ T-cell ratio in infected birds. On d 21, a significant interaction effect was observed on the relative expression of the iNOS gene (p < 0.05). Arginine supplementation significantly downregulated the expression of the iNOS gene in infected birds. A significant effect of the challenge (p < 0.05) was observed on the relative gene expression of the ZO-1 gene in the jejunum. NE challenge significantly downregulated the expression of the ZO-1 gene on d 21. In conclusion, arginine supplementation did not alleviate the depression in growth performance and disease severity during the NE challenge. However, arginine downregulated the expression of inflammatory cytokines and enzymes, preventing inflammatory injury to the tissues during NE. Hence, arginine might be supplemented with other alternatives to downregulate inflammatory response during NE in poultry.


Asunto(s)
Alimentación Animal , Arginina , Pollos , Coccidiosis , Dieta , Suplementos Dietéticos , Enteritis , Intestinos , Enfermedades de las Aves de Corral , Distribución Aleatoria , Animales , Arginina/administración & dosificación , Arginina/farmacología , Pollos/crecimiento & desarrollo , Pollos/inmunología , Enfermedades de las Aves de Corral/inmunología , Suplementos Dietéticos/análisis , Enteritis/veterinaria , Enteritis/inmunología , Alimentación Animal/análisis , Dieta/veterinaria , Coccidiosis/veterinaria , Coccidiosis/inmunología , Intestinos/efectos de los fármacos , Eimeria/fisiología , Clostridium perfringens/fisiología , Masculino , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/inmunología
16.
Poult Sci ; 103(7): 103826, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761462

RESUMEN

The objective of this study was to evaluate the effects of 25% and 35% arginine supplementation in partially alleviating the effects of necrotic enteritis (NE) challenge on the production performance, intestinal integrity, and relative gene expression of tight junction proteins and inflammatory cytokines in broilers. Four hundred and eighty 1-day-old chicks were randomly allocated to the 4 treatments- Uninfected + Basal, NE + Basal, NE + Arg 125%, and NE + Arg 135%. NE was induced by inoculating 1 × 104Eimeria maxima sporulated oocysts on d 14 and 1 × 108 CFU/bird C. perfringens on d 19, 20, and 21 of age by oral gavage. The NE challenge significantly decreased body weight gain (BWG) (p < 0.05) and increased the feed conversion ratio (FCR) (p < 0.05). On d 21, the NE challenge also increased the jejunal lesion score (p < 0.05) and relative gene expression of IL-10 and decreased the expression of the tight junction proteins occludin (p < 0.05) and claudin-4 (p < 0.05). The 125% arginine diet significantly increased intestinal permeability (p < 0.05) and the relative gene expression of iNOS (p < 0.05) and IFN-γ (p < 0.05) on d 21 and the bile anti-C. perfringens IgA concentration by 39.74% (p < 0.05) on d 28. The 135% arginine diet significantly increased the feed intake during d 0 - 28 (p < 0.05) and 0 to 35 (p < 0.05) and increased the FCR on d 0 to 35 (p < 0.05). The 135% and 125% arginine diet increased the spleen CD8+: CD4+ T-cell ratio on d 28 (p < 0.05) and 35 (p < 0.05), respectively. The 135% arginine diet increased the CT CD8+:CD4+ T-cell ratio on d 35 (p < 0.05). In conclusion, the 125% and 135% arginine diets did not reverse the effect of the NE challenge on the growth performance. However, the 125% arginine diet significantly increased the cellular and humoral immune response to the challenge. Hence, the 125% arginine diet could be used with other feed additives to improve the immune response of the broilers during the NE challenge.


Asunto(s)
Alimentación Animal , Arginina , Pollos , Clostridium perfringens , Coccidiosis , Dieta , Suplementos Dietéticos , Enteritis , Enfermedades de las Aves de Corral , Distribución Aleatoria , Animales , Pollos/crecimiento & desarrollo , Pollos/inmunología , Arginina/administración & dosificación , Arginina/farmacología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/microbiología , Enteritis/veterinaria , Enteritis/inmunología , Alimentación Animal/análisis , Dieta/veterinaria , Suplementos Dietéticos/análisis , Clostridium perfringens/fisiología , Coccidiosis/veterinaria , Coccidiosis/inmunología , Eimeria/fisiología , Intestinos/efectos de los fármacos , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/inmunología , Relación Dosis-Respuesta a Droga , Masculino , Inmunidad Innata/efectos de los fármacos
17.
Poult Sci ; 103(7): 103811, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763061

RESUMEN

A 35-d study investigated the impact of dietary supplementation with Arginine (Arg) or branched-chain amino acids (BCAA) of broilers receiving low-protein diets whilst infected with mixed Eimeria species. All birds were given the same starter (d0-10) and finisher (d28-35) diets. The 4 grower diets used were a positive control (PC) with adequate protein (18.5%), a low protein diet (NC;16.5% CP), or the NC supplemented with Arg or BCAA. Supplemental AA was added at 50% above the recommended levels. The treatments were in a 4 × 2 factorial arrangement, with 4 diets, with or without Eimeria inoculation on d14. Birds and feed were weighed after inoculation in phases: prepatent (d14-17), acute (d18-21), recovery (d22-28), and compensatory (d29-35). Ileal digesta, jejunum, and breast tissue were collected on d21, 28, and 35. There was no diet × Eimeria inoculation on growth performance at any phase. Infected birds weighed less and consumed less feed (P < 0.05) in all phases. In the prepatent and acute phases, birds on the Arg diets had higher weight gain (P < 0.05) and lower FCR, similar to PC, when compared to NC and BCAA-fed ones. Infection reduced AA digestibility on d21 and 28 (Met and Cys). However, birds that received supplemental AA had higher digestibility (P < 0.05) of their respective supplemented AA on d 21 only. Infected birds had lower (P < 0.05) BO + AT and higher PEPT1 expression on d21. There was a diet × Eimeria interaction (P = 0.004) on gene expression at d28; 4EBP1 genes were significantly downwardly expressed (P < 0.05) in birds fed Arg diet, irrespective of infection. Infected birds exhibited an upward expression (P < 0.05) of Eef2 on d21 and d28 but experienced a downward expression on d35. Supplemental Arg and BCAA had variable effects on growth performance, apparent ileal AA digestibility, and genes of protein synthesis and degradation, but the effect of Arg on promoting weight gain, irrespective of the Eimeria challenge, was more consistent.


Asunto(s)
Aminoácidos de Cadena Ramificada , Alimentación Animal , Arginina , Pollos , Coccidiosis , Suplementos Dietéticos , Digestión , Eimeria , Enfermedades de las Aves de Corral , Animales , Coccidiosis/veterinaria , Coccidiosis/parasitología , Eimeria/fisiología , Arginina/administración & dosificación , Arginina/farmacología , Enfermedades de las Aves de Corral/parasitología , Suplementos Dietéticos/análisis , Alimentación Animal/análisis , Aminoácidos de Cadena Ramificada/administración & dosificación , Digestión/efectos de los fármacos , Dieta con Restricción de Proteínas/veterinaria , Masculino , Dieta/veterinaria , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Distribución Aleatoria
18.
ACS Biomater Sci Eng ; 10(6): 3825-3832, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38722049

RESUMEN

In recent years, a novel treatment method for cancer has emerged, which is based on the starvation of tumors of amino acids like arginine. The deprivation of arginine in serum is based on enzymatic degradation and can be realized by arginine deaminases like the l-amino acid oxidase found in the ink toxin of the sea hare Aplysia punctata. Previously isolated from the ink, the l-amino acid oxidase was described to oxidate the essential amino acids l-lysine and l-arginine to their corresponding deaminated alpha-keto acids. Here, we present the recombinant production and functionalization of the amino acid oxidase Aplysia punctata ink toxin (APIT). PEGylated APIT (APIT-PEG) increased the blood circulation time. APIT-PEG treatment of patient-derived xenografted mice shows a significant dose-dependent reduction of tumor growth over time mediated by amino acid starvation of the tumor. Treatment of mice with APIT-PEG, which led to deprivation of arginine, was well tolerated.


Asunto(s)
Aplysia , Arginina , Lisina , Polietilenglicoles , Animales , Arginina/farmacología , Arginina/química , Lisina/farmacología , Lisina/química , Polietilenglicoles/química , Polietilenglicoles/farmacología , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Toxinas Marinas/farmacología , Toxinas Marinas/uso terapéutico , Toxinas Marinas/química , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , L-Aminoácido Oxidasa/farmacología , L-Aminoácido Oxidasa/metabolismo , L-Aminoácido Oxidasa/química , Femenino , Línea Celular Tumoral
19.
J Dent ; 146: 105039, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714243

RESUMEN

OBJECTIVE: The aim of this work was to evaluate the antibiofilm and anticaries properties of the association of arginine (Arg) with calcium glycerophosphate (CaGP) and fluoride (F). METHODS: An active attachment, polymicrobial biofilm model obtained from saliva and bovine teeth discs were used. After the initial biofilm growth period, the enamel discs were transferred to culture medium. The treatment solutions were added to the culture media to achieve the desired final concentration. The following groups were used: negative control (Control); F (110 ppm F); CaGP (0.05 %); Arg (0.8 %) and their associations (F + CaGP; Arg + F; Arg + CaGP; Arg +F + CaGP). The following analyses were carried out: bacterial viability (total bacteria, aciduric bacteria and mutans streptococci), pH assessment of the spent culture medium, dry weight quantification, evaluation of surface hardness loss (%SH) and subsurface mineral content. Normality and homoscedasticity were tested (Shapiro-Wilk and Levene's test) and the following tests were applied: two-way ANOVA (acidogenicity), Kruskall-Wallis (microbial viability) and one way ANOVA (dry weight, %SH, mineral content). RESULTS: The association Arg + F + CaGP resulted in the lowest surface hardness loss in tooth enamel (-10.9 ± 2.3 %; p < 0.05). Arg +F + CaGP exhibited highest values of subsurface mineral content (10.1 ± 2.9 gHAP/cm3) in comparison to Control and F (p < 0.05). In comparison to Control and F, Arg +F + CaGP promoted the highest reduction in aciduric bacteria and mutans streptococci (5.7 ± 0.4; 4.4 ± 0.5 logCFU/mL, p < 0.05). CONCLUSIONS: The Arg-F-Ca association demonstrated to be the most effective combination in protecting the loss of surface hardness and subsurface mineral content, in addition to controlling important virulence factors of the cariogenic biofilm. CLINICAL SIGNIFICANCE: Our findings provide evidence that the Arg-F-Ca association showed an additive effect, particularly concerning protection against enamel demineralization. The combination of these compounds may be a strategy for patients at high risk of caries.


Asunto(s)
Arginina , Biopelículas , Cariostáticos , Caries Dental , Esmalte Dental , Fluoruros , Glicerofosfatos , Viabilidad Microbiana , Saliva , Streptococcus mutans , Arginina/farmacología , Biopelículas/efectos de los fármacos , Bovinos , Animales , Esmalte Dental/efectos de los fármacos , Esmalte Dental/microbiología , Streptococcus mutans/efectos de los fármacos , Fluoruros/farmacología , Glicerofosfatos/farmacología , Cariostáticos/farmacología , Saliva/microbiología , Concentración de Iones de Hidrógeno , Caries Dental/prevención & control , Caries Dental/microbiología , Viabilidad Microbiana/efectos de los fármacos , Dureza , Humanos , Desmineralización Dental/prevención & control , Desmineralización Dental/microbiología , Propiedades de Superficie
20.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38703031

RESUMEN

This study compared milk replacer either remaining unsupplemented (CON) or supplemented with 0.5 g L-carnitine plus 16.7 g L-arginine/kg (CarArg) and fed to 48 low-birth weight (L-BtW) artificially reared piglets (24 per group) from days 7 to 28 of age. Eight farrowing series were needed to complete the study. On day 28, the lightest piglets were slaughtered, and the heaviest pigs were weaned. The heaviest pigs were weaned on day 28 and offered free access to a starter (weaning to 25 kg body weight [BW]), grower (25 to 60 kg BW), and finisher diet (60 to 96 kg BW on day 170 of age). After euthanization on days 28 and 170, blood was sampled for assessment of serum metabolite and hormone concentrations, and the semitendinosus muscle (STM) was weighed, and later subjected to enzyme activity analysis and assessment of myofiber characteristics. In the 170-d-old pigs carcass and meat quality traits were assessed. Growth data were analyzed accordingtoatwo-way analysis of variance (ANOVA), with dietary treatment and farrowing series as fixed effects, while remaining data were analyzed with dietary treatment, sex, their interaction, and farrowing series as main factors. Dietary treatments affected (P ≤ 0.049) muscle enzyme activity at both day 28, with greater citrate synthase (CS) and LDH activities and lower HAD:CS ratio in STM light portion, and lower LDH:CS ratio in STM dark portion, and 170 of age with lower HAD:CS ratio. In the starter period, CarArg pigs had greater average daily gain (P = 0.021) and average daily feed intake (P = 0.010). At slaughter, these pigs had lower (P = 0.013) glucose and greater (P = 0.022) urea serum concentrations. However, supplementing the milk replacer with carnitine and arginine had no long-term effects on growth performance, carcass composition, and meat quality of L-BtW pigs. In addition, muscle morphology and myofiber-related properties remained unaffected by the supplementation.


Breeding efforts to increase litter size in modern sows have inadvertently reduced the average birth weight of piglets, resulting in a higher number of piglets born with low-birth weight. These piglets are indeed vulnerable from birth and display relatively poor growth potential from a very early stage. For this reason, artificial rearing strategies are potentially a management option to improve the growth of these runt piglets. With an artificial rearing system, it is possible to provide specialized diets already during the suckling period, with inclusion of specific nutrients in certain concentrations suggested to improve the growth of runt piglets. Using an artificial rearing system allows for the provision of specialized diets during the suckling phase, which includes specific nutrients aimed at enhancing the growth of underdeveloped piglets. However, in the current experiment, the particular nutrients and their dosages did not significantly improve growth or other characteristics compared to the control group.


Asunto(s)
Alimentación Animal , Arginina , Carnitina , Dieta , Suplementos Dietéticos , Animales , Carnitina/administración & dosificación , Carnitina/farmacología , Alimentación Animal/análisis , Suplementos Dietéticos/análisis , Masculino , Dieta/veterinaria , Arginina/farmacología , Arginina/administración & dosificación , Femenino , Porcinos/crecimiento & desarrollo , Porcinos/fisiología , Carne/análisis , Carne/normas , Factores Sexuales , Fenómenos Fisiológicos Nutricionales de los Animales , Músculo Esquelético/efectos de los fármacos , Peso al Nacer/efectos de los fármacos , Composición Corporal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA